Cucurbit[7]Uril Host-Viologen Guest Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Cucurbit[7]Uril Host-Viologen Guest Complexes CUCURBIT[7]URIL HOST-VIOLOGEN GUEST COMPLEXES: ELECTROCHROMIC AND PHOTOCHEMICAL PROPERTIES by MARINA FREITAG A dissertation submitted to the Graduate School – Newark Rutgers, The State University of New Jersey in partial fulfillment of requirements for the degree of Doctor of Philosophy Graduate Program in Chemistry Written under the direction of Professor Elena Galoppini and approved by ________________________ ________________________ ________________________ ________________________ Newark, New Jersey October, 2011 ABSTRACT OF THE DISSERTATION Abstract Cucurbituril[7] Host - Viologen Guest Complexes: Electrochromic and Photochemical Properties By MARINA FREITAG Dissertation Director: Professor Elena Galoppini In this thesis, we demonstrated that a molecular host, cucurbit[7]uril, provides an alternative method of adsorbing molecules on semiconductors and shields the guest from the hetereogenous interface. These novel hybrid systems exhibited photophysical and electrochemical properties that differ from the properties of layers obtained by directly attaching the chromophore to the semiconductor through binding groups. This thesis describes the host-guest chemistry between cucurbit[7]uril (CB[7]) and various series of viologen guests. Methylviologen (1,1'-dimethyl-4,4'-bipyridinium dichloride, MV2+), 1-methyl-1'-p-tolyl-4,4'-bipyridinium dichloride (MTV2+), and 1,1'-di- p-tolyl-(4,4'-bipyridine)-1,1'-diium dichloride (DTV2+) were encapsulated in the macrocyclic host cucurbit[7]uril, CB[7]. The complexes MV2+@CB[7] and MTV2+@CB[7] were physisorbed to the surface of 1 TiO2 nanoparticle films. The complexation into CB[7] was monitored by H NMR. TiO2 films functionalized with the complexes were studied by FT-IR-ATR and UV-Vis ii absorption. The electrochemical and spectroelectrochemical properties of MV2+@CB[7] and MTV2+@CB[7] were studied in solution and in electrochromic windows (ECDs), where the complexes were bound to TiO2 films cast on FTO. The ECDs prepared from 2+ 2+@ MV @CB[7]/TiO2/FTO and MTV CB[7]/TiO2/FTO electrodes showed reversible, sharp and fast color switching upon application of -0.8 V. Viologen derivative DTV2+ exhibited enhanced fluorescence upon encapsulation. Aqueous solutions of DTV2+ were weakly fluorescent (Φ = 0.02, τ < 20 ps), whereas the emission of the DTV2+@2CB[7] complex was enhanced by one order of magnitude (Φ = 0.29, τ = 0.7 ns) and was blue-shifted by 35 nm. DTV2+ in polymethylmethacrylate (PMMA) matrix was fluorescent with a spectrum similar to that observed for the complex in solution. DFT and CIS calculations suggested that the increased planarity of the aromatic rings and a quinonoid structure of the S1 state, induced by encapsulation in the host, can explain the observed emission enhancement. The absorption and emission spectra of DTV2+@2CB[7] in water exhibited a large Stokes shift (ΔSt ~ 10,000 cm-1) and no fine structure. 1H NMR and UV-Vis titration indicated that the DTV2+@2CB[7] 4 complex is formed in aqueous solutions with a complexation constant of K1W = 1.2×10 -1 4 -1 4 -1 4 -1 M , K2W = 1.0×10 M in water, and K1NaCl = 1.1×10 M , K2NaCl = 0.8×10 M in 0.05 M NaCl aqueous solution. iii Acknowledgement I would like to take this opportunity, first and foremost, to thank my supervisor, Professor Elena Galoppini, for her kindness, help, guidance, and patience during my studies. It has been a pleasure studying in her research group. I would like to thank my committee members, Prof. Phillip Huskey, Prof. Jenny Lockard of Rutgers University, Newark and Prof. Angel E. Kaifer of University of Miami, Florida for their effort and time in reading and correcting my thesis. It has been a pleasure working with members of the Galoppini group, both past and present, Dr. Jonathan Rochford, Dr. Olena Taratula, Dr. Sujatha Thyagarajan, Dr. Yongyi Zhang, Andrew Kopecky, Keyur Chitre, Yan Cao, and Agnieszka Klimczak. I thank them for their constant support and motivation. I would also like to thank Prof. Piotr Piotrowiak and Prof. Lars Gundlach for their kindness and helpful discussions regarding DFT and CIS calculations. My sincere thanks also goes to Prof. Carlo A. Bignozzi and Dr. Stefano Caramori from the University of Ferrara, Italy, for offering me the research opportunity in his group and leading me working on diverse exciting projects. I wish to also thank the faculty members of the Department of Chemistry, Rutgers University for their guidance, excellent teaching and research advice, and also the staff of both the Department of Chemistry and Rutgers University, especially Judy Slocum and Monika Dabrowski, for their helpfulness. In addition, I greatly appreciate the financial assistance that has been provided by the Donors of the American Chemical Society Petroleum Research Fund for support of this research (ACS PRF #46663-AC10). iv And a special thanks goes to Richard Freitag for bearing with me during the completion of this manuscript. v Table of Contents Abstract ............................................................................................................................... ii Acknowledgement ............................................................................................................. iv Table of Contents ............................................................................................................... vi Lists of Figures .................................................................................................................. xi List of Schemes ............................................................................................................... xxii Lists of Tables ................................................................................................................ xxiii Lists of Abbreviations .................................................................................................... xxiv Chapter A ............................................................................................................................ 1 A.1 Introduction .................................................................................................................. 2 A.1.2 Nanostructured Metal Oxide Interfaces .................................................................... 7 A.2. Supramolecular Hosts on Semiconductor Surfaces .................................................. 10 A.2.1 Hemicarceplexes ..................................................................................................... 12 A.2.2 Cyclodextrins .......................................................................................................... 14 A.2.3 Calixarenes .............................................................................................................. 21 A.2.4 Zeolites .................................................................................................................... 24 A.2.6 Redox Active Compounds Bound to TiO2 .............................................................. 26 A.3 The Cucurbituril Family............................................................................................. 28 A.3.1 Cucurbit[7]uril, a Molecular Host ........................................................................... 32 vi A.5 References .................................................................................................................. 36 Chapter B .......................................................................................................................... 54 Introduction ....................................................................................................................... 55 B.2 Synthesis of Viologen Derivatives ............................................................................. 59 B.2.1 Synthesis of Alkyl Viologens .................................................................................. 59 B.2.2 Synthesis of Aryl Viologens ................................................................................... 61 B.3 Host-Guest Complexes of Viologens with Cucurbit[7]uril........................................ 63 1 2+ 2+ B.3.1 H NMR study of MV @CB[7] and MTV @CB[7] ........................................... 65 B.3.2 Complexation Constant* ......................................................................................... 68 B.4 Cucurbituril Complexes Bound to TiO2 ..................................................................... 69 B.4.1 Preparation of nanostructured TiO2 Films .............................................................. 71 B.4.2 Binding on Nanostructured TiO2 Films .................................................................. 72 B.5 Electrochemistry......................................................................................................... 73 B.5.1 Cyclic Voltammetry Measurements in Solution ..................................................... 73 B.6 UV-Vis Absorption Spectroscopy ............................................................................ 77 B.6.1 UV-Vis Absorption Spectra in Solution.................................................................. 77 B.6.2 UV-Vis Absorption Measurements of Electrochromic Windows ........................... 79 B.7 FT-IR-ATR................................................................................................................. 80 B.7.1 Measurements of Solid Complex Samples.............................................................. 80 B.7.2 FT-IR-ATR Measurements of nanostructured TiO2 films .....................................
Recommended publications
  • Cucurbituril Assembly and Uses Thereof Cucurbiturilanordnung Und Seine Verwendungen Ensemble De Cucurbituril Et Ses Utilisations
    (19) TZZ_Z__T (11) EP 1 668 015 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: C07D 487/22 (2006.01) C07D 519/00 (2006.01) of the grant of the patent: G01N 33/00 (2006.01) C08G 73/00 (2006.01) 21.08.2013 Bulletin 2013/34 (86) International application number: (21) Application number: 04770467.1 PCT/IL2004/000796 (22) Date of filing: 05.09.2004 (87) International publication number: WO 2005/023816 (17.03.2005 Gazette 2005/11) (54) CUCURBITURIL ASSEMBLY AND USES THEREOF CUCURBITURILANORDNUNG UND SEINE VERWENDUNGEN ENSEMBLE DE CUCURBITURIL ET SES UTILISATIONS (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A-00/68232 WO-A-03/004500 HU IE IT LI LU MC NL PL PT RO SE SI SK TR WO-A-03/055888 WO-A-03/055888 (30) Priority: 04.09.2003 US 499735 P • JON, SANG YONG ET AL: "Facile Synthesis of 13.01.2004 US 535829 P Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of (43) Date of publication of application: Cucurbit[n]uril" JOURNAL OF THE AMERICAN 14.06.2006 Bulletin 2006/24 CHEMICAL SOCIETY , 125(34), 10186-10187 CODEN: JACSAT; ISSN: 0002-7863, 8 June 2003 (73) Proprietor: TECHNION RESEARCH AND (2003-06-08), XP002316247 DEVELOPMENT FOUNDATION, LTD. • JON, SANG YONG ET AL: "Facile Synthesis of Haifa 32000 (IL) Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of (72) Inventor: KEINAN, Ehud Cucurbit[n]uril" JOURNAL OF THE AMERICAN 23 840 Timrat (IL) CHEMICAL SOCIETY , 125(34), 10186-10187 CODEN: JACSAT; ISSN: 0002-7863, 2003, (74) Representative: Dennemeyer & Associates S.A.
    [Show full text]
  • Study on the Complexation of Macromolecule Cucurbituril with Metals and Acetamide
    International Journal of Chemistry and Applications. ISSN 0974-3111 Volume 4, Number 3 (2012), pp. 219-226 © International Research Publication House http://www.irphouse.com Study on the Complexation of Macromolecule Cucurbituril with Metals and Acetamide T. Jaba Priya, Jasmine Rebecca and R. Wilfred Sugumar Department of Chemistry, Madras Christian College (Autonomous), Tambaram, Chennai-600059, India. E-mail: [email protected]; [email protected] Abstract Cucurbituril is a remarkably robust macro cyclic host molecule that has a rigid cavity capable of binding small guests under a variety of conditions. In the present study, macromolecule cucurbit[6]uril (CB[6]) and its complexes with metal ions lithium, cerium were synthesized. Mixed ligand complexes containing CB[6] and acetamide with central metal ions such as lithium were also prepared. The UV – visible spectrum of the complex of lithium with CB[6] shows a peak at 225nm. The mixed ligand complex of lithium with CB[6] and acetamide shows a sharp peak at 220nm which indicates the presence of amide functional group. The peak at 274nm indicates the presence of – NO2 group. UV-visible spectrum of the complex of cerium with CB[6] shows a peak at 213.17nm, which indicates the presence of – CONH2 group. The IR spectrum of Cucurbituril shows the following peaks 3436.96 cm-1 , 2931.16 to 2372.15 cm-1 and a sharp peak at 1726.39 cm-1 these frequencies indicate the presence of CO - N ,C-H and C=O stretching respectively. The IR spectra of the complex of Lithium with CB[6] and Cerium with CB[6] show significant variations especially around 3000 cm-1 and between 1700 to 1200 cm-1 indicating prevalence of enhanced hydrogen bonding.
    [Show full text]
  • An Efficient Viologen-Based Electron Donor to Nitrogenase
    Communication Cite This: Biochemistry 2019, 58, 4590−4595 pubs.acs.org/biochemistry An Efficient Viologen-Based Electron Donor to Nitrogenase Artavazd Badalyan,* Zhi-Yong Yang, Bo Hu, Jian Luo, Maowei Hu, T. Leo Liu, and Lance C. Seefeldt* Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States *S Supporting Information and dissociation from MoFeP.7 The released oxidized FeP is ABSTRACT: Nitrogenase catalyzes the reduction of N2 reduced, and the two MgADP molecules are replaced by two fi to NH3, supporting all biological nitrogen xation. MgATP molecules, making FeP ready for another round of Electron donors to this enzyme are ferredoxin or MoFeP reduction. This cycle (called the FeP cycle) is repeated flavodoxin (in vivo) and sodium dithionite (in vitro). four times to cause the accumulation of four electrons and four Features of these electron donors put a limit on protons on FeMo-co as two bridging hydrides and two spectrophotometric studies and electrocatalytic applica- protons. This four-electron reduced state [called E4(4H)] 8,9 tions of nitrogenase. Although it is common to use methyl releases H2 and binds N2 with a reduction by two electrons. viologen as an electron donor for many low-potential Four more electron/proton delivery cycles must be completed oxidoreductases, decreased nitrogenase activity is ob- to achieve the reduction of the N2 to two ammonia molecules served with an increasing concentration of methyl (eq 1). In the absence of N2, hydrides and protons react, and viologen, limiting its utility under many circumstances. H2 is evolved (eq 2).
    [Show full text]
  • Rewiring Hydrogenase-Dependent Redox Circuits in Cyanobacteria
    Rewiring hydrogenase-dependent redox circuits in cyanobacteria Daniel C. Ducata,b, Gairik Sachdevac, and Pamela A. Silvera,b,1 aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115; bWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115; and cSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 Edited by David Baker, University of Washington, Seattle, WA, and approved January 26, 2011 (received for review October 26, 2010) þ þ − ↔ Hydrogenases catalyze the reversible reaction 2H 2e H2 The hydrogen production capacity of a variety of cyanobacter- with an equilibrium constant that is dependent on the reducing ial and algal species has been surveyed (8–10), and the highest potential of electrons carried by their redox partner. To examine rates of hydrogen evolution are typically observed in algae the possibility of increasing the photobiological production of and some nitrogen-fixing cyanobacteria. Algal species frequently hydrogen within cyanobacterial cultures, we expressed the [FeFe] possess [FeFe]-hydrogenases that accept low-potential electrons hydrogenase, HydA, from Clostridium acetobutylicum in the non- from ferredoxins that are, in turn, linked to the light reactions of nitrogen-fixing cyanobacterium Synechococcus elongatus sp. 7942. photosynthesis (11). Nitrogen-fixing microorganisms, including We demonstrate that the heterologously expressed hydrogenase is many cyanobacteria (12), produce hydrogen gas as a byproduct functional in vitro and in
    [Show full text]
  • Thermotropic Liquid-Crystalline Properties of Extended Viologen Bis(Triflimide) Salts
    Chemistry and Biochemistry Faculty Publications Chemistry and Biochemistry 11-7-2017 Thermotropic Liquid-crystalline Properties of Extended Viologen Bis(triflimide) Salts Pradip K. Bhowmik University of Nevada, Las Vegas, [email protected] Shane T. Killarney University of Nevada, Las Vegas Jessa Rose A. Li University of Nevada, Las Vegas Jung Jae Koh University of Nevada, Las Vegas, [email protected] Haesook Han University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/chem_fac_articles See next page for additional authors Part of the Chemistry Commons Repository Citation Bhowmik, P. K., Killarney, S. T., Li, J. R., Koh, J. J., Han, H., Sharpnack, L., Agra-Kooijman, D. M., Fisch, M. R., Kumar, S. (2017). Thermotropic Liquid-crystalline Properties of Extended Viologen Bis(triflimide) Salts. Liquid Crystals, 45(6), 872-885. http://dx.doi.org/10.1080/02678292.2017.1397213 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Chemistry and Biochemistry Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected].
    [Show full text]
  • Formation of Functionalized Supramolecular Metallo-Organic Oligomers with Cucurbituril a Thesis Presented to the Faculty Of
    Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Ian M. Del Valle December 2015 © 2015 Ian M. Del Valle. All Rights Reserved. 2 This thesis titled Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril by IAN M. DEL VALLE has been approved for the Department of Chemistry and Biochemistry and the College of Arts and Sciences by Eric Masson Associate Professor of Chemistry and Biochemistry Robert Frank Dean, College of Arts and Sciences 3 Abstract DEL VALLE, IAN M., M.S., December 2015, Chemistry Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril Director of Thesis: Eric Masson The goal of this project is to functionalize supramolecular oligomer chains with amino acids and nucleic acids in order to observe interactions with proteins and DNA. Chiral substituents are also desirable to induce helicality in the oligomer much like DNA. We explored different pathways to afford these oligomers. The first project involves forming metallo-organic oligomers using non-covalent bonds and then functionalizing them. We synthesize ligands and use alkyne-azide cycloadditions to functionalize them. These ligands can then be coordinated to various transition metals. The aromatic regions of these oligomers can then self-assemble into tube-like chains with the participation of cucurbit[8]uril. Second, we explore an alternate pathway to form functionalized chains. This second set of chains coupled amines with carboxylic acid groups attached to the ligands. This project hopes to avoid solubility problems experienced with the first project.
    [Show full text]
  • Aromaticity and Sterics Control Whether a Cationic Olefin Radical Is Resistant to Disproportionation
    Chemical Science EDGE ARTICLE View Article Online View Journal | View Issue Aromaticity and sterics control whether a cationic olefin radical is resistant to disproportionation† Cite this: Chem. Sci., 2020, 11,4138 a a a a All publication charges for this article Julian Messelberger,‡ Annette Grunwald,¨ ‡ Stephen J. Goodner, Florian Zeilinger, have been paid for by the Royal Society Piermaria Pinter,a Matthias E. Miehlich,a Frank W. Heinemann,a Max M. Hansmann of Chemistry bc and Dominik Munz *a We elucidate why some electron rich-olefins such as tetrathiafulvalene (TTF) or paraquat (1,10-dimethyl- 4,40-bipyridinylidene) form persistent radical cations, whereas others such as the dimer of N,N0-dimethyl benzimidazolin-2-ylidene (benzNHC) do not. Specifically, three heterodimers derived from cyclic (alkyl) (amino) carbenes (CAAC) with N,N0-dimethyl imidazolin-2-ylidene (NHC), N,N0-dimethyl imidazolidin-2- ylidene (saNHC) and N-methyl benzothiazolin-2-ylidene (btNHC) are reported. Whereas the olefin radical cations with the NHC and btNHC are isolable, the NHC compound with a saturated backbone (saNHC) disproportionates instead to the biscation and olefin. Furthermore, the electrochemical properties of the electron-rich olefins derived from the dimerization of the saNHC and btNHC were Creative Commons Attribution-NonCommercial 3.0 Unported Licence. assessed. Based on the experiments, we propose a general computational method to model the electrochemical potentials and disproportionation equilibrium. This method, which achieves an accuracy of 0.07 V (0.06 V with calibration) in reference to the experimental values, allows for the first time to rationalize and predict the (in)stability of olefin radical cations towards disproportionation.
    [Show full text]
  • Electron Paramagnetic Resonance of Radicals and Metal Complexes. 2. International Conference of the Polish EPR Association. Wars
    ! U t S - PL — voZ, PL9700944 Warsaw, 9-13 September 1996 ELECTRON PARAMAGNETIC RESONANCE OF RADICALS AND METAL COMPLEXES 2nd International Conference of the Polish EPR Association INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY UNIVERSITY OF WARSAW VGL 2 8 Hi 1 2 ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology Prof. Andrzej G. Chmielewski, Ph.D., D.Sc. Assoc. Prof. Hanna B. Ambroz, Ph.D., D.Sc. Assoc. Prof. Jacek Michalik, Ph.D., D.Sc. Dr Zbigniew Zimek University of Warsaw Prof. Zbigniew Kqcki, Ph.D., D.Sc. ADDRESS OF ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology, Dorodna 16,03-195 Warsaw, Poland phone: (0-4822) 11 23 47; telex: 813027 ichtj pi; fax: (0-4822) 11 15 32; e-mail: [email protected] .waw.pl Abstracts are published in the form as received from the Authors SPONSORS The organizers would like to thank the following sponsors for their financial support: » State Committee of Scientific Research » Stiftung fur Deutsch-Polnische Zusammenarbeit » National Atomic Energy Agency, Warsaw, Poland » Committee of Chemistry, Polish Academy of Sciences, Warsaw, Poland » Committee of Physics, Polish Academy of Sciences, Poznan, Poland » The British Council, Warsaw, Poland » CIECH S.A. » ELEKTRIM S.A. » Broker Analytische Messtechnik, Div. ESR/MINISPEC, Germany 3 CONTENTS CONFERENCE PROGRAM 9 LECTURES 15 RADICALS IN DNA AS SEEN BY ESR SPECTROSCOPY M.C.R. Symons 17 ELECTRON AND HOLE TRANSFER WITHIN DNA AND ITS HYDRATION LAYER M.D. Sevilla, D. Becker, Y. Razskazovskii 18 MODELS FOR PHOTOSYNTHETIC REACTION CENTER: STEADY STATE AND TIME RESOLVED EPR SPECTROSCOPY H. Kurreck, G. Eiger, M. Fuhs, A Wiehe, J.
    [Show full text]
  • Viologen-Peptide Conjugates in Supramolecular Chemistry
    FACULTADE DE CIENCIAS Chemistry Degree Final Project Report Viologen-peptide conjugates in supramolecular chemistry Conxugados violóxeno-péptido en química supramolecular Conjugados viológeno-péptido en química supramolecular Directors: Carlos Peinador Veira Elena Pazos Chantrero PABLO CORTÓN DEBÉN Course: 2017/2018 – Call: June Acknowledgements To the director of this work, Dr. Carlos Peinador Veira and Dr. Elena Pazo Chantrero, and to Dr. Marcos Daniel García Romero, for their amazing guidance, support, and care, besides their contagious enthusiasm for the project. To Iago Neira and Arturo Blanco, for their great leading, their unconditional help and all their valuable friendship. To all the rest of my lab-mates, specially Paula, for their support, interest and for all the good moments we shared together. THANK YOU ALL. Index Index Abbreviatures ...................................................................................................................... 2 Abstract ............................................................................................................................... 3 Resumo................................................................................................................................ 4 Resumen .............................................................................................................................. 5 Introduction ......................................................................................................................... 6 Structure and bonding of proteins
    [Show full text]
  • Synthesis and Characterization of Supramolecular Cucurbituril, Molybdenum 2,2'-Bipyridyl Complex
    International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 140 ISSN 2229-5518 SYNTHESIS AND CHARACTERIZATION OF SUPRAMOLECULAR CUCURBITURIL, MOLYBDENUM 2,2’-BIPYRIDYL COMPLEX Ms. Anitha. V1 , Dr. Nandagopal. J2, Ms. Ramanachiar.R3, Ms. Sasikala.S4, Ms. Ariyamala .R5 Department of chemistry, Velammal Engineering college, Chennai, Tamilnadu. Abstract Supra molecular Cucurbituril, Molybdenum2,2’-bipyridyl complex has been synthesized by precipitation followed by slow evaporation techniques. Changes in the physical properties of the ligand and the complex were characterized by melting point and solubility test . The absorption spectrum of the Cucurbituril, Molybdenum2,2’-bipyridyl complex were studied by decreasing and increasing concentrations by using UV – Visible spectrophotometer and IR spectrophotometer. The interaction between the metal and ligands were studied by UV- visible spectral analysis. The functional groups and modes of vibration were identified by IR spectral analysis. Key words: Cucurbituril, evaporation, precipitation, absorption, ligand, spectrophotometer. INTRODUCTION complex of Cucurbit[6]uril which incorporates the p-Xylene diammonium cation into the macrocyclic A Supramolecular assembly or “supramolecule” is a cavity. Researchers have shown that Cucurbit[6]uril well defined complex of molecules held together by acts as a catalyst in cyclo-addition reactions. noncovalent bonds. Cucurbiturils are macrocyclic Detailed examination has been done on the molecules consisting of glycouril repeating units. construction of supramolecular organic, inorganic These supramolecular compounds are particularly compounds from macrocyclic cavitand interesting to chemists because they are molecular cucurbit[6]Uril and mono and polynuclear aqua containers that are capable of binding other complexes. Cucurbit[6]uril is used in the molecules within their cavities.
    [Show full text]
  • Host-Guest Compounds Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications Xue Yang, Ruibing Wang, Anthony Kermagoret, David Bardelang
    Host-Guest Compounds Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications Xue Yang, Ruibing Wang, Anthony Kermagoret, David Bardelang To cite this version: Xue Yang, Ruibing Wang, Anthony Kermagoret, David Bardelang. Host-Guest Compounds Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Ange- wandte Chemie International Edition, Wiley-VCH Verlag, 2020, pp.2-15. 10.1002/anie.202004622. hal-02972332 HAL Id: hal-02972332 https://hal-amu.archives-ouvertes.fr/hal-02972332 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Xue Yang,[a] Ruibing Wang,*[b] Anthony Kermagoret,*[a] and David Bardelang*[a] Abstract: Proteins are an endless source of inspiration. By carefully Xue Yang earned her Master’s degree from tuning the amino-acid sequence of proteins, nature made them evolve the University of Macau (China) in 2017. She from primary to quaternary structures, a property specific to protein is currently pursuing her PhD on the oligomers and often crucial to accomplish their function. On the other supramolecular chemistry of cucurbiturils at Aix- hand, the synthetic macrocycles cucurbiturils (CBs) have shown Marseille University.
    [Show full text]
  • Host-Guest Chemistry Between Cucurbit[7]Uril and Neutral and Cationic Guests
    HOST-GUEST CHEMISTRY BETWEEN CUCURBIT[7]URIL AND NEUTRAL AND CATIONIC GUESTS by Ian William Wyman A thesis submitted to the Department of Chemistry In conformity with the requirements for the degree of Doctor of Philosophy. Queen’s University Kingston, Ontario, Canada (January, 2010) Copyright © Ian William Wyman, 2010 Dedicated in memory of my Grandfather, Norman Brannen, 1917-2009. ii Abstract This thesis describes the host-guest chemistry between cucurbit[7]uril (CB[7]) and various series of guests, including neutral polar organic solvents, bis(pyridinium)alkane dications, local anaesthetics, acetylcholine analogues, as well as succinylcholine and decamethonium analogues, in aqueous solution. A focus of this thesis is the effects of varying the chemical structures within different series of guests upon the nature of the host-guest chemistry, such as the relative position and orientation of the guest relative to the CB[7] cavity, and the strengths of the binding affinities. The binding affinities of polar organic solvents with CB[7] depend upon the hydrophobic effect and dipole-quadrupole interactions. The polar guests align themselves so that their dipole moment is perpendicular to the quadrupole moment of CB[7]. The binding strengths of acetone and acetophenone to CB[7] decrease in the presence of alkali metals. Discrete 1:1 and 2:1 host-guest complexes are formed between CB[7] and a series of α,ω -bis(pyridinium)alkane guests. In most cases the CB[7] initially occupies the aliphatic linker when the 1:1 complex is formed and migrates to the terminal regions as the second CB[7] is added.
    [Show full text]