Grasses in Poland: Invincible, but Threatened

Total Page:16

File Type:pdf, Size:1020Kb

Grasses in Poland: Invincible, but Threatened Biodiv. Res. Conserv. 19: 93-102, 2010 BRC www.brc.amu.edu.pl 10.2478/v10119-010-0025-z Grasses in Poland: invincible, but threatened Ludwik Frey Department of Systematics of Vascular Plants, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 KrakÛw, Poland, e-mail: [email protected] Abstract: The paper presents problems connected with expansiveness and threats of grasses in Poland. Some subjectively selected grass species are given. They have conventionally been divided into two opposite groups: (i) expansive or even invasive grasses, referred to here as Ñinvincibleî, and (ii) grasses that are threatened for a variety of reasons, and deserving protection. Key words: grasses, Poaceae, expansion, invasion, threat, protection, Poland 1. Introduction 2. Invincible grasses Cosmopolitan grasses are among the most impor- Grasses have a characteristic external structure and tant families in the kingdom of flowering plants. In terms show distinctive embryological and physiological features. of the number of species (ca. 10 thousand) they rank Owing to these characteristics they can manifest fourth behind Asteraceae, Fabaceae and Orchidaceae. extraordinary adaptation abilities and are able to live Areas where grasses form the dominating form of vege- under disadvantageous conditions, either natural or tation, e.g. steppes, savannas, prairies or pampas, cover modified by Man. Grasses can grow under considerably nearly one-third of the world landmass. In terms of pro- diverse ecological conditions, from very wet to duction these areas are second only to forests (Clayton extremely dry, and from hot to Arctic cold. They occur & Renvoize 1986; Weiner 1999; Frey 2000). in almost all types of habitats, from sea coasts to high The author of the Latin diagnosis of the family mountains, and from the Equator to the Polar regions Gramineae (called order ñ Genera plantarum 1789) was (Frey 2000). Under favourable conditions, grasses be- A. L. de Jussieu. An alternative name ñ Poaceae ñ was come expansive or even invasive plants. introduced by an American botanist, J. H. Barnhart In Poland it is difficult to find native grass species (Barnh. 1895, Bull. Torrey Bot. Club 22:7). Both these showing evident expansive tendencies. These are not names are deemed legitimate. shown even by those grass species regarded as invasive Against the background of subjectively selected in some other regions, such as Aira caryophyllea in examples of grass species, this paper discusses briefly, Australia, New Zealand, and the Americas, where it on the one hand, issues associated with their expan- colonizes coastal areas upon sea and water bodies, as siveness or even invasiveness and, on the other, well as forests and meadows, Leersia oryzoides that the pressing need to protect them. Poaceae have spreads along river banks and on grasslands of Australia conventionally been divided into two opposite groups: (in Poland, both these species are among those disappea- expansive grasses, that extend their distribution areas ring or classed as endangered species), Ammophila even by means of invasions, referred to here as ìinvin- arenaria that threatens coastal dunes in Australia, New cibleî, and other grasses that are threatened for a vari- Zealand, and North America, Elymus repens ñ a species ety of reasons, some of them even deserving protec- dangerous to farmlands as well as grass communities tion. (prairies, meadowlands) in both of the Americas and in NATURE NATURE CONSERVATIONA © Adam Mickiewicz University in PoznaÒ (Poland), Department of Plant Taxonomy. All rights reserved. 94 Ludwik Frey Grasses in Poland: invincible, but threatened Australia, and Phragmites australis, which colonizes Alopecurus myosuroides is also an expansive grass similar habitats in North America and Australia. Only species, and most recently ñ perhaps even invasive. The several native species, such as Elymus repens or area of its natural range includes the southern and Calamagrostis epigejos, implement the model of ecolo- western regions of Europe. In both Central Europe and gical expansion in Poland (Jackowiak 1999), and display Poland this species is recorded, first of all, in segetal an extraordinary ability to colonize new habitats, often associations. In Poland it spreads chiefly in lowlands on very contaminated soils (Tokarska-Guzik 2007). and in the upland belt, where it reaches the northern Man contributed to the spread of some native species limit of its European range. This grass can adversely of grasses such as Ammophila arenaria and Leymus affect the yield of cereals, especially in places where it arenarius. Their natural distribution is restricted to the occurs in high densities per square metre. It is resistant coastal dune belt. Maps of their distribution in Poland to frost and herbicides, produces great numbers of seeds show, however, many locations further inland (more and is capable of growing new inflorescences after the numerous of L. arenarius, fewer ñ of A. arenaria) that crop is mown (Korniak 2003; Tokarska-Guzik 2007; are not of natural character (Zajπc & Zajπc 2001). As Dajdok & SzczÍúniak 2009). both species are important as anti-erosion grasses, they Avena strigosa originated from the Mediterranean have been introduced (particularly L. arenarius) on region. Presumably, the Iberian Peninsula was the centre inland sites either as sand stabilizers or decorative plants. of its origin and differentiation. As late as in the second For example, information on cultivation of L. arenarius half of the 20th century it was found as a grain cultivar on a location situated far inland, in the Lublin area near or weed in many European countries, for example in Kock was reported as early as 1829 (Waga 1847; Poland, and particularly in its southern and central parts. Korniak & Urbisz 2007). After its cultivation had been discontinued, it seemed The other type of expansion in the meaning applied to head into complete disappearance from the area of by Jackowiak (1999), i.e. chorological (territorial) Poland (Frey 1991a, 1991b). In recent years, however, expansion, which consists in a species penetrating out- this grass has embarked on a new period of expansion, side its natural distribution area, is shown chiefly by especially in the north-eastern part of the country. It is archaeophytes. The species which may be included in all the more interesting, because the data on its occur- this group are e.g. Apera spica-venti and Avena strigosa, rence in this region have been lacking until recently. grasses which reach their optimum in segetal habitats The species grows chiefly in segetal habitats, and rarely (in Bohemia, A. spica-venti is regarded as an invasive in ruderal ones (Frey 1991a; Korniak 1997; Korniak & species ñ Pyöek et al. 2002), Avena fatua, Echinochloa Urbisz 2007). crus-galli, Hordeum murinum, Setaria viridis and In Poland the truly expansive grasses are those of Alopecurus myosuroides. alien origin, largely kenophytes. They constitute a size- In recent times, three of the aforementioned species able percentage of Polish flora and their share has grown have evidently been increasing the number of their in recent decades. Hence, the first preliminary list of locations in Poland. kenophytes (Kornaú 1968) included only 4 grass species, Hordeum murinum occurs in Europe, from Spain to and according to Zajπc et al. (1998) among the 251 the Ukraine; its northern limit extends through the British species representing new arrivals in the flora of Poland Isles, the Jutland Peninsula to the southern tip of the 13 were grasses. Scandinavian Peninsula (Mizianty 2006). In Poland a The status of some species of grasses in the Polish typical subspecies (subsp. murinum) is found. This flora has also changed. In the list of ephemerophytes archaeophyte, naturalised in our flora, has distinctly low compiled by RostaÒski & Sowa (1986-1987), which habitat requirements. It grows in synanthropic locations, contains 662 species, 92 species were grasses, 5 of devoid of natural vegetation (rubble heaps, embankments, which are species now regarded as fully or locally walls) and it is regarded as a pioneer species. Its distri- naturalised plants. bution area extends mainly as a result of human activity. As far back as 25 years ago, Bromus carinatus and Until recently, it has been recorded throughout Poland, Eragrostis albensis were listed as ephemerophytes, except for the north-eastern part (Zajπc & Zajπc 2001), while now they are regarded as kenophytes, that are where its spread has been very rapid nowadays. presently extending their secondary ranges. Nonetheless, as of now, it still occurs there much less Bromus carinatus occurs naturally in the western frequently than in the other areas of Poland (Mizianty part of North America and in the south reaches of the 2006). This taxon owns its expansiveness, particularly Andes in Colombia. In Europe, the first locations were in urban situations, to rapid ripening and self-pollina- found at the beginning of the 20th century in Sweden, tion, as well as the production of huge numbers of seeds Belgium, the Netherlands, and Germany (Sutkowska with awns having hooked hairs, facilitating their trans- & PasierbiÒski 2009). In Poland it was first recorded in port by humans and animals (Bieniek 2010). the Wielkopolska region in 1911 (Tokarska-Guzik Biodiv. Res. Conserv. 19: 93-102, 2010 95 2005). Under the criteria proposed by some authors (e.g. Polish Lowlands (Kuüniewski 1996; Tokarska-Guzik Pyöek et al. 2004) it could be regarded as an invasive 2005; Korniak & Urbisz 2007). As these accidental species. This grass was first introduced into Poland as introductions were of an ephemeral nature, they were a cultivated plant in the first half of the 20th century, not noted. The first official records (from the Pomeranian under the name of Bromus unioloides Humb. & Kunth. and Silesian provinces) date back to the second half of From cultivation this grass spread onto anthropogenic the 19th century. It is interesting to note that until the habitats, and particularly ruderal ones. Outside urbanized year 1960 the species was not recorded in Central areas it is increasingly often recorded in semi-natural Poland.
Recommended publications
  • City of Calgary Plant Lists Recommendations Based on Habitat Type and Desired Outcome to Inform Revegetation Work
    City of Calgary Plant Lists Recommendations based on habitat type and desired outcome to inform revegetation work 2019 Publication Information CITY OF CALGARY PLANT LISTS: Recommendations based on habitat type and desired outcome to inform revegetation work. INTENT: This document provides detailed information and recommendations to inform restoration plans as per the Habitat Restoration Project Framework (The City of Calgary Parks 2014) and provides necessary information and factors to consider during the plant selection phase of the project. PREPARED BY: The City of Calgary, Parks, Urban Conservation VERSION: 2019 Edition ADDITIONAL COPIES: To download an electronic copy: http://www.calgary.ca/CSPS/Parks/Pages/Construction/Park-development-guidelines.aspx INFORMATION: Corporate Call Centre: 3-1-1 (within Calgary) Copyright Copyright © The City of Calgary 2019 No part of this work may be reproduced by any means without written permission from The City of Calgary. Terms of Use City of Calgary Plant Lists must be used in conjunction with the document Habitat Restoration Project Framework (The City of Calgary Parks 2014), as referenced throughout, and is made available for use in The City of Calgary effective as of the date below. February 2020 The 2019 City of Calgary Plant Lists is presented as accurate and complete as of the date indicated above. Use of this document does not absolve any user from the obligation to exercise their professional judgment and to follow good practice. Nothing in this document is meant to relieve the user from complying with municipal, provincial and federal legislation. Should any user have questions as to the intent of any procedure found in this publication, the user is advised to seek clarification from the lead of Urban Conservation, Parks.
    [Show full text]
  • 45Th Anniversary Year
    VOLUME 45, NO. 1 Spring 2021 Journal of the Douglasia WASHINGTON NATIVE PLANT SOCIETY th To promote the appreciation and 45 conservation of Washington’s native plants Anniversary and their habitats through study, education, Year and advocacy. Spring 2021 • DOUGLASIA Douglasia VOLUME 45, NO. 1 SPRING 2021 journal of the washington native plant society WNPS Arthur R. Kruckberg Fellows* Clay Antieau Lou Messmer** President’s Message: William Barker** Joe Miller** Nelsa Buckingham** Margaret Miller** The View from Here Pamela Camp Mae Morey** Tom Corrigan** Brian O. Mulligan** by Keyna Bugner Melinda Denton** Ruth Peck Ownbey** Lee Ellis Sarah Reichard** Dear WNPS Members, Betty Jo Fitzgerald** Jim Riley** Mary Fries** Gary Smith For those that don’t Amy Jean Gilmartin** Ron Taylor** know me I would like Al Hanners** Richard Tinsley Lynn Hendrix** Ann Weinmann to introduce myself. I Karen Hinman** Fred Weinmann grew up in a small town Marie Hitchman * The WNPS Arthur R. Kruckeberg Fellow Catherine Hovanic in eastern Kansas where is the highest honor given to a member most of my time was Art Kermoade** by our society. This title is given to Don Knoke** those who have made outstanding spent outside explor- Terri Knoke** contributions to the understanding and/ ing tall grass prairie and Arthur R. Kruckeberg** or preservation of Washington’s flora, or woodlands. While I Mike Marsh to the success of WNPS. Joy Mastrogiuseppe ** Deceased love the Midwest, I was ready to venture west Douglasia Staff WNPS Staff for college. I earned Business Manager a Bachelor of Science Acting Editor Walter Fertig Denise Mahnke degree in Wildlife Biol- [email protected] 206-527-3319 [email protected] ogy from Colorado State Layout Editor University, where I really Mark Turner Office and Volunteer Coordinator [email protected] Elizabeth Gage got interested in native [email protected] plants.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • ESTUDIO DE LA MICOBIOTA ENDOFÍTICA ASOCIADA a LAS GRAMÍNEAS Dactylis Glomerata, Holcus Lanatus, Ammophila Arenaria Y Elymus Farctus
    UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA ESTUDIO DE LA MICOBIOTA ENDOFÍTICA ASOCIADA A LAS GRAMÍNEAS Dactylis glomerata, Holcus lanatus, Ammophila arenaria y Elymus farctus Mª Salud Sánchez Márquez 2009 DR. ÍÑIGO ZABALGOGEAZCOA GONZÁLEZ, CIENTÍFICO TITULAR DEL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC), EN EL INSTITUTO DE RECURSOS NATURALES Y AGROBIOLOGÍA DE SALAMANCA, CERTIFICA Que la memoria titulada “ESTUDIO DE LA MICOBIOTA ENDOFÍTICA ASOCIADA A LAS GRAMÍNEAS Dactylis glomerata, Holcus lanatus, Ammophila arenaria y Elymus farctus”, presentada por Dña. Mª Salud Sánchez Márquez para optar al grado de Doctora en Ciencias Biológicas por la Universidad de Salamanca, ha sido realizada bajo mi dirección, en el Departamento de Estrés Abiótico del Instituto de Recursos Naturales y Agrobiología de Salamanca del Consejo Superior de Investigaciones Científicas (CSIC). Y para autorizar su presentación y evaluación por el tribunal correspondiente, expide y firma el presente certificado en Salamanca, a 20 de febrero de 2009. Fdo. Dr. Iñigo Zabalgogeazcoa González ÍNDICE Página 1. INTRODUCCIÓN ……………………………………………………………….. 7 1.1. Aspectos históricos de la investigación sobre hongos endofíticos …………... 10 1.2. Epichloë y Neotyphodium, los hongos endofíticos sistémicos de gramíneas .. 12 1.2.1. Ciclos de vida de Epichloë y Neotyphodium ………………………... 13 1.2.2. Efectos beneficiosos de Epichloë y Neotyphodium …………………. 16 1.2.3. Efectos perjudiciales de los endofitos en el ganado …………………. 18 1.3. Hongos endofíticos no Epichloë …………………………………………….. 19 1.3.1. Abundancia y diversidad taxonómica ………………………………... 20 1.3.2. Especificidad de tejidos ………………………………………………. 21 1.3.3. Especificidad por el hospedador ……………………………………… 22 1.3.4. Transmisión …………………………………………………………... 23 1.3.5. Tipos de interacción planta-hongo endofítico ………………………… 24 1.3.6.
    [Show full text]
  • Nomenclatural Studies Toward a World List of Diptera Genus-Group Names
    Nomenclatural studies toward a world list of Diptera genus-group names. Part V Pierre-Justin-Marie Macquart Evenhuis, Neal L.; Pape, Thomas; Pont, Adrian C. DOI: 10.11646/zootaxa.4172.1.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Evenhuis, N. L., Pape, T., & Pont, A. C. (2016). Nomenclatural studies toward a world list of Diptera genus- group names. Part V: Pierre-Justin-Marie Macquart. Magnolia Press. Zootaxa Vol. 4172 No. 1 https://doi.org/10.11646/zootaxa.4172.1.1 Download date: 02. Oct. 2021 Zootaxa 4172 (1): 001–211 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4172.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:22128906-32FA-4A80-85D6-10F114E81A7B ZOOTAXA 4172 Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part V: Pierre-Justin-Marie Macquart NEAL L. EVENHUIS1, THOMAS PAPE2 & ADRIAN C. PONT3 1 J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] 2 Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark. E-mail: [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Whitmore: 15 Aug. 2016; published: 30 Sept. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L.
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • A History of Orchids. a History of Discovery, Lust and Wealth
    Scientific Papers. Series B, Horticulture. Vol. LXIV, No. 1, 2020 Print ISSN 2285-5653, CD-ROM ISSN 2285-5661, Online ISSN 2286-1580, ISSN-L 2285-5653 A HISTORY OF ORCHIDS. A HISTORY OF DISCOVERY, LUST AND WEALTH Nora Eugenia D. G. ANGHELESCU1, Annie BYGRAVE2, Mihaela I. GEORGESCU1, Sorina A. PETRA1, Florin TOMA1 1University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăști Blvd, District 1, Bucharest, Romania 2Self-employed, London, UK Corresponding author email: [email protected] Abstract Orchidaceae is the second largest families of flowering plants. There are approximately 900 orchid genera comprising between 28,000-32,000 species of orchids. The relationship between orchids and mankind is complex. The history of orchids’ discovery goes hand in hand with the history of humanity, encompassing discovery and adventure, witchcraft and magic, symbolism and occultism, addiction and sacrifice, lust and wealth. Historically, the Chinese were the first to cultivate orchids as medicinal plants, more than 4000 years ago. Gradually, records about orchids spread, reaching the Middle East and Europe. Around 300 B.C., Theophrastus named them for the first time orkhis. In 1737, Carl Linnaeus first used the word Orchidaceae to designate plants with similar features. The family name, Orchidaceae was fully established in 1789, by Antoine Laurent de Jussieu. In 1862, Charles Darwin published the first edition of his book, Fertilisation of Orchids. Darwin considered the adaptations of orchid flowers to their animal pollinators as being among the best examples of his idea of evolution through natural selection. Orchidology was on its way. During the 18th and the 19th centuries, orchids generated the notorious Orchid Fever where orchid-hunters turned the search for orchids into a frantic and obsessive hunt.
    [Show full text]
  • National List of Plant Species That Occur in Wetlands
    ;>\ ....--'. PB89-169940 BIOLOGICAL REPORT 88(26.9) MAY 1988 NATIONAL LIST OF PLANT SPECIES THAT OCCUR IN WETLANDS: . NORTHWEST (REGION 9) " h d W"ldl"f S· In Cooperation with the National and FIS an I I e ervlce Regional Interagency Review Panels U.S. Department of the Interior REPR~EDBY u.s. DEPARTMENTOF COMMERCE NATIONAL TECHNICAL ItEORMATJON SERVICE SPRINGFIELD. VA 22161 S02n-'Ol RE?ORT DOCUMENTATION 11. REPORT NO. PAG, iBioloqical Report 88(26.9) 4. TItle arld SUbtitle National List of Plant Species That Occur in Wetiands: Northwe~t (Region 9). 7. Autllor(s) Porter B. Reed, Jr. 9. Perfonnlnc O,..nl.etton H..... • nd _ .... National Ecology Research Center U.S. Fish and Wildlife Service 11. <:omncttC) or Gr.ntCG) No. Creekside One Bldg., 2627 Redwing Rd. Fort Collins, CO 80526-2899 CGl 12. SIlO....,.;n. O,..nlUtlon H_ .rld Acid.... 13. TYIMI of Repott & Period e-Nd Department of the Interior U.S. Fish and Wildlife Service Research and Development 14. Washington, DC 20240 The National list of Plant Species That Occur in Wetlands represents the combined efforts of many biologists over the last decade to define the wetland flora of the United States. The U.S. Fish and Wildlife Service initially developed the list in order to provide an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (FWS/OBS 79/31) to assist in the field identification of wetlands. Plant species that occur in wetlands, as used in the National List, are defined as species that have demonstrated an ability to achieve maturity and reproduce in an environment where all or portions of the soil within the root zone become, periodically or continuously, saturated or inundated during the growing season.
    [Show full text]
  • Nutritional Value, Mineral Composition, Secondary Metabolites, and Antioxidant Activity of Some Wild Geophyte Sedges and Grasses
    plants Article Nutritional Value, Mineral Composition, Secondary Metabolites, and Antioxidant Activity of Some Wild Geophyte Sedges and Grasses Saud L. Al-Rowaily 1, Ahmed M. Abd-ElGawad 1,2,* , Suliman M. Alghanem 3, Wafa’a A. Al-Taisan 4 and Yasser A. El-Amier 2 1 Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; [email protected] 2 Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; [email protected] 3 Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia; [email protected] 4 Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +20-1003438980 or +966-562680864 Received: 11 November 2019; Accepted: 2 December 2019; Published: 4 December 2019 Abstract: Geophytes are plants with underground storage organs including bulbs, corms, tubers, and rhizomes, often physiologically active and able to survive during harsh environmental conditions. This study is conducted to assess the nutritive value, mineral composition, bioactive metabolites, and antioxidant activity of five wild geophytes (Cyperus capitatus, C. conglomeratus, Elymus farctus, Lasiurus scindicus, and Panicum turgidum) collected from the Nile Delta coast and inland desert. The proximate composition including dry matter, moisture content, ash content, fiber, fat, protein, sucrose, and glucose were determined. Also, total carbohydrates, total digestible nutrients (TDN), and nutritive values were calculated. Macro- and micro-minerals were also determined in the studied geophytes.
    [Show full text]
  • Morphometric Traits in the Fine-Leaved Fescues Depend on Ploidy Level: the Case of Festuca Amethystina L
    Morphometric traits in the fine-leaved fescues depend on ploidy level: the case of Festuca amethystina L. Agnieszka Rewicz1, Przemysªaw Piotr Tomczyk1, Marcin Kiedrzy«ski1, Katarzyna Maria Zieli«ska1, Iwona J¦drzejczyk2, Monika Rewers2, Edyta Kiedrzy«ska3,4 and Tomasz Rewicz5 1 Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland 2 Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland 3 Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland 4 European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Poland 5 Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland ABSTRACT Background. Polyploid specimens are usually characterized by greater exuberance: they reach larger sizes and/or have a larger number of some organs. Festuca amethystina L. belongs to the section Aulaxyper. Based on morphological features, four subspecies of F. amethystina have been already identified. On the other hand, it has two cytotypes: diploid and tetraploid. The main aim of our study was to distinguish morphological differences between the cytotypes of F. amethystina, assuming that its phenotype differs significantly. Methods. The nuclear DNA content was measured by flow cytometry in dry leaves from specimens originating from 13 populations of F. amethystina. Several macrometric and micrometric traits of stems, spikelets and leaf blades were taken into account in the comparative analysis of two cytotypes. Submitted 27 March 2018 Results. In the case of cytotypes, specimens of tetraploids were larger than diploids.
    [Show full text]
  • GRAPHIE by Cornelia D. Niles with INTRODUCTION and BOTANICAL
    A BIBLIOGRAPHIC STUDY OF BEAUVOIS' AGROSTO- • GRAPHIE By Cornelia D. Niles WITH INTRODUCTION AND BOTANICAL NOTES By Aones Chase nrntODTJCTiON The Essai d?une Nouvelle Agrostographie ; ou Nouveaux Genres des Graminees; avec figures representant les Oaracteres de tous les Genres, by A. M. F. J. Palisot de Beauvois, published in 1812, is, from the standpoint of the nomenclature of grasses, a very important work, its importance being due principally to its innumerable errors, less so because of its scientific value. In this small volume 69 new genera are proposed and some 640 new species, new binomials, and new names are published. Of the 69 genera proposed 31 are to-day recognized as valid, and of the 640 names about 61 are commonly accepted. There is probably not a grass flora of any considerable region anywhere in the world that does not contain some of Beauvois' names. Many of the new names are made in such haphazard fashion that they are incorrectly listed in the Index Kewensis. There are, besides, a number of misspelled names that have found their way into botanical literature. The inaccuracies are so numerous and the cita- tions so incomplete that only a trained bibliographer* could solve the many puzzles presented. Cornelia D. Niles in connection with her work on the bibliography of grasses, maintained in the form of a card catalogue in the Grass Herbarium, worked out the basis in literature of each of these new names. The botanical problems involved, the interpretation of descriptions and figures, were worked out by Agnes Chase, who is also respon- sible for the translation and summaries from the Advertisement, Introduction, and Principles.
    [Show full text]
  • A Survey of the Elymus L. S. L. Species Complex (Triticeae, Poaceae) in Italy: Taxa and Nothotaxa, New Combinations and Identification Key
    Natural History Sciences. Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano, 5 (2): 57-64, 2018 DOI: 10.4081/nhs.2018.392 A survey of the Elymus L. s. l. species complex (Triticeae, Poaceae) in Italy: taxa and nothotaxa, new combinations and identification key Enrico Banfi Abstract - Elymus s. l. is a critical topic on which only a little INTRODUCTION light has begun to be made regarding phylogenetic reticulation, Elymus L. s. l. is one of the most debated topic among genome evolution and consistency of genera. In Italy, Elymus s. l. officially includes ten species (nine native, one alien) and some genera within the tribe Triticeae (Poaceae), with represen- well-established and widespread hybrids generally not treated as tatives spread all over the world. It has been the subject little or nothing is known of them. In this paper fourteen species of basic studies (Löve A., 1984; Dewey, 1984) that have (with two subspecies) and six hybrids are taken into account and opened important horizons not only in the field of agroge- the following seven new combinations are proposed: Thinopyrum netic research, but also and especially on systematics and acutum (DC.) Banfi, Thinopyrum corsicum (Hack.) Banfi, Thi- taxonomy. However, the still rather coarse knowledge of nopyrum intermedium (Host) Barkworth & Dewey subsp. pouzolzii (Godr.) Banfi, Thinopyrum obtusiflorum (DC.) Banfi, Thinopyrum the genomes and the lack of a satisfactory interpretation ×duvalii (Loret) Banfi, ×Thinoelymus drucei (Stace) Banfi, ×Thi- of their role in the highly reticulate phylogeny of Triticeae noelymus mucronatus (Opiz) Banfi. Some observations are pro- for a long time discouraged taxonomists to clarify species vided for each subject and a key to species, subspecies and hybrids relationships within Elymus s.
    [Show full text]