ESTUDIO DE LA MICOBIOTA ENDOFÍTICA ASOCIADA a LAS GRAMÍNEAS Dactylis Glomerata, Holcus Lanatus, Ammophila Arenaria Y Elymus Farctus

Total Page:16

File Type:pdf, Size:1020Kb

ESTUDIO DE LA MICOBIOTA ENDOFÍTICA ASOCIADA a LAS GRAMÍNEAS Dactylis Glomerata, Holcus Lanatus, Ammophila Arenaria Y Elymus Farctus UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA ESTUDIO DE LA MICOBIOTA ENDOFÍTICA ASOCIADA A LAS GRAMÍNEAS Dactylis glomerata, Holcus lanatus, Ammophila arenaria y Elymus farctus Mª Salud Sánchez Márquez 2009 DR. ÍÑIGO ZABALGOGEAZCOA GONZÁLEZ, CIENTÍFICO TITULAR DEL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC), EN EL INSTITUTO DE RECURSOS NATURALES Y AGROBIOLOGÍA DE SALAMANCA, CERTIFICA Que la memoria titulada “ESTUDIO DE LA MICOBIOTA ENDOFÍTICA ASOCIADA A LAS GRAMÍNEAS Dactylis glomerata, Holcus lanatus, Ammophila arenaria y Elymus farctus”, presentada por Dña. Mª Salud Sánchez Márquez para optar al grado de Doctora en Ciencias Biológicas por la Universidad de Salamanca, ha sido realizada bajo mi dirección, en el Departamento de Estrés Abiótico del Instituto de Recursos Naturales y Agrobiología de Salamanca del Consejo Superior de Investigaciones Científicas (CSIC). Y para autorizar su presentación y evaluación por el tribunal correspondiente, expide y firma el presente certificado en Salamanca, a 20 de febrero de 2009. Fdo. Dr. Iñigo Zabalgogeazcoa González ÍNDICE Página 1. INTRODUCCIÓN ……………………………………………………………….. 7 1.1. Aspectos históricos de la investigación sobre hongos endofíticos …………... 10 1.2. Epichloë y Neotyphodium, los hongos endofíticos sistémicos de gramíneas .. 12 1.2.1. Ciclos de vida de Epichloë y Neotyphodium ………………………... 13 1.2.2. Efectos beneficiosos de Epichloë y Neotyphodium …………………. 16 1.2.3. Efectos perjudiciales de los endofitos en el ganado …………………. 18 1.3. Hongos endofíticos no Epichloë …………………………………………….. 19 1.3.1. Abundancia y diversidad taxonómica ………………………………... 20 1.3.2. Especificidad de tejidos ………………………………………………. 21 1.3.3. Especificidad por el hospedador ……………………………………… 22 1.3.4. Transmisión …………………………………………………………... 23 1.3.5. Tipos de interacción planta-hongo endofítico ………………………… 24 1.3.6. Interacciones mutualistas ……………………………………………… 26 1.4. Importancia del estudio de los hongos endofíticos …………………………… 28 1.5. Técnicas moleculares aplicadas a la identificación de hongos endofíticos …. 31 1.6. Las gramíneas ……………………………………………………………….. 33 1.6.1. Características generales ……………………………………………… 34 1.6.2. Distribución …………………………………………………………… 36 1.6.3. Importancia económica ……………………………………………….. 37 1.6.4. Especies de gramíneas analizadas …………………………………….. 39 1.6.4.1. Dactylis glomerata ……………………………………………….. 39 1.6.4.2. Holcus lanatus ……………………………………………………. 41 1.6.4.3. Ammophila arenaria ……………………………………………... 42 1.6.4.4. Elymus farctus ……………………………………………………. 43 2. OBJETIVOS ………………………………………………………………………. 45 3. MATERIALES Y MÉTODOS ……………………………………………………. 49 3.1. Recolección de muestras .…………………………………………………….. 51 3.2. Aislamiento de hongos .………………………………………………………. 53 3 Página 3.3. Identificación de los aislados .………………………………………………… 56 3.3.1. Morfológica .…………………………………………………………… 56 3.3.2. Molecular .……………………………………………………………... 57 3.4. Cuantificación de la diversidad fúngica .……………………………………… 60 3.4.1. Índices de diversidad .………………………………………………….. 60 3.4.2. Curvas de acumulación de especies .…………………………………... 61 3.4.3. Estimadores del número total de especies .……………………………. 63 3.4.4. Comparaciones de la micobiota entre hospedadores, tipos de tejidos y localidades .……………………………………………………………….. 65 4. RESULTADOS Y DISCUSIÓN ………………………………………………….. 67 4.1. Micobiota endofítica de Dactylis glomerata ...................................................... 69 4.1.1. Aislamiento de endofitos .……………………………………………… 69 4.1.2. Valor de las secuencias parciales para la identificación .……………… 70 4.1.3. Identificación de los aislados .………………………………………… 72 4.1.4. Abundancia y diversidad biológica .…………………………………… 81 4.1.5. Discusión .……………………………………………………………… 85 4.2. Micobiota endofítica de Holcus lanatus .…………………………………….. 91 4.2.1. Aislamiento de endofitos .……………………………………………... 91 4.2.2. Identificación de los aislados .…………………………………………. 92 4.2.3. Abundancia y diversidad biológica .…………………………………… 104 4.2.4. Comparación entre la micobiota de hojas y raíces .……………………. 105 4.2.5. Efectos geográficos en la composición de especies.……………………. 111 4.2.6. Discusión ……………………………………………………………… 113 4.3. Micobiota endofítica de Ammophila arenaria y Elymus farctus ...................... 117 4.3.1. Aislamiento de endofitos ……………………………………………… 117 4.3.2. Identificación de los aislados .…………………………………………. 118 4.3.3. Abundancia y diversidad biológica .…………………………………… 126 4.3.4. Comparación entre hospedadores .…………………………………….. 129 4.3.5. Comparación entre hojas y rizomas .…………………………………... 130 4.3.6. Efectos geográficos en la composición de especies .…………………... 132 4 Página 4.3.7. Discusión .……………………………………………………………… 136 5. DISCUSIÓN GENERAL ………………………………………………………….. 143 5.1. Patrones de diversidad biológica en la micobiota endofítica de gramíneas ….. 145 5.2. Problemas en la estimación del número total de especies endofíticas en gramíneas…………………………………………………………………………… 151 5.3. Composición taxonómica de la micobiota endofíticas .……………………… 152 5.4. Características de las especies únicas y dominantes .……………………….. 157 5.5. Especificidad de órganos .…………………………………………………… 161 5.6. Estacionalidad .……………………………………………………………… 163 5.7. Función ecológica de las especies endofíticas .………………………………. 165 6. CONCLUSIONES ………………………………………………………………… 173 7. APÉNDICE ……………………………………………………………………….. 177 8. BIBLIOGRAFÍA …………………………………………………………………. 197 9. PUBLICACIONES ……………………………………………………………….. 227 5 INTRODUCCIÓN Introducción El cultivo de gramíneas y su importancia para el ganado fue reconocido rápidamente durante el despertar de la civilización humana. No resultó complicado para aquellos primeros pueblos descubrir las ventajas que podía conferirles el hecho de domesticar unas pocas plantas y convertirse de este modo, de nómadas errantes a pueblos sedentarios. Aquella época fue el germen de la agricultura y el nacimiento de nuestros actuales cultivos de gramíneas (Figura 1). Figura 1. Campo sembrado con plantas de maíz, actualmente el cereal con mayor volumen de producción en el mundo. Esas gramíneas, y parece ser que el resto de las plantas que viven en la tierra establecen simbiosis con hongos. Estos hongos son importantes en la estructura, función, y salud de las comunidades de plantas (Giovannetti y Mosse, 1980; Petrini, 1986; Bacon y Hill, 1996; Gemma y Koske, 1997; van der Heijden et al., 1998; Clay y Holah, 1999). Además, la simbiosis con hongos contribuye, y puede ser responsable, de la adaptación de las plantas al estrés ambiental. De hecho, la mayoría, si no todas las plantas estudiadas en ecosistemas naturales, están infectadas por hongos que no causan síntomas visibles de enfermedad. Son los llamados hongos endofíticos. 9 Introducción 1.1. ASPECTOS HISTÓRICOS DE LA INVESTIGACIÓN SOBRE HONGOS ENDOFÍTICOS. Durante los últimos 30 años, el término endofito ha aparecido cada vez con más frecuencia en la literatura científica. Aunque el origen del término provenga del siglo XIX, cuando Antón de Bary lo utilizó para describir hongos que viven en el interior de las plantas (de Bary, 1866), su significado contemporáneo es diferente del original. Actualmente se usa este término para referirse a hongos capaces de infectar plantas aparentemente sanas sin causar síntomas (Large, 1940; Carroll, 1986). Es decir, en el más amplio de los sentidos, los hongos endofíticos son aquellos que colonizan tejidos vivos de plantas sin ocasionar ningún efecto negativo, inmediato o visible (Hirsch y Braun, 1992). Los primeros estudios de endofitos se realizaron en plantas de la familia de las gramíneas. A finales del siglo XIX, varios científicos europeos describieron la presencia de micelio fúngico en los carpelos y semillas de plantas sanas de Lolium arvense, Lolium linicolum, Lolium remotum y Lolium temulentum (Guerin, 1898a, 1898b; Hanausek, 1898; Nestler, 1898; Vogl, 1898; Neubauer y Remer, 1902). La cizaña (Lolium temulentum) ya era conocida como una mala hierba en cultivos de cereal en la antigüedad. Además, esta planta poseía propiedades tóxicas que con el descubrimiento de los endofitos fueron atribuídas al micelio fúngico (Font Quer, 1961). Estudios realizados por Freeman (1904) sobre el hongo endofítico de L. temulentum demostraron que este hongo se transmitía por semilla, ya que sus hifas penetraban en el embrión antes de que las semillas madurasen, y tras la germinación el hongo coordinaba su crecimiento con el de los tejidos de la planta, llegando a colonizar los meristemos laterales y después las inflorescencias. A principios de 1930 investigaciones realizadas en los Estados Unidos y Canadá demostraron la relación entre los endofitos y la toxicidad de L. temulentum para el ganado (Kingsbury, 1964). Una vez demostrada la relación, se especuló acerca de la posición taxonómica del endofito de esta gramínea. Freeman (1906), sugirió que eran Ustilaginales que habían perdido la capacidad de esporular en sus hospedadores, argumento basado en las similitudes de los ciclos de vida del endofito de L. temulentum y el del hongo patógeno Ustilago tritici en trigo; más tarde clasificó los endofitos de Lolium en el grupo de los Clavicipitales tras estudiar su transmisión. Muenscher (1939) y Kingsbury (1964) los 10 Introducción asociaron con el hongo Endoconidium temulentum, conocido por su toxicidad en semillas de plantas de L. temulentum. Sampson (1933, 1935) vio un paralelismo entre los endofitos de Lolium temulentum y Lolium perenne con algunas especies endofíticas del género Epichloë asociadas a plantas de Festuca rubra (Epichloë festucae) y Dactylis glomerata
Recommended publications
  • Nutritional Value, Mineral Composition, Secondary Metabolites, and Antioxidant Activity of Some Wild Geophyte Sedges and Grasses
    plants Article Nutritional Value, Mineral Composition, Secondary Metabolites, and Antioxidant Activity of Some Wild Geophyte Sedges and Grasses Saud L. Al-Rowaily 1, Ahmed M. Abd-ElGawad 1,2,* , Suliman M. Alghanem 3, Wafa’a A. Al-Taisan 4 and Yasser A. El-Amier 2 1 Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; [email protected] 2 Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; [email protected] 3 Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia; [email protected] 4 Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +20-1003438980 or +966-562680864 Received: 11 November 2019; Accepted: 2 December 2019; Published: 4 December 2019 Abstract: Geophytes are plants with underground storage organs including bulbs, corms, tubers, and rhizomes, often physiologically active and able to survive during harsh environmental conditions. This study is conducted to assess the nutritive value, mineral composition, bioactive metabolites, and antioxidant activity of five wild geophytes (Cyperus capitatus, C. conglomeratus, Elymus farctus, Lasiurus scindicus, and Panicum turgidum) collected from the Nile Delta coast and inland desert. The proximate composition including dry matter, moisture content, ash content, fiber, fat, protein, sucrose, and glucose were determined. Also, total carbohydrates, total digestible nutrients (TDN), and nutritive values were calculated. Macro- and micro-minerals were also determined in the studied geophytes.
    [Show full text]
  • A Survey of the Elymus L. S. L. Species Complex (Triticeae, Poaceae) in Italy: Taxa and Nothotaxa, New Combinations and Identification Key
    Natural History Sciences. Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano, 5 (2): 57-64, 2018 DOI: 10.4081/nhs.2018.392 A survey of the Elymus L. s. l. species complex (Triticeae, Poaceae) in Italy: taxa and nothotaxa, new combinations and identification key Enrico Banfi Abstract - Elymus s. l. is a critical topic on which only a little INTRODUCTION light has begun to be made regarding phylogenetic reticulation, Elymus L. s. l. is one of the most debated topic among genome evolution and consistency of genera. In Italy, Elymus s. l. officially includes ten species (nine native, one alien) and some genera within the tribe Triticeae (Poaceae), with represen- well-established and widespread hybrids generally not treated as tatives spread all over the world. It has been the subject little or nothing is known of them. In this paper fourteen species of basic studies (Löve A., 1984; Dewey, 1984) that have (with two subspecies) and six hybrids are taken into account and opened important horizons not only in the field of agroge- the following seven new combinations are proposed: Thinopyrum netic research, but also and especially on systematics and acutum (DC.) Banfi, Thinopyrum corsicum (Hack.) Banfi, Thi- taxonomy. However, the still rather coarse knowledge of nopyrum intermedium (Host) Barkworth & Dewey subsp. pouzolzii (Godr.) Banfi, Thinopyrum obtusiflorum (DC.) Banfi, Thinopyrum the genomes and the lack of a satisfactory interpretation ×duvalii (Loret) Banfi, ×Thinoelymus drucei (Stace) Banfi, ×Thi- of their role in the highly reticulate phylogeny of Triticeae noelymus mucronatus (Opiz) Banfi. Some observations are pro- for a long time discouraged taxonomists to clarify species vided for each subject and a key to species, subspecies and hybrids relationships within Elymus s.
    [Show full text]
  • Of Salinity on the Growth of Some Species
    Acta Bot. Neerl. June 173-182 38(2), 1989, p. The effect of salinity on the growth of some New Zealand sand dune species M.T. Sykes and J.B. Wilson DepartmentofBotany, University ofOtago, P.O. Box 56, Dunedin, New Zealand SUMMARY Soil affects salinity many coastal communities, but it is not clear to what extent salinity is involved in the distributionof sand dune vegetation. Twenty-nine species (including nineexotic species) found on New Zealand sand duneswere used in astudy ofroot-salinity tolerance. Six concentrations ofsalt added to inwater were plants grown culture; growth rates and the percentageoflive materialwere measured. About halfthe species were more intolerantofroot-salinity than the glycophytic control(wheat). These were mainly native New Zealand herbs introduced and grasses and the species Silenegallica and Lupinus arboreus. Tolerantspecies includedthe native species Desmoschoenus and nodosa. tolerantexotic spiralis Scirpoides Most species were grasses; Elymus farctus was the most salt tolerantspecies tested, and possibly in Barbour’s‘facultative halophyte’ category. Species scores from the first vegetation gradient of an ordinationof field data from four dunesystems were plotted against results from this study. For some species, root-salinity tolerancecorrelated with their fieldposition. However, there was little correlation with distributions on West Coast with dunes, some glycophytes growing in the semi-fixed This the rainfall. the dunes. was attributable to high On dry east coast, tolerant and their distribution however, species were more more closely linked to their salinity tolerance. New Zealanddunes contain a mixture ofroot-salinity tolerantspecies and root-salinity intolerantspecies. It is suggested thatroot-salinity is only one ofa complex of environmental factors important on dunes.
    [Show full text]
  • Evolution of Growth Rates in Pooideae (Poaceae)
    Master’s Thesis 2016 60 ECTS Department of Plant Sciences Evolution of growth rates in Pooideae (Poaceae) Evolusjon av vekstrater i Pooideae (Poaceae) Camilla Lorange Lindberg Master of Science in Ecology Acknowledgements This thesis is a part of my Master of Science in Ecology, written at the Department of Plant Sciences (IPV), Norwegian University of Life Sciences, NMBU. Department of Ecology and Natural Resource Management (INA) is responsible of the Master of Ecology programme. I would like to thank my main supervisor, Dr. Siri Fjellheim (IPV). I couldn't have asked for a better supervisor. She has been extremely supportive, encouraging and helpful in all parts of the process of this master, from the beginning when she convinced me that grasses really rocks, and especially in the very end in the writing process. I would also like to thank Dr. Fjellheim for putting together a brilliant team of supervisors with different fields of expertise for my thesis. I am so grateful to my co-supervisors, Dr. Thomas Marcussen (IPV), and Dr. Hans Martin Hanslin (Nibio). They were both exceedingly helpful during the work with this thesis, thank you for invaluable comments on the manuscript. Thomas Marcussen made a big difference for this thesis. I am so grateful for his tirelessly effort of teaching me phylogeny and computer programmes I had never heard of. Also, thank you for many interesting discussions and a constant flow of important botanical fun facts. The growth experiment was set up under Hans Martin Hanslin's supervision. He provided invaluable help, making me understand the importance of details in such projects.
    [Show full text]
  • Journal of American Science 2013;9(5)
    Journal of American Science 2013;9(5) http://www.jofamericanscience.org Life forms and rangeland for many habitats of Jarjar oma in Al- Jabal Al- Akhdar on Mediterranean sea Abusaief, H. M. A. Agron. Fac. Agric., Omar Al-Mukhtar Univ. [email protected] Abstract: The present study was carried out during 2010 to 2011 to determine the important plants of in Jarjar oma in Al- Jabal Al- Akhdar-Libya, which includes about 179 species belonging to 51 families and 144 genera. They are represented by 75 perennial, 101 annual and 3 biennial species. Most characteristic families are Asteraceae containing 28 species, the dominance of Asteraceae indicates the range deterioration and dominance of unpalatable species. Fabaceae represented by 22 species, Poaceae including 18 species, Asparagaceae by 7 species, Brassicaceae by 6 species, Caryophyllaceae by 6 species, Euphorbiaceae by 6 species saline and rocky. Apiaceae, Lamiaceae and Polygonaceae including 5 species. Noticed that 56.2 % of species was annuals and 42.1 % was perennials and 1.7 % was biennials. Whereas autumn and summer increase perennials to reach 100 % more than spring and winter wherein increase annuals species to attain 55 %, to display disappear biennial in autumn and summer seasons in all habitat except rocky habitat in autumn. Out of the surveyed, Kinds of Forbs gave 109 species followed shrubs by 38 species, Grass 26 species, Trees 6 species. Of the most dominant species was broad-leaved (Forbs) plant species found in the region. According to palatability 107 species were palatable and 72 species were unpalatable. For annuals, 61 species were palatable and 40 species were unpalatable, while perennial, 44 species were palatable and 31 species were unpalatable.
    [Show full text]
  • Grasses in Poland: Invincible, but Threatened
    Biodiv. Res. Conserv. 19: 93-102, 2010 BRC www.brc.amu.edu.pl 10.2478/v10119-010-0025-z Grasses in Poland: invincible, but threatened Ludwik Frey Department of Systematics of Vascular Plants, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 KrakÛw, Poland, e-mail: [email protected] Abstract: The paper presents problems connected with expansiveness and threats of grasses in Poland. Some subjectively selected grass species are given. They have conventionally been divided into two opposite groups: (i) expansive or even invasive grasses, referred to here as Ñinvincibleî, and (ii) grasses that are threatened for a variety of reasons, and deserving protection. Key words: grasses, Poaceae, expansion, invasion, threat, protection, Poland 1. Introduction 2. Invincible grasses Cosmopolitan grasses are among the most impor- Grasses have a characteristic external structure and tant families in the kingdom of flowering plants. In terms show distinctive embryological and physiological features. of the number of species (ca. 10 thousand) they rank Owing to these characteristics they can manifest fourth behind Asteraceae, Fabaceae and Orchidaceae. extraordinary adaptation abilities and are able to live Areas where grasses form the dominating form of vege- under disadvantageous conditions, either natural or tation, e.g. steppes, savannas, prairies or pampas, cover modified by Man. Grasses can grow under considerably nearly one-third of the world landmass. In terms of pro- diverse ecological conditions, from very wet to duction these areas are second only to forests (Clayton extremely dry, and from hot to Arctic cold. They occur & Renvoize 1986; Weiner 1999; Frey 2000). in almost all types of habitats, from sea coasts to high The author of the Latin diagnosis of the family mountains, and from the Equator to the Polar regions Gramineae (called order ñ Genera plantarum 1789) was (Frey 2000).
    [Show full text]
  • South-West England: Seaton to the Roseland Peninsula
    Coasts and seas of the United Kingdom Region 10 South-west England: Seaton to the Roseland Peninsula edited by J.H. Barne, C.F. Robson, S.S. Kaznowska, J.P. Doody, N.C. Davidson & A.L. Buck Joint Nature Conservation Committee Monkstone House, City Road Peterborough PE1 1JY UK ©JNCC 1996 This volume has been produced by the Coastal Directories Project of the JNCC on behalf of the Project Steering Group. JNCC Coastal Directories Project Team Project directors Dr J.P. Doody, Dr N.C. Davidson Project management and co-ordination J.H. Barne, C.F. Robson Editing and publication S.S. Kaznowska, J.C. Brooksbank, A.L. Buck Administration & editorial assistance R. Keddie, J. Plaza, S. Palasiuk, N.M. Stevenson The project receives guidance from a Steering Group which has more than 200 members. More detailed information and advice came from the members of the Core Steering Group, which is composed as follows: Dr J.M. Baxter Scottish Natural Heritage R.J. Bleakley Department of the Environment, Northern Ireland R. Bradley The Association of Sea Fisheries Committees of England and Wales Dr J.P. Doody Joint Nature Conservation Committee B. Empson Environment Agency Dr K. Hiscock Joint Nature Conservation Committee C. Gilbert Kent County Council & National Coasts and Estuaries Advisory Group Prof. S.J. Lockwood MAFF Directorate of Fisheries Research C.R. Macduff-Duncan Esso UK (on behalf of the UK Offshore Operators Association) Dr D.J. Murison Scottish Office Agriculture, Environment & Fisheries Department Dr H.J. Prosser Welsh Office Dr J.S. Pullen WWF UK (Worldwide Fund for Nature) N.
    [Show full text]
  • Landscape and Vegetation of Southern Baltic Dune Systems
    Landscape and vegetation of southern Baltic dune systems: diversity, landuse changes and threats Jann Peyrat University of Kiel Cover: Dune landscape at the Nagliai Strict Nature Reserve, Curonian Spit, LT (Photo: Peyrat 2008). Aus dem Institut für Natur- und Ressourcenschutz der Christian-Albrechts-Universität zu Kiel Landscape and vegetation of southern Baltic dune systems: diversity, landuse changes and threats Dissertation zur Erlangung des Doktorgrades der Agrar- und Ernährungswissenschaftlichen Fakultät der Christain-Albrechts-Universität zu Kiel vorgelegt von Dipl. Landschaftsökologe Jann Peyrat aus Wilhelmshaven Kiel, den 17. März 2011 Dekan: Prof. Dr. Karin Schwarz 1. Berichtserstatter: Prof. Dr. Hartmut Roweck 2. Berichtserstatter: PD Dr. Maike Isermann Tag der mündlichen Prüfung: 12. Mai 2011 Die Druckreife der vorliegenden Arbeit ist vorhanden. Contents Chapter 1 Introduction ..................................................................................................................... 9 Chapter 2 Plant communities of the Sundic Baltic Sand Dune ....................................... 35 Vegetation Complex on dry coastal dunes along the southern Baltic coast. Peyrat J. 2010. Botanica Lithuanica 16 (4): 149–167. Chapter 3 Neophytic Corispermum pallasii (Stev.) (Chenopodiaceae) ...................... 59 invading migrating dunes of the southern coast of the Baltic Sea. Dolnik C., J. Peyrat, A. Volodina and A. Sokolov. 2011. Polish Journal of Ecology 59 (2): 17-25. Chapter 4 Plant species diversity in dry coastal dunes of the Southern .................... 73 Baltic coast. Peyrat J. and A. Fichtner. submitted. Community Ecology. Chapter 5 Vegetation dynamics on the Łeba Bar/Poland: a comparison .................. 90 of the vegetation in 1932 and 2006 with special regard to endangered habitats. Peyrat J., M. Braun, C. Dolnik, M. Isermann and H. Roweck. 2009. Journal of Coastal Conservation 13 (4): 235–246.
    [Show full text]
  • The Ex Situ Conservation and Potential Usage of Crop Wild Relatives in Poland on the Example of Grasses
    agronomy Article The Ex Situ Conservation and Potential Usage of Crop Wild Relatives in Poland on the Example of Grasses Denise F. Dostatny 1,* , Grzegorz Zurek˙ 2 , Adam Kapler 3 and Wiesław Podyma 1 1 National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute—NRI, Radzików, 05-870 Błonie, Poland; [email protected] 2 Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute—NRI, Radzików, 05-870 Błonie, Poland; [email protected] 3 Polish Academy of Sciences, Botanical Garden in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: The Poaceae is the second most abundant family among crop wild relatives in Poland, representing 147 taxa. From these species, 135 are native taxa, and 11 are archeophytes. In addition, one taxon is now considered to be extinct. Among the 147 taxa, 8 are endemic species. Central Europe, including Poland, does not have many endemic species. Only a few dozen endemic species have been identified in this paper, mainly in the Carpathians and the adjacent uplands, e.g., the Polish Jura in southern Poland. The most numerous genera among the 32 present in the crop wild relatives (CWR) of Poaceae family are: The genus Festuca (33 species), Poa (19), and Bromus (11). In turn, ten genera are represented by only one species per genus. A good representative of groups of grasses occur in xerothermic grasslands, and other smaller groups can be found in forests, mountains, or dunes. CWR species from the Poaceae family have the potential for different uses in terms of the ecosystem services benefit.
    [Show full text]
  • Appendix List of Higher Plant Names with Authors, Synonyms, and Family Name
    Appendix List of Higher Plant Names with Authors, Synonyms, and Family Name Plant names with = sign before the name are synonyms or names that were commonly used for other plants in the past even if not strict taxonomic synonyms. Abronia maritima S. Watson = Aristida sabulicola (see Stipagrostis) [Nyctaginaceae] = Aristida scoparia (see Stipagrostis) Abronia umbellata Lam. [Nyctaginaceae] Artemisia monosperma Delile [Asteraceae] Abronia villosa S. Watson [Nyctaginaceae] Artemisia tridentata Nutt. [Asteraceae] Acacia albida Delile [Mimosaceae] = Arthrocnemum glaucum (see A. Achillea millefolium 1. [Asteraceae] macrostachyum) Achnatherum hymenoides (Roemer et Arthrocnemum macrostachyum (Moric.) Schultes) Barkworth [Poaceae] Moris Delponte [Chenopodiaceae] Adonis dentata Delile [Ranunculaceae] Arundo donax 1. [Poaceae] Aeluropus lagopoides (1.) Twaites [Poaceae] = Asphodelus microcarpus Salzm. et Vivo Agathophora alopecuroides (Delile) Bunge (see A. ram os us) [Chenopodiaceae] Asphodelus ramosus 1. [Liliaceae] Agropyron dasystachyum (Hooker) Scrib. = Asthenatherum forskalii (Vahl) Nevski [Poaceae] (See Centropodia) = Agropyron junceum (1.) Beauv. (see Astragalus annularis Forssk. [Fabaceae] Elymus farctus) Astragalus camelorum Barbey [Fabaceae] Ambrosia chamessonis (Less.) E. Greene Astragalus caprin us 1. [Fabaceae] [Asteraceae] A trip lex polycarpa (Torrey) S. Watson Ambrosia dumosa (Gray) Payne [Asteraceae] [Chenopodiaceae] Ammochloa palaestina Boiss. [Poaceae] A vena wiestii Steudel [Poaceae] Ammophila arenaria (1.) Link [Poaceae] Ammophila
    [Show full text]
  • Introduceţi Titlul Lucrării
    Lucrări Ştiinţifice – vol. 62(2)/2019, seria Agronomie ELYMUS L. GENUS – SPECIES DIVERSITY, CONSERVATION AND IMPLICATIONS FOR AGRICULTURAL ECOSYSTEMS Ioana Maria PLEȘCA1, Tatiana BLAGA 1, Lucian DINCĂ2 e-mail: [email protected] Abstract In recent years, botanical collections are being used extensively as primary resources for numerous research studies. “Alexandru Beldie” Herbarium is part of the patrimony of the National Institute for Research and Development in Forestry “Marin Drăcea” and is registered in Index Herbariorum under the acronym BUCF. Created nine decades ago, the collection currently comprises approximately 40000 mounted specimens, with emphasis on the Romanian flora. The purpose of this work study was to create an updated electronic database of Elymus L. genus stored in the BUCF Herbarium and to provide a short description of the most relevant weeds with notes on their distribution, ecology and implications for agricultural ecosystems. The Elymus genus comprises 120 vouchers and is represented by eleven species and one subspecies. Among them were found three rare taxa for the vascular flora of Romania: Elymus farctus subsp. bessarabicus (Savul. & Rayss) Melderis, E. panormitanus (Parl.) Tzvelev and E. pycnanthus (Godr.) Melderis. The Herbarium also stores a historical record, an E. hispidus (Opiz) Melderis specimen dated over two hundred years. Almost all plants are very well preserved being kept in their entirety and correctly attached to the voucher. Elymus representatives are widespread across the country and are found primarily in open woodlands, meadows and agricultural fields where are problematic weeds of cultivated crops. Specimens of Elymus genus stored in the herbarium were mainly collected from forest areas, but they can also be used as reference material in agricultural studies.
    [Show full text]
  • Grasses in Poland: Invincible, but Threatened
    Biodiv. Res. Conserv. 19: 93-102, 2010 BRC www.brc.amu.edu.pl 10.2478/v10119-010-0025-z Grasses in Poland: invincible, but threatened Ludwik Frey Department of Systematics of Vascular Plants, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 KrakÛw, Poland, e-mail: [email protected] Abstract: The paper presents problems connected with expansiveness and threats of grasses in Poland. Some subjectively selected grass species are given. They have conventionally been divided into two opposite groups: (i) expansive or even invasive grasses, referred to here as Ñinvincibleî, and (ii) grasses that are threatened for a variety of reasons, and deserving protection. Key words: grasses, Poaceae, expansion, invasion, threat, protection, Poland 1. Introduction 2. Invincible grasses Cosmopolitan grasses are among the most impor- Grasses have a characteristic external structure and tant families in the kingdom of flowering plants. In terms show distinctive embryological and physiological features. of the number of species (ca. 10 thousand) they rank Owing to these characteristics they can manifest fourth behind Asteraceae, Fabaceae and Orchidaceae. extraordinary adaptation abilities and are able to live Areas where grasses form the dominating form of vege- under disadvantageous conditions, either natural or tation, e.g. steppes, savannas, prairies or pampas, cover modified by Man. Grasses can grow under considerably nearly one-third of the world landmass. In terms of pro- diverse ecological conditions, from very wet to duction these areas are second only to forests (Clayton extremely dry, and from hot to Arctic cold. They occur & Renvoize 1986; Weiner 1999; Frey 2000). in almost all types of habitats, from sea coasts to high The author of the Latin diagnosis of the family mountains, and from the Equator to the Polar regions Gramineae (called order ñ Genera plantarum 1789) was (Frey 2000).
    [Show full text]