Characterization of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, and UV-Vis Blaise Frenzel
Total Page:16
File Type:pdf, Size:1020Kb
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Characterization Of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, And UV-Vis Blaise Frenzel Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Frenzel, Blaise, "Characterization Of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, And UV-Vis" (2015). Theses and Dissertations. 1771. https://commons.und.edu/theses/1771 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CHARACTERIZATION OF NEWLY SYNTHESIZED COBALT POLYPYRIDINE COMPLEXES USING NMR, X-RAY, ELECTROCHEMISTRY, AND UV-VIS by Blaise Frenzel Bachelor of Science, Bemidji State University, United States of America, 2011 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment requirements for the degree of Master of Science Grand Forks, North Dakota May 2015 Copyright 2015 Blaise Frenzel !ii PERMISSION Title Characterization of Newly Synthesized Cobalt Polypyridine Complexes Using 111111111111NMR, X-Ray, Electrochemistry, and UV-vis. Department Chemistry Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis. Blaise Frenzel Signature 04/30/15 Date !iv TABLE OF CONTENTS LIST OF FIGURES ...................................................................................................... viii LIST OF TABLE ............................................................................................................ x ABSTRACT ................................................................................................................... xi 1. INTRODUCTION...................................................................................................... 1 1.1 A Brief History.................................................................................................... 1 1.2 Homoleptic Complexes ....................................................................................... 2 1.3 Heteroleptic Complexes ...................................................................................... 3 1.4 Statement of Purpose .......................................................................................... 4 !v 2. HOMOLEPTIC COMPLEXES................................................................................ 5 2.1. General remarks .............................................................................................. 5 2.2. Physical measurements .................................................................................... 5 2.3. Computational methods ................................................................................... 6 2.4. Synthesis of the Homoleptic Compounds ........................................................ 7 2.4.1. Synthesis of [Co(mer-bqp-κ3N,N′,N″)2](PF6)2 ..................................... 7 2.4.2. Synthesis of [Co(mer-bqp-κ3N,N′,N″)2][Br3]3 ..................................... 8 2.4.3 X-ray crystallography............................................................................... 8 2.5. Results and Discussion For Homoleptic Cobalt Complexes ........................... 9 2.5.1 Ligand Synthesis................................................................................ ...... 9 2.5.1 X-ray crystal structure analysis ............................................................. 12 2.5.2. Magnetic susceptibility ..................................................... .................... 18 2.5.3 Electronic spectra .................................................................................. 19 2.5.4 Electrochemistry ................................................................................... 24 !vi 3. HETEROLEPTIC COMPLEXES ................................................................................ 26 3.1. General remarks ............................................................................................ 26 3.2. Physical measurements .................................................................................. 26 3.3. Synthesis of Heteroleptic Complexes ........................................................... 27 3.3.1 Synthesis of Co(mer-bqp-κ3N,N′,N″)(bpy-κ2N,N′)Cl][PF6]2 (5) ........ 28 3.3.2 Synthesis of Co(mer-tpy-κ3N,N′,N″)(phen- κ2N,N′)Cl][PF6]2 (3) 3 2 and Co(mer-tpy-κ N,N′,N″)(bpy-κ N,N′)Cl][PF6]2 (4) ............ ......... 28 3 3.4 Characterization of [Co(mer-tpy-" N,N#,N$)(phen- "2N,N#)Cl][PF6]2 ..... .. 30 3.4.1. Ligand Synthesis .................................................................................. 30 3.4.2. X-Ray Crystallography ......................................................................... 30 3.4.3. NMR Spectroscopy .................................................................. .............. 32 3.4.4. Electrochemistry .................................................................................. 37 4. CONCLUSION ............................................................................................................. 41 APPENDIX ..................................................................................................................... 44 REFERENCES ................................................................................................................ 69 !vii LIST OF FIGURES Figure Page 2+ 1. Thermal ellipsoid view of mer,mer-[Co(bqp-κ3N,N′,N″)2] (1).....…….………………….10 3 3+ 2. Thermal ellipsoid view of mer,mer-[Co(bqp-κ N,N′,N″)2] (2)….….....…….……………11 3. DFT (B3LYP/LANL2DZ) optimized structures of high-spin 2+ mer,mer-[Co(bqp-κ3N,N′,N″)2] ….............................................................................…….17 2+ 4. Absorption spectra for mer,mer-[Co(bqp- κ3N,N′,N″)2] (1; black, short dash) and mer, 3+ mer-[Co(bqp-κ3N,N′,N″)2] (2; black, solid line) in acetonitrile at room temperature........20 3+ 5. Comparison of molecular orbitals for mer,mer-[Co(bqp-κ3N,N′,N″)2] (2). .………….…22 3+ 6. Simulated absorption spectrum for mer,mer-[Co(bqp- κ3N,N′,N″)2] (2) ..………………23 7. Cyclic voltammograms for mer,mer- [Co(bqp-κ3N,N′,N″)2]3+ (2, top) and 2+ mer,mer-[Co(bqp-κ3N,N′,N″)2] (1, bottom)....……………………………………………24 8. Solid-state structure of [Co(mer-tpy- κ3N,N′,N″)(phen-κ2N,N′,N″)Cl][PF6]2 ..………….28 9. [Co(mer-tpy-κ3N,N′,N″)(phen- κ2N,N′)Cl][PF6]2..…………………………………………32 10. Spectra of [Co(mer-tpy-κ3N,N′,N″)(phen-κ2N,N′)Cl]2+...…………………………………33 3 2 11. Marked [Co(mer-bqp-κ N,N′,N″)(bpy-κ N,N′)Cl][Br3]2..…………………………………34 12. Spectra of [Co(mer-bqp-κ3N,N′,N″)(bpy-κ2N,N′)Cl]2+....…………………………………34 3 2 13. Selected voltammograms for [Co(mer-tpy-κ N,N′,N″)(bpy-κ N,N′)Cl][PF6]2 3 2 ,top, and[Co(mer-tpy-κ N,N′,N″)(phen-κ N,N′)Cl][PF6]2 , bottom.………..………………37 3 2 14. Selected voltammogram for [Co(mer-bqp-κ N,N′,N″) (bpy-κ N,N′)Cl][Br3]2.….….…….38 15. Selected voltammogram for the oxidation and second reduction of 2 [Co(mer-bqp-κ3N,N′,N″)(bpy-κ N,N′)Cl][Br3]2.....…………………….......……………39 16. S1- Cobalt-Bis(8′-quinolinyl)pyridine (bqp) Geometries.....………………………………66 !viii 17. S2-Cobalt-Bis(8#-quinolinyl)pyridine (bqp) Configurations………………………..………67 3 18. S3-Overlay of the x-ray structures at 100 and 290 K for [Co(mer-bqp-κ N,N′,N″))2]… ..….68 !ix LIST OF TABLES Table Page 3 2+ 1. Selected bond lengths [Å] and angles [º] for mer,mer-[Co(bqp-� N,N′,N″))2] [1]. ..12 3 3+ 2. Selected bond lengths [Å] and angles [º] for mer,mer-[Co(bqp-� N,N′,N″))2] [2]. .14 3. Electronic absorption maxima……………………………………………………….21 4. Selected bond lengths and angles for [Co(mer-tpy-κ2N,N′,N″)(phen-κ2N,N′,N″)]2+. .30 5. Selected bond lengths and angles for [Co(mer-tpy-κ2N,N′,N″)(bpy-κ2N,N′,N″)]2+. ..31 3 2+ 6. Table S1. Selected bond length [Å] and angles [º] for [Co( mer-tpy-κ N,N′,N″)2] 3 3+ and [Co(mer-tpy-κ N,N′,N″)2] …..………………………………………………….46 7. Table S2. DFT Calculations. Selected bond length [Å] and angles [º] for 3 3+ [Co(mer-bqp-κ3N,N′,N″)2]2+ (low and high spin) and[Co(mer-bqp-κ N,N′,N″)2] ..47 3 2+ 8. Table S3-A. Optimized Geometry [Co(mer-bqp-κ N,N′,N″)2] (1) in the Doublet Ground State with E(B3LYP) = -2244.39629091 au...……………………..48 3 2+ 9. Table S3-B. Calculated doublet excited states of for [Co(mer-bqp-κ N,N′,N″)2] (1) in acetonitrile (CH3CN)......……………………………………….………..……50 10. Table S3-C. Fragment Analysis Based on Mullikan Populations for 3 2+ Co(mer-bqp-κ N,N′,N″)2] (1) in the Doublet Ground State (Alpha-Spin)…………54 11. Table S3-D. Fragment Analysis Based on Mullikan Populations for 3 2+ [Co(mer-bqp-κ N,N′,N″)2] (1) in the Doublet Ground