Formation of Functionalized Supramolecular Metallo-Organic Oligomers with Cucurbituril a Thesis Presented to the Faculty Of

Total Page:16

File Type:pdf, Size:1020Kb

Formation of Functionalized Supramolecular Metallo-Organic Oligomers with Cucurbituril a Thesis Presented to the Faculty Of Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Ian M. Del Valle December 2015 © 2015 Ian M. Del Valle. All Rights Reserved. 2 This thesis titled Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril by IAN M. DEL VALLE has been approved for the Department of Chemistry and Biochemistry and the College of Arts and Sciences by Eric Masson Associate Professor of Chemistry and Biochemistry Robert Frank Dean, College of Arts and Sciences 3 Abstract DEL VALLE, IAN M., M.S., December 2015, Chemistry Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril Director of Thesis: Eric Masson The goal of this project is to functionalize supramolecular oligomer chains with amino acids and nucleic acids in order to observe interactions with proteins and DNA. Chiral substituents are also desirable to induce helicality in the oligomer much like DNA. We explored different pathways to afford these oligomers. The first project involves forming metallo-organic oligomers using non-covalent bonds and then functionalizing them. We synthesize ligands and use alkyne-azide cycloadditions to functionalize them. These ligands can then be coordinated to various transition metals. The aromatic regions of these oligomers can then self-assemble into tube-like chains with the participation of cucurbit[8]uril. Second, we explore an alternate pathway to form functionalized chains. This second set of chains coupled amines with carboxylic acid groups attached to the ligands. This project hopes to avoid solubility problems experienced with the first project. We also explore other alterations to the ligand being used. 4 Dedication Dedicated to my family 5 Acknowledgements First, I would like to thank my advisor Professor Eric Masson for his support, patience, and mentoring throughout my time at Ohio University. Then I would like to thank my committee members: Professor Katherine Cimatu and Professor Jennifer V. Hines for their advice and encouragement during my study. I want to offer my sincere gratitude to past and current members of Prof. Masson’s research group Dr. Xiaoyong Lu, Lawrence Kyeremeh-mensah, Dr. Roymon Joseph, Anna Nkrumah, Stefan Saretz, Curran Rhodes, Danielle Price, Mersad Raeisi, and Kondalarao Kotturi for their assistance and thoughtful input throughout my stay in the group. I would also like to thank the faculty of the Department of Chemistry and Biochemistry for all the ways they have guided my study throughout the past five years. 6 Table of Contents Abstract ................................................................................................................................3 Dedication ............................................................................................................................4 Acknowledgements ..............................................................................................................5 List of Figures ......................................................................................................................7 Chapter 1: Introduction ........................................................................................................9 1.1 Supramolecular Metal-ligand Complexes: a Brief Overview ....................................9 1.2 Assembly of Complexes ..........................................................................................11 1.2.1 1D Metal-Organic Frameworks ........................................................................13 1.2.2 2D Metal-Organic Frameworks ........................................................................15 1.2.3 3D Metal-Organic Frameworks ........................................................................17 1.3 Selected Properties of Metal-Organic Frameworks .................................................19 1.4 Previous Work .........................................................................................................27 Chapter 2: Metal Triazole-Pyridine-Triazole/CB[8] Oligomers........................................30 2.1 Objectives ................................................................................................................30 2.2 Design and Synthesis of Starting Material ..............................................................30 2.3 Conclusions ..............................................................................................................35 Chapter 3: Terpyridine CB[8] Oligomers ..........................................................................36 3.1 Objectives ................................................................................................................36 3.2 Synthesis of Precursors ............................................................................................36 3.3 Interactions with CB[n]’s.........................................................................................45 3.4 Conclusions ..............................................................................................................52 Chapter 4: Extensions ........................................................................................................53 4.1 Project Goals ............................................................................................................53 4.2 Complex Library ......................................................................................................53 4.3 CB[n] Recognition ...................................................................................................53 4.4 Targeting of Biologically Relevant Entities ............................................................54 Chapter 5: Experimental Section .......................................................................................55 5.1 Generalities ..............................................................................................................55 5.2 Materials and Methods .............................................................................................55 Bibliography ......................................................................................................................63 7 List of Figures Figure 1.1 (a) Subunit 2 forms the cyclic polymer with polyethylene glycol. (b) Scheme for cyclic polymer with polystyrene chain O (red), Ru (orange), C (blue), H (light blue), and aromatic rings (green). Reprinted with permission from reference 9. Copyright 2013 American Chemical Society. .............................................................................................11 Figure 1.2 Phenanthroline 3a, tetrapyridophenazine 3b, terpyridine 3c, pyridine-2,6- dicarboxylic acid 3d, porphyrins 3e, and pincer ligands 3f. ..............................................12 Figure 1.3 Construction of coordination polymer using Aluminum(III) Porphyrins (Simplified as straight lines in scheme), Reproduced from ref. 15. ..................................14 Figure 1.4 (a) Metallo-rectangle 4 ligand used in the assembly of ladder complex. (b) Hydrogen bonding between subunits. Reproduced from ref. 16. ......................................15 Figure 1.5 (a) Compound 5 is the organic linker. (b) The 2D lattice formed from the linker coordinating with cobalt. Reprinted with permission of reference 17. Copyright 2005 American Chemical Society. ....................................................................................16 Figure 1.6 (a) The organic linker 7 used in the framework. (b) Functionalized alkynes 8a- 8e undergo click reactions with the azide groups. (c) Organic linkers are arranged into a 3D network coordinated with zinc (shown in red). The product is a network with functional groups attached via click reactions. Reprinted with permission of 20. Copyright 2008 American Chemical Society. ...................................................................18 6+ Figure 1.7 Scheme of [Zn4O] clusters and ditopic linear dicarboxylate linkers assembled into a 3D structure. Reproduced from ref. 21. .................................................19 Figure 1.8 Shows the scheme for disassembly and reassembly by heating and cooling. Reproduced with permission of reference 23. Copyright 2013 American Chemical Society................................................................................................................................20 Figure 1.9 Scheme for structure using organic linker 9 and transition metals. Reproduced with permission of reference 24. Copyright 2012 American Chemical Society. ..............21 Figure 1.10 (a) The organic ligand subunit 10 used in the assembly of complexes. (b) The schematic representation of the formation of a metallo-supramolecular gel-like material. Reproduced from reference 25...........................................................................................22 Figure 1.11 Electrochromic coordination polymer 11 reproduced from ref. 26. ..............23 Figure 1.12 (a) Cartoon of the 3D assembly. Blue squares are Cu2 Padwheels; pink rectangles are carbonane bis(isophthalic acid) ligands (b) Lilac spheres represent the largest sphere shaped voids that can be found within the evacuated motif. (c) Space filling model. C = gray; H = white; O = red; B = pink; Cu = blue. Reprinted with permission of reference 28. Copyright 2013 American Chemical Society. ......................24
Recommended publications
  • DNA-Functionalized Supramolecular Polymers
    DNA-functionalized supramolecular polymers Citation for published version (APA): Wijnands, S. P. W., Meijer, E. W., & Merkx, M. (2019). DNA-functionalized supramolecular polymers: dynamic multicomponent assemblies with emergent properties. Bioconjugate Chemistry, 30(7), 1905-1914. https://doi.org/10.1021/acs.bioconjchem.9b00095 Document license: CC BY-NC-ND DOI: 10.1021/acs.bioconjchem.9b00095 Document status and date: Published: 17/07/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Cucurbituril Assembly and Uses Thereof Cucurbiturilanordnung Und Seine Verwendungen Ensemble De Cucurbituril Et Ses Utilisations
    (19) TZZ_Z__T (11) EP 1 668 015 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: C07D 487/22 (2006.01) C07D 519/00 (2006.01) of the grant of the patent: G01N 33/00 (2006.01) C08G 73/00 (2006.01) 21.08.2013 Bulletin 2013/34 (86) International application number: (21) Application number: 04770467.1 PCT/IL2004/000796 (22) Date of filing: 05.09.2004 (87) International publication number: WO 2005/023816 (17.03.2005 Gazette 2005/11) (54) CUCURBITURIL ASSEMBLY AND USES THEREOF CUCURBITURILANORDNUNG UND SEINE VERWENDUNGEN ENSEMBLE DE CUCURBITURIL ET SES UTILISATIONS (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A-00/68232 WO-A-03/004500 HU IE IT LI LU MC NL PL PT RO SE SI SK TR WO-A-03/055888 WO-A-03/055888 (30) Priority: 04.09.2003 US 499735 P • JON, SANG YONG ET AL: "Facile Synthesis of 13.01.2004 US 535829 P Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of (43) Date of publication of application: Cucurbit[n]uril" JOURNAL OF THE AMERICAN 14.06.2006 Bulletin 2006/24 CHEMICAL SOCIETY , 125(34), 10186-10187 CODEN: JACSAT; ISSN: 0002-7863, 8 June 2003 (73) Proprietor: TECHNION RESEARCH AND (2003-06-08), XP002316247 DEVELOPMENT FOUNDATION, LTD. • JON, SANG YONG ET AL: "Facile Synthesis of Haifa 32000 (IL) Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of (72) Inventor: KEINAN, Ehud Cucurbit[n]uril" JOURNAL OF THE AMERICAN 23 840 Timrat (IL) CHEMICAL SOCIETY , 125(34), 10186-10187 CODEN: JACSAT; ISSN: 0002-7863, 2003, (74) Representative: Dennemeyer & Associates S.A.
    [Show full text]
  • Study on the Complexation of Macromolecule Cucurbituril with Metals and Acetamide
    International Journal of Chemistry and Applications. ISSN 0974-3111 Volume 4, Number 3 (2012), pp. 219-226 © International Research Publication House http://www.irphouse.com Study on the Complexation of Macromolecule Cucurbituril with Metals and Acetamide T. Jaba Priya, Jasmine Rebecca and R. Wilfred Sugumar Department of Chemistry, Madras Christian College (Autonomous), Tambaram, Chennai-600059, India. E-mail: [email protected]; [email protected] Abstract Cucurbituril is a remarkably robust macro cyclic host molecule that has a rigid cavity capable of binding small guests under a variety of conditions. In the present study, macromolecule cucurbit[6]uril (CB[6]) and its complexes with metal ions lithium, cerium were synthesized. Mixed ligand complexes containing CB[6] and acetamide with central metal ions such as lithium were also prepared. The UV – visible spectrum of the complex of lithium with CB[6] shows a peak at 225nm. The mixed ligand complex of lithium with CB[6] and acetamide shows a sharp peak at 220nm which indicates the presence of amide functional group. The peak at 274nm indicates the presence of – NO2 group. UV-visible spectrum of the complex of cerium with CB[6] shows a peak at 213.17nm, which indicates the presence of – CONH2 group. The IR spectrum of Cucurbituril shows the following peaks 3436.96 cm-1 , 2931.16 to 2372.15 cm-1 and a sharp peak at 1726.39 cm-1 these frequencies indicate the presence of CO - N ,C-H and C=O stretching respectively. The IR spectra of the complex of Lithium with CB[6] and Cerium with CB[6] show significant variations especially around 3000 cm-1 and between 1700 to 1200 cm-1 indicating prevalence of enhanced hydrogen bonding.
    [Show full text]
  • Cucurbit[7]Uril Host-Viologen Guest Complexes
    CUCURBIT[7]URIL HOST-VIOLOGEN GUEST COMPLEXES: ELECTROCHROMIC AND PHOTOCHEMICAL PROPERTIES by MARINA FREITAG A dissertation submitted to the Graduate School – Newark Rutgers, The State University of New Jersey in partial fulfillment of requirements for the degree of Doctor of Philosophy Graduate Program in Chemistry Written under the direction of Professor Elena Galoppini and approved by ________________________ ________________________ ________________________ ________________________ Newark, New Jersey October, 2011 ABSTRACT OF THE DISSERTATION Abstract Cucurbituril[7] Host - Viologen Guest Complexes: Electrochromic and Photochemical Properties By MARINA FREITAG Dissertation Director: Professor Elena Galoppini In this thesis, we demonstrated that a molecular host, cucurbit[7]uril, provides an alternative method of adsorbing molecules on semiconductors and shields the guest from the hetereogenous interface. These novel hybrid systems exhibited photophysical and electrochemical properties that differ from the properties of layers obtained by directly attaching the chromophore to the semiconductor through binding groups. This thesis describes the host-guest chemistry between cucurbit[7]uril (CB[7]) and various series of viologen guests. Methylviologen (1,1'-dimethyl-4,4'-bipyridinium dichloride, MV2+), 1-methyl-1'-p-tolyl-4,4'-bipyridinium dichloride (MTV2+), and 1,1'-di- p-tolyl-(4,4'-bipyridine)-1,1'-diium dichloride (DTV2+) were encapsulated in the macrocyclic host cucurbit[7]uril, CB[7]. The complexes MV2+@CB[7] and MTV2+@CB[7] were physisorbed to the surface of 1 TiO2 nanoparticle films. The complexation into CB[7] was monitored by H NMR. TiO2 films functionalized with the complexes were studied by FT-IR-ATR and UV-Vis ii absorption. The electrochemical and spectroelectrochemical properties of MV2+@CB[7] and MTV2+@CB[7] were studied in solution and in electrochromic windows (ECDs), where the complexes were bound to TiO2 films cast on FTO.
    [Show full text]
  • Terpyridine-Metal Complexes: Applications in Catalysis and Supramolecular Chemistry
    Coordination Chemistry Reviews 385 (2019) 1–19 Contents lists available at ScienceDirect Coordination Chemistry Reviews journal homepage: www.elsevier.com/locate/ccr Review Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry ⇑ ⇑ Chiyu Wei b, Ying He b, Xiaodong Shi a,b, ,1, Zhiguang Song a, a Department of Chemistry, Jilin University, Changchun, Jilin 130021, China b Department of Chemistry, University of South Florida, Tampa, 33620 FL, USA article info abstract Article history: As an NNN-tridentate ligand, the 2,20:60,200-terpyridine plays an important role in coordination chemistry. Received 30 November 2018 With three coordination sites and low LUMO, terpyridine and its derivatives are one of the typical Pincer Received in revised form 6 January 2019 ligand and/or non-innocent ligands in transition metal catalysis. Interesting catalytic reactivities have Accepted 7 January 2019 been obtained with these tpy-metal complexes targeting some challenging transformations, such as Available online 28 January 2019 C–C bond formation and hydrofunctionalization. On the other hand, terpyridine ligands can form 2+ In celebration of the 100th anniversary of ‘‘closed-shell” octahedral <tpy-M -tpy> complexes, which provide a linear and stable linkage in Nankai University. supramolecular chemistry. Numerous supramolecular architectures have been achieved using modified terpyridine ligands including Sierpin´ ski triangles, hexagonal gasket and supramolecular rosettes. This Keywords: review presents a summary of recent progress regarding transition metal-terpyridine complexes with Terpyridine the focus on their applications in catalysis and supramolecular structure construction. Facile synthesis Pincer ligand of terpyridine derivatives is also described. We hope this article can serve to provide some general Non-innocent ligand perspectives of the terpyridine ligand and their applications in coordination chemistry.
    [Show full text]
  • Spatiotemporal Control and Superselectivity in Supramolecular Polymers Using Multivalency
    Spatiotemporal control and superselectivity in supramolecular polymers using multivalency Lorenzo Albertazzia, Francisco J. Martinez-Veracoecheab, Christianus M. A. Leendersa, Ilja K. Voetsa, Daan Frenkelb, and E. W. Meijera,1 aInstitute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; and bDepartment of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved May 28, 2013 (received for review February 22, 2013) Multivalency has an important but poorly understood role in pegylated BTAs self-assemble in water through a combination of molecular self-organization. We present the noncovalent synthesis hydrogen bonding and hydrophobic effects to create long su- of a multicomponent supramolecular polymer in which chemically pramolecular polymers of ∼0.1–10 μminlength(9). distinct monomers spontaneously coassemble into a dynamic, In the biology and chemistry communities, there is intense functional structure. We show that a multivalent recruiter is able interest in the role of multivalency as a tool to encode structure to bind selectively to one subset of monomers (receptors) and and function into soft materials. Several fascinating papers trigger their clustering along the self-assembled polymer, be- reported how nature exploits multivalency to exert control over havior that mimics raft formation in cell membranes. This phe- spatial segregation and phase separation inside living cells (10). nomenon is reversible and affords spatiotemporal control over Segregation of proteins and sphingolipids in lipid raft domains the monomer distribution inside the supramolecular polymer by superselective binding of single-strand DNA to positively charged (11) is a remarkable example of this phenomenon.
    [Show full text]
  • Characterization of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, and UV-Vis Blaise Frenzel
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Characterization Of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, And UV-Vis Blaise Frenzel Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Frenzel, Blaise, "Characterization Of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, And UV-Vis" (2015). Theses and Dissertations. 1771. https://commons.und.edu/theses/1771 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CHARACTERIZATION OF NEWLY SYNTHESIZED COBALT POLYPYRIDINE COMPLEXES USING NMR, X-RAY, ELECTROCHEMISTRY, AND UV-VIS by Blaise Frenzel Bachelor of Science, Bemidji State University, United States of America, 2011 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment requirements for the degree of Master of Science Grand Forks, North Dakota May 2015 Copyright 2015 Blaise Frenzel !ii PERMISSION Title Characterization of Newly Synthesized Cobalt Polypyridine Complexes Using 111111111111NMR, X-Ray, Electrochemistry, and UV-vis. Department Chemistry Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies.
    [Show full text]
  • PMSE Washington F'2000 Preprint Template
    American Chemical Society Division of Polymeric Materials: Science and Engineering Spring 2009 PMSE Preprints Volume 100, Spring 2009 Salt Lake City, Utah, USA 22-26 March 2009 ISBN: 978-1-60560-960-7 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 www.proceedings.com Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2009) by PMSE Division of ACS All rights reserved. Printed by Curran Associates, Inc. (2009) For permission requests, please contact PMSE Division of ACS at the address below. PMSE Division of ACS 5200 Bayway Drive Baytown, Texas 77520 Phone: (281) 834-0222 Fax: (281) 834-2395 [email protected] TABLE OF CONTENTS 6FDA-6FpDA as a Multipurpose Polymer: Synthesis and Influence of Casting Process on Gas Separation Properties of Ultra High MW 6FDA-6FpDA.........................................................................1 Javier de Abajo, Mariola Calle, José G. de la Campa, Carolina García-Sanchez, Angel E. Lozano, Antonio Hernandez, Angel Marcos-Fernandez, Dulce M. Muñoz, Laura Palacio, Pedro Pradanos, Alberto Tena Advances in Polymeric Systems .........................................................................................................................3 Eric Baer, A. Hiltner Characterization and Modelling of Organic Vapors Sorption, Diffusion and Swelling in High Free Volume Polynorbornene with Trimethyl-Silyl Side Groups .........................................................4 Michele Galizia,
    [Show full text]
  • Synthesis of Terpyridine-Terminated Amphiphilic Block Copolymers and Their Self-Assembly Into Metallo-Polymer Nanovesicles
    materials Article Synthesis of Terpyridine-Terminated Amphiphilic Block Copolymers and Their Self-Assembly into Metallo-Polymer Nanovesicles Tatyana Elkin 1, Stacy M. Copp 1, Ryan L. Hamblin 1, Jennifer S. Martinez 1,2, Gabriel A. Montaño 1,2,* and Reginaldo C. Rocha 1,* 1 Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Los Alamos, NM 87545, USA; [email protected] (T.E.); [email protected] (S.M.C.); [email protected] (R.L.H.); [email protected] (J.S.M.) 2 Center for Materials Interfaces in Research and Applications and Program of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011, USA * Correspondence: [email protected] (G.A.M.); [email protected] (R.C.R.); Tel.: +1-928-523-2353 (G.A.M.); +1-505-665-0124 (R.C.R.) Received: 13 January 2019; Accepted: 12 February 2019; Published: 17 February 2019 Abstract: Polystyrene-b-polyethylene glycol (PS-b-PEG) amphiphilic block copolymers featuring a terminal tridentate N,N,N-ligand (terpyridine) were synthesized for the first time through an efficient route. In this approach, telechelic chain-end modified polystyrenes were produced via reversible addition-fragmentation chain-transfer (RAFT) polymerization by using terpyridine trithiocarbonate as the chain-transfer agent, after which the hydrophilic polyethylene glycol (PEG) block was incorporated into the hydrophobic polystyrene (PS) block in high yields via a thiol-ene process. Following metal-coordination with Mn2+, Fe2+, Ni2+, and Zn2+, the resulting metallo-polymers were self-assembled into spherical, vesicular nanostructures, as characterized by dynamic light scattering and transmission electron microscopy (TEM) imaging. Keywords: metallo-polymer; polymersome; self-assembly; terpyridine 1.
    [Show full text]
  • Synthesis and Characterization of Supramolecular Cucurbituril, Molybdenum 2,2'-Bipyridyl Complex
    International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 140 ISSN 2229-5518 SYNTHESIS AND CHARACTERIZATION OF SUPRAMOLECULAR CUCURBITURIL, MOLYBDENUM 2,2’-BIPYRIDYL COMPLEX Ms. Anitha. V1 , Dr. Nandagopal. J2, Ms. Ramanachiar.R3, Ms. Sasikala.S4, Ms. Ariyamala .R5 Department of chemistry, Velammal Engineering college, Chennai, Tamilnadu. Abstract Supra molecular Cucurbituril, Molybdenum2,2’-bipyridyl complex has been synthesized by precipitation followed by slow evaporation techniques. Changes in the physical properties of the ligand and the complex were characterized by melting point and solubility test . The absorption spectrum of the Cucurbituril, Molybdenum2,2’-bipyridyl complex were studied by decreasing and increasing concentrations by using UV – Visible spectrophotometer and IR spectrophotometer. The interaction between the metal and ligands were studied by UV- visible spectral analysis. The functional groups and modes of vibration were identified by IR spectral analysis. Key words: Cucurbituril, evaporation, precipitation, absorption, ligand, spectrophotometer. INTRODUCTION complex of Cucurbit[6]uril which incorporates the p-Xylene diammonium cation into the macrocyclic A Supramolecular assembly or “supramolecule” is a cavity. Researchers have shown that Cucurbit[6]uril well defined complex of molecules held together by acts as a catalyst in cyclo-addition reactions. noncovalent bonds. Cucurbiturils are macrocyclic Detailed examination has been done on the molecules consisting of glycouril repeating units. construction of supramolecular organic, inorganic These supramolecular compounds are particularly compounds from macrocyclic cavitand interesting to chemists because they are molecular cucurbit[6]Uril and mono and polynuclear aqua containers that are capable of binding other complexes. Cucurbit[6]uril is used in the molecules within their cavities.
    [Show full text]
  • Formation of Self-Healing Supramolecular Materials Using Inclusion Complexes Between Cyclodextrin and Hydrophobic Guest Groups
    Formation of Self-healing Supramolecular Title Materials Using Inclusion Complexes between Cyclodextrin and Hydrophobic Guest Groups Author(s) 角田, 貴洋 Citation Issue Date Text Version ETD URL https://doi.org/10.18910/34046 DOI 10.18910/34046 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University Formation of Self-healing Supramolecular Materials Using Inclusion Complexes between Cyclodextrin and Hydrophobic Guest Groups A Doctoral Thesis by Takahiro Kakuta Submitted to the Graduate School of Science, Osaka University February, 2014 Acknowledgements This work was carried out from 2011 to 2014 under the supervision of Professor Dr. Akira Harada at the Department of Macromolecular Science, Graduate School of Science, Osaka University. The author would like to express his sincere gratitude to Professor Dr. Akira Harada for his guidance and assistance throughout this study. Grateful acknowledgements are made to Assistant Professor Dr. Yoshinori Takashima for his continuing help. The author is also grateful to Professor Dr. Hiroyasu Yamaguchi, Associate Professor Dr. Akihito Hashidzume, Dr. Yuichiro Kobayashi, Dr. Takashi Nakamura, Mrs. Miyuki Otsubo, Dr. Yongtai Zheng, Mr. Masaki Nakahata, Ms. Tomoko Sekine, Mr. Kazuhisa Iwaso, Mr. Chun-Yen Liu, Mr. Lee Isaac Eng Ting, and Mr. Takaaki Sano, for their helpful suggestion and all the members of Harada laboratory for their cooperation and friendship. Grateful acknowledgements are also made to Professor Dr. Tadashi Inoue for dynamic viscoelastic measurement, Mr. Seiji Adachi and Dr. Naoya Inadumi for NMR measurement, and Dr. Akihiro Ito for SEM experiments. The author appreciates the financial support from JST-CREST (Japan Science Technology, Core Research of Excellence Science Technology) (May, 2010-present).
    [Show full text]
  • Host-Guest Compounds Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications Xue Yang, Ruibing Wang, Anthony Kermagoret, David Bardelang
    Host-Guest Compounds Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications Xue Yang, Ruibing Wang, Anthony Kermagoret, David Bardelang To cite this version: Xue Yang, Ruibing Wang, Anthony Kermagoret, David Bardelang. Host-Guest Compounds Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Ange- wandte Chemie International Edition, Wiley-VCH Verlag, 2020, pp.2-15. 10.1002/anie.202004622. hal-02972332 HAL Id: hal-02972332 https://hal-amu.archives-ouvertes.fr/hal-02972332 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Xue Yang,[a] Ruibing Wang,*[b] Anthony Kermagoret,*[a] and David Bardelang*[a] Abstract: Proteins are an endless source of inspiration. By carefully Xue Yang earned her Master’s degree from tuning the amino-acid sequence of proteins, nature made them evolve the University of Macau (China) in 2017. She from primary to quaternary structures, a property specific to protein is currently pursuing her PhD on the oligomers and often crucial to accomplish their function. On the other supramolecular chemistry of cucurbiturils at Aix- hand, the synthetic macrocycles cucurbiturils (CBs) have shown Marseille University.
    [Show full text]