A New Approach in Solid State Steelmaking from Thin Cast Iron

Total Page:16

File Type:pdf, Size:1020Kb

A New Approach in Solid State Steelmaking from Thin Cast Iron ISIJ International, Vol. 58 (2018),ISIJ International, No. 10 Vol. 58 (2018), No. 10, pp. 1791–1800 A New Approach in Solid State Steelmaking from Thin Cast Iron Sheets through Decarburization in CaCO3 Pack Ebrahim SHARIF-SANAVI, Mostafa MIRJALILI* and Jalil VAHDATI KHAKI Department of Materials and Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111 Iran. (Received on April 6, 2018; accepted on June 4, 2018) In the solid state steelmaking process used in recent researches, pig iron was directly casted and then decarburized in an oxidizing atmosphere in order to eliminate or reduce the amount of carbon. In the pres- ent study, the feasibility of solid state steelmaking from cast iron was investigated using limestone. For this purpose, white cast iron specimens were buried in a chamber containing CaCO3 powder. Calcination of CaCO3 produces CO2 which participates in cast iron decarburization. In this technique, CO2 reacts with the carbon content of sample according to Boudouard reaction which results in carbon consumption. Furthermore, effects of temperature and time on the decarburization process were investigated. White cast iron samples were decarburized at temperatures of 800, 900 and 1 000°C for 10 and 24 h in the CaCO3 powder pack. Very fine oxide layer was also observed to form during the decarburization process. Finally, samples were studied with optical microscope and SEM to measure the depth of the decarburized layer. However, secondary graphitization was occurred during the decarburization. Results showed that decarburization at 1 000°C for 24 h has led to a completely decarburized layer of 420 μm thickness. In agreement, carbon analysis showed the reduction of carbon content from 3.16 wt% to 0.012 wt%. Kinetic studies revealed activation energy of 125 KJ/mol for decarburization of white cast iron using CaCO3 pow- der pack. KEY WORDS: solid state steelmaking; decarburization; white cast iron; calcium carbonate. observed that the rate of decarburization of cast iron strips 1. Introduction is controlled primarily by carbon diffusion in the austenite In the conventional process of steelmaking, oxidation phase. They found that dissolution rate of the cementite is process of molten pig iron makes inclusions and bubbles fast enough to maintain the local equilibrium concentra- in the liquid phase. Many efforts have made to eliminate tion between the cementite and the austenite phases at the the inclusions and bubbles. Moreover, the solubility limit interface.1,2) of oxygen in liquid iron is almost high; so during the pro- Furthermore, Sasaki2) was investigated commercial pro- cess of carbon removing, oxygen is easily dissolved in the duction of 0.5 wt% C steel by using a strip caster at Nucor3) molten iron. The advantages of solid state steelmaking (S3) to evaluate feasibility of the S3 process. According to processes are eliminating multiple steps (including BOF and McDonald4) investigations, solid state steelmaking process secondary refining), and absence of inclusions.1,2) is ideal for improvement an steel plant to reduce operating Considering environmental problems and economic cost and CO2 emissions, or to reduce the capital cost of a considerations in the steel industry, solid state steelmaking greenfield development. It is considered that the process was introduced by Sasaki et al.1,2) Sasaki’s research was needs to further researches to improve the process kinetics based on the decarburization of cast iron samples using a of solid state decarburization and enable solid state steelmak- decarburizing atmosphere. In their process, high-carbon ing process for decarburizing samples with 4 wt% carbon.4) molten iron was casted directly in form of thin sheets by Recently, production of layer integrated steel with dif- a centrifugal casting method. Then cast iron strips with ferent microstructures and properties with high strength 10 mm × 20 mm × 1 mm dimension were situated into and high ductility was investigated.5) Conventionally, layer a horizontal furnace and heated up to 1 248–1 327 K at integrated steel was produced by laminating several steel 6) H2O/H2 atmosphere. The eliminated carbon was calculated layers and using hot rolling or cold rolling. According to according to the equations of carbon diffusion in a homoge- the results obtained by Sasaki,1,2) a sheet with a three layer neous austenite plane sheet. The calculated decarburization structure can be easily produced that the surface layers have thickness then was verified by empirical investigation. They low carbon contents, in contrast with the inner layer which has initial high carbon concentration. * Corresponding author: E-mail: [email protected] The gaseous decarburization process of white cast iron DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2018-250 consists of elimination of solute carbon in austenite by sur- 1791 © 2018 ISIJ ISIJ International, Vol. 58 (2018), No. 10 face reaction, diffusion of carbon through austenite from the and high carbon iron decarburization were performed in center to the surface of solid sample and decomposition of one chamber for simplification. Moreover, white cast iron the carbon-rich phases.7) Decarburization reactions usually samples were used instead of casted pig iron for feasibility include a combination with one of the followings: study of the solid state decarburization process. For this purpose, white cast iron samples were put inside CaCO CCOC2 O ........................ (1) 3 s 2()gg() powder pack for a while and the decarburized sections were characterized. CHs 2 24()ggCH () .........................(2) COs 22()ggCO () ..........................(3) 2. Experimental In order to use an alloy with a composition close to that CHs 22OC()ggOH () 2()g .................. (4) of pig iron, cast iron samples containing 3.6 wt% carbon Many studies have been focused on the solid state decar- were used. Chemical composition of the utilized cast iron is burization of Fe–C steel which show there are many param- reported in Table 1. For this purpose, samples were casted eters affecting the decarburizing rate, such as the chemical in a shape of sequin with diameter of 4 cm and height of 6 composition,8–12) superficial coating,13) the thermal cycles of mm. Casted sequins were then solidified in a water cooling steel production14) and the atmosphere of the furnace.15–17) mold to achieve a white cast iron structure. Deng et al.15) have investigated influence of oxidizing, inert Before decarburization process, surface oxide scales were and reducing heating atmospheres such as O2, CO2, N2 and removed using SiC grinding papers until a desired surface CO on the decarburization depth of steel. According to their quality was achieved. After that, samples were placed into results, oxidizing gases, such as O2 and CO2 have increased the decarburizing chamber. The decarburization process was the decarburization depth, and the inert gas of N2 and reduc- conducted by using CaCO3 powder pack. For this purpose, ing gas of CO have strongly inhibited decarburization of samples were buried in a closed steel container full of 15) samples. CaCO3 powder, and then heated to elevated temperatures. Liu et al.16) have investigated effects of the temperature Figure 1(a) shows the schematics of decarburization cham- and oxygen concentration on the decarburization of 55SiCr ber. The height and diameter of the chamber was about 7 spring steel. They have decarburized samples in a muffle and 4.7 cm, respectively. Note that all samples were placed furnace (in ambient air) and also in a simultaneous ther- on top of the chamber and at the same position. The particle mal analyzer (in the atmosphere of 2% O2 and 98% N2). size of the used CaCO3 powder is shown in Fig. 1(b) which For samples heated in the ambient air, the decarburization indicates the average particle size of 258 nm. behavior was divided into four types: no decarburization, According to CaCO3 calcination reaction, CO2 is released only partial decarburization, only complete decarburiza- during heating: tion, and finally partial and complete decarburization. By CaCO CaOCO .................... (5) decreasing the oxygen concentration to 2%, only partial 32 (ss)()(g) decarburization was found. However, according to the CO2 then attributes in carbon removing from the speci- results of decarburizing in the thermal analysis, it was men surface, based on Boudouard reaction: impracticable to reduce the thickness of decarburized layer ........................ (6) by decreasing oxygen concentration.16) CC()s OC2g 2 O()g 17) According to Baud et al. research, samples were oxi- Consequently, the weight of CaCO3 powder needed for dized at 700°C in the ambient air, dry air and moist air (31% complete decarburization of sample can be calculated using water vapor). In the ambient air, surface decarburization of stoichiometric values of above reactions. Since the weight the metal was measurable only after a period of 32 h. How- of cast iron sample was 7.5 g, the stoichiometric weight ever, in the presence of 31% water vapor, no decarburiza- of CaCO3 which is needed for total decarburization of the tion was observed, even for an oxidation time of 128 h. In sample is 2.25 g. However, CaCO3 content of chamber contrast, oxidation in completely dry air for 64 h revealed a was considered to be 50 g (almost 20 times higher than the huge decarburization; although, no surface decarburization calculated value). This overuse of CaCO3 is because of the 17) of the sample was observed for periods shorter than 8 h. probable CO2 leakage which does not participate in decarbu- 3 In the atmospheric S process, there is a competition rization process. Our measurements of CaCO3 weight decre- between oxidation and decarburization to occur. It is ment during the process and its corresponding mole of CO2 reported that at higher temperatures (above 1 200°C) oxida- indicated that most of the released CO2 has not participated tion rate is more than decarburization rate.
Recommended publications
  • On a Mathematical Model for Case Hardening of Steel
    On a mathematical model for case hardening of steel vorgelegt von Dott.ssa Lucia Panizzi Von der Fakultät II ‚ Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. sowie der Classe di Scienze der Scuola Normale Superiore di Pisa als Diploma di Perfezionamento in Matematica per la Tecnologia e l’Industria genehmigte Dissertation Promotionsausschuss: Berichter/Gutachter: Prof. A. Fasano (Univerisità di Firenze) Berichter/Gutachter: Prof. D. Hömberg (Technische Universität Berlin) Gutachter: Prof. L. Formaggia (Politecnico di Milano) Gutachter: Prof. M. Primicerio (Università di Firenze) Gutachter: Prof. F. Tröltzsch (Technische Universität Berlin) Gutachter: Prof. P. Wittbold (Technische Universität Berlin) Tag der wissenschaftlichen Aussprache: 05.03.2010 Berlin 2010 D83 i Eidesstattliche Versicherung Hiermit erkläre ich, dass die vorliegende Dissertation: On a mathematical model for case hardening of steel selbständig verfasst wurde. Die benutzten Hilfsmittel und Quellen wurden von mir angegeben, weitere wurden nicht verwendet. ii Erklärung Hiermit erkläre ich, dass die Anmeldung meiner Promotionsabsicht früher nicht bei einer anderen Hochschule oder einer anderen Fakultät beantragt wurde. Teile meiner Dissertation sind darüber hinaus schon veröffentlich worden, welche im Folgenden aufgelistet sind: • D. Hömberg, A. Fasano, L. Panizzi A mathematical model for case hardening of steel. angenommen zur Veröffentlichung in "Mathematical Models and Methods in Applied Sciences" (M3AS), 2009. • P. Krejčí, L. Panizzi. Regularity and uniqueness in quasilinear parabolic systems. angenommen zur Veröffentlichung in "Applications of Mathematics", 2009. iii Compendio Nonostante la disponibilità di numerosi nuovi materiali, l’acciaio rimane il ma- teriale di base della moderna società industriale. L’uso dell’ acciaio con peculiari caratteristiche (durezza, resistenza all’uso, malleabilità etc.) è perciò assai diffuso in molti settori della tecnica.
    [Show full text]
  • UNDERSTANDING and MEASURING DECARBURIZATION Understanding the Forces Behind Decarburization Is the First Step Toward Minimizing Its Detrimental Effects
    22 UNDERSTANDING AND MEASURING DECARBURIZATION Understanding the forces behind decarburization is the first step toward minimizing its detrimental effects. George F. Vander Voort, FASM*, Struers Inc. (Consultant), Cleveland ecarburization is detrimental to crostructure of carbon contents close to the maximum depth of decarburization the wear life and fatigue life of the core may be difficult to discern. The is established. Because the carbon dif- steel heat-treated components. MAD determined by hardness traverse fusion rate increases with temperature ADVANCED MATERIALS & PROCESSES | FEBRUARY 2015 2015 FEBRUARY | & PROCESSES MATERIALS ADVANCED D This article explores some factors that may be slightly shallower than that de- when the structure is fully austenitic, cause decarburization while concentrat- termined by quantitative carbon analysis MAD also increases as temperature rises ing on its measurement. In most produc- with the electron microprobe. This is es- above the Ac3. For temperatures in the tion tests, light microscopes are used to pecially true when the bulk carbon con- two-phase region, between the Ac1 and scan the surface of a polished and etched tent exceeds about 0.45 wt%, as the rela- Ac3, the process is more complex. Carbon cross-section to find what appears to be tionship between carbon in the austenite diffusion rates in ferrite and austenite the greatest depth of total carbon loss before quenching to form martensite and are different, and are influenced by both (free-ferrite depth, or FFD) and the great- the as-quenched hardness loses its linear temperature and composition. est depth of combined FFD and partial nature above this carbon level. Decarburization is a serious prob- loss of carbon to determine the maxi- lem because surface properties are infe- mum affected depth (MAD).
    [Show full text]
  • An Introduction to Nitriding
    01_Nitriding.qxd 9/30/03 9:58 AM Page 1 © 2003 ASM International. All Rights Reserved. www.asminternational.org Practical Nitriding and Ferritic Nitrocarburizing (#06950G) CHAPTER 1 An Introduction to Nitriding THE NITRIDING PROCESS, first developed in the early 1900s, con- tinues to play an important role in many industrial applications. Along with the derivative nitrocarburizing process, nitriding often is used in the manufacture of aircraft, bearings, automotive components, textile machin- ery, and turbine generation systems. Though wrapped in a bit of “alchemi- cal mystery,” it remains the simplest of the case hardening techniques. The secret of the nitriding process is that it does not require a phase change from ferrite to austenite, nor does it require a further change from austenite to martensite. In other words, the steel remains in the ferrite phase (or cementite, depending on alloy composition) during the complete proce- dure. This means that the molecular structure of the ferrite (body-centered cubic, or bcc, lattice) does not change its configuration or grow into the face-centered cubic (fcc) lattice characteristic of austenite, as occurs in more conventional methods such as carburizing. Furthermore, because only free cooling takes place, rather than rapid cooling or quenching, no subsequent transformation from austenite to martensite occurs. Again, there is no molecular size change and, more importantly, no dimensional change, only slight growth due to the volumetric change of the steel sur- face caused by the nitrogen diffusion. What can (and does) produce distor- tion are the induced surface stresses being released by the heat of the process, causing movement in the form of twisting and bending.
    [Show full text]
  • 20. Iron and Steel Part II Copy
    USES FOR TYPES OF STEELS • Low carbon steel (0.08 - 0.35 % carbon) is ductile with low brittleness. It is is used for ANCIENT IRON auto body parts, home appliances, tin cans, I beams for construction. AND STEEL • Medium carbon steel (0.35 - 0.5 % carbon) (Part II) is used as crankshaft, gears, railroad axels. (Part II) They are difficult to weld. • High carbon steel (> 0.5 % carbon) is used for railroad wheels and rails, wrenches, steel cable, tools, dies, piano wire etc. BLAST FURNACE CAST IRON (PIG IRON) • Contains 1.5 - 5 % carbon. • Its melting point is 1130 oC. • The metal will shatter with a hard blow. • Carbon in the form of graphite exists as flakes • Graphite serves as a lubricant (excellent bearing material). 1 Cast Grey Iron Blast furnace at Cast Grey Iron Karabük Iron works Cast Gray Iron Graphite flakes THE FINERY CAST IRON OBJECTS THE FINERY Cast cannon 15th. Cent. 2 INDIRECT METHOD OF STEEL BESSEMER PROCESS PRODUCTION (THE BESSEMER PROCESS) Crude cast iron from the blast furnace is remelted in a hearth (the finary) and subjected to a forced draught of air. The excess carbon is oxidized to carbon dioxide. The refined pig iron which is called malleable iron is now ready for final forging. BESSEMER PROCESS FORMS OF IRON CAST IRON Decarburization From Blast Furnace M.P. 1130oC 1,5-4.5 % C Bessemer STEEL Process M.P. 1400o C 0.1-0.9 % C WROUGHT IRON From Bloomery Cementation M.P 1535o C 0.06 % C Carburization 3 DIFFERENCES BETWEEN BLOOMERY ALLOY STEELS AND BLAST FURNACE • Increase in temperature (1300 - 1400oC) • Alloy steel describes steel that contain one or more alloying elements in addition to carbon.
    [Show full text]
  • AISI | Electric Arc Furnace Steelmaking
    http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Home Steelworks Home Electric Arc Furnace Steelmaking By Jeremy A. T. Jones, Nupro Corporation SIGN UP to receive AISI's FREE e-news! Read the latest. Email: Name: Join Courtesy of Mannesmann Demag Corp. FURNACE OPERATIONS The electric arc furnace operates as a batch melting process producing batches of molten steel known "heats". The electric arc furnace operating cycle is called the tap-to-tap cycle and is made up of the following operations: Furnace charging Melting Refining De-slagging Tapping Furnace turn-around Modern operations aim for a tap-to-tap time of less than 60 minutes. Some twin shell furnace operations are achieving tap-to-tap times of 35 to 40 minutes. 10/3/2008 9:36 AM http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Furnace Charging The first step in the production of any heat is to select the grade of steel to be made. Usually a schedule is developed prior to each production shift. Thus the melter will know in advance the schedule for his shift. The scrap yard operator will prepare buckets of scrap according to the needs of the melter. Preparation of the charge bucket is an important operation, not only to ensure proper melt-in chemistry but also to ensure good melting conditions. The scrap must be layered in the bucket according to size and density to promote the rapid formation of a liquid pool of steel in the hearth while providing protection for the sidewalls and roof from electric arc radiation.
    [Show full text]
  • CONTROL of DECARBURIZATION of STEEL Paul Shefsiek
    CONTROL OF DECARBURIZATION OF STEEL Paul Shefsiek Introduction Historically, heating steel for forming, forging or rolling, was done in electrical resistance or natural gas heated furnaces. It was inevitable that these furnaces contained Oxygen and Decarburization of the steel surface occurred. This decarburization was either ignored or minimized by coating the steel with “ stopoff “. Also, this decarburization was minimized through the use nitrogen atmosphere furnaces. But, decarburization could not be reduced to acceptable limits until the Chemical Potential of the Carbon in the furnace atmosphere matched the dissolved Carbon in the steel. The Furnace Industry that provides Equipment for the processing of steel, because of the temperature ranges involved, divided itself into two categories, namely, Reheat and Heat Treating. Each has its own special Technology. But, because of this division, quite often one division does not know the Technology of the other. In some cases this has been unfortunate. If the Reheat side of the Industry had the Carburizing Technology of the Heat Treating side, this Technology could have been applied to applications where preventing Decarburizing was a requirement. Therefore, the purpose of the following discussion is to separate out that part of Carburizing Technology that is applicable to preventing Decarburization in Reheat applications. Fundamentals Control of the Decarburization of Steel has been standardized to the monitoring of - The Metal Temperature (Furnace Temperature) - The Atmosphere Concentration of Carbon Monoxide (CO) - The Atmosphere Concentration of Carbon Dioxide (CO2). Knowing the values of these three (3) parameters and the knowledge of - Saturated Austenite in Iron - The Alloy Content of the Steel - The Equilibrium Constant for the Controllable Chemical Reaction between the Steel and the Gas Atmosphere it can be determined if the Atmosphere will prevent Decarburization of the Steel.
    [Show full text]
  • 1.1%Mn--0.05%C Steel Sheets by Silicon Dioxide and Development Of
    Materials Transactions, Vol. 44, No. 6 (2003) pp. 1096 to 1105 #2003 The Japan Institute of Metals Decarburization of 3%Si–1.1%Mn–0.05%C Steel Sheets by Silicon Dioxide and Development of {100}h012i Texture* Toshiro Tomida Corporate Research & Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki 660-0891, Japan Decarburization of silicon steel sheets by annealing with oxide separators has been found to cause a high degree of {100}-texture development. Cold-rolled Fe–3%Si–1.1%Mn–0.05%C sheets of 0.35 mm thickness were laminated with separators containing SiO2. They were then annealed under a reduced pressure at about 1300 K in a ferrite and austenite two phase region. It has been observed that carbon concentration notably decreases down to 0.001% during the lamination annealing. Thus an almost complete decarburization of sheet steels was possible, whereas no oxidation of silicon as well as manganese and iron occurred. Associated with decarburization, columnar ferrite grains grew inward from sheet surfaces due to the phase transformation from austenite to ferrite. A {100}h012i texture dramatically developed in the columnar grains. Fully decarburized materials consisted of grains of 0.6 mm diameter, more than 90% of which were closely aligned with {100}h012i orientation. Another aspect of great interest in the grain structure after decarburization was that there existed convoluted domains of a few mm in width, in which dozens of grains were oriented in a single variant of the texture, (100)[012] or (100)[021]. The decarburization is considered to be caused by the thermo-chemical reaction, 2C+SiO2!Si+2CO.
    [Show full text]
  • 7313200007 DEC Permit Conditions FINAL Page 1 PERMIT Under The
    Facility DEC ID: 7313200007 PERMIT Under the Environmental Conservation Law (ECL) IDENTIFICATION INFORMATION Permit Type: Air Title V Facility Permit ID: 7-3132-00007/00028 Effective Date: 06/07/2016 Expiration Date: 06/06/2021 Permit Issued To:CRUCIBLE INDUSTRIES LLC 575 STATE FAIR BLVD SYRACUSE, NY 13209 Contact: James Vreeland Crucible Industries LLC 575 State Fair Blvd Solvay, NY 13209 (315) 470-9234 Facility: CRUCIBLE INDUSTRIES 575 STATE FAIR BLVD GEDDES, NY 13209 Contact: James Vreeland Crucible Industries LLC 575 State Fair Blvd Solvay, NY 13209 (315) 470-9234 Description: Promulgation of 40 CFR 63, YYYYY requires all sources to obtain a Title V facility operating permit. Therefore, a Title V permit must be issued for this source; otherwise the source is a synthetic minor. By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the ECL, all applicable regulations, the General Conditions specified and any Special Conditions included as part of this permit. Permit Administrator: ELIZABETH A TRACY 615 ERIE BLVD WEST SYRACUSE, NY 13204-2400 Authorized Signature: _________________________________ Date: ___ / ___ / _____ DEC Permit Conditions FINAL Page 1 Facility DEC ID: 7313200007 Notification of Other State Permittee Obligations Item A: Permittee Accepts Legal Responsibility and Agrees to Indemnification The permittee expressly agrees to indemnify and hold harmless the Department of Environmental Conservation of the State of New York, its representatives, employees and agents ("DEC") for all claims, suits, actions, and damages, to the extent attributable to the permittee's acts or omissions in connection with the compliance permittee's undertaking of activities in connection with, or operation and maintenance of, the facility or facilities authorized by the permit whether in compliance or not in any compliance with the terms and conditions of the permit.
    [Show full text]
  • A Novel Decarburizing-Nitriding Treatment of Carburized/Through-Hardened Bearing Steel Towards Enhanced Nitriding Kinetics and Microstructure Refinement
    coatings Article A Novel Decarburizing-Nitriding Treatment of Carburized/through-Hardened Bearing Steel towards Enhanced Nitriding Kinetics and Microstructure Refinement Fuyao Yan 1, Jiawei Yao 1, Baofeng Chen 1, Ying Yang 1, Yueming Xu 2, Mufu Yan 1,* and Yanxiang Zhang 1,* 1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; [email protected] (F.Y.); [email protected] (J.Y.); [email protected] (B.C.); [email protected] (Y.Y.) 2 Beijing Research Institute of Mechanical & Electrical Technology, Beijing 100083, China; [email protected] * Correspondence: [email protected] (M.Y.); [email protected] (Y.Z.); Tel.: +86-451-86418617 (M.Y.) Abstract: Decarburization is generally avoided as it is reckoned to be a process detrimental to material surface properties. Based on the idea of duplex surface engineering, i.e., nitriding the case-hardened or through-hardened bearing steels for enhanced surface performance, this work deliberately applied decarburization prior to plasma nitriding to cancel the softening effect of decarburizing with nitriding and at the same time to significantly promote the nitriding kinetics. To manifest the applicability of this innovative duplex process, low-carbon M50NiL and high-carbon M50 bearing steels were adopted in this work. The influence of decarburization on microstructures and growth kinetics of the nitrided layer over the decarburized layer is investigated. The metallographic analysis of the nitrided layer thickness indicates that high carbon content can hinder the growth of the nitrided Citation: Yan, F.; Yao, J.; Chen, B.; layer, but if a short decarburization is applied prior to nitriding, the thickness of the nitrided layer Yang, Y.; Xu, Y.; Yan, M.; Zhang, Y.
    [Show full text]
  • Feasibility of Solid-State Steelmaking from Cast Iron -Decarburization of Rapidly Solidified Cast Iron
    ISIJ International, Vol. 52 (2012), No. 1, pp. 26–34 Feasibility of Solid-state Steelmaking from Cast Iron -Decarburization of Rapidly Solidified Cast Iron- Ji-Ook PARK, Tran Van LONG and Yasushi SASAKI Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), Hyoja-dong, Pohang, 790-784 South Korea. (Received on September 6, 2011; accepted on September 29, 2011) To meet the unprecedented demand of environmental issues and tightened production cost, steel industry must develop the disruptively innovative process. In the present study, totally new steelmaking process of ‘Solid State Steelmaking’ (or S3 process) without BOF process or liquid state oxidation process is proposed. The overview of the new process is as follows: (1) High carbon liquid iron from the ironmak- ing processes is directly solidified by using a strip casting process to produce high carbon thin sheets. (2) Then, the produced cast iron sheet is decarburized by introducing oxidizing gas of H2O or CO2 in a con- tinuous annealing line to produce low carbon steel sheets. The most beneficial aspect of the S3 process is the elimination of several steps such as BOF, and secondary refinement processes and no formation of inclusions. To investigate the feasibility of S3 process, the cast iron strips with various high carbon content produced by a centrifugal slip casting method are decarburized at 1 248 K and 1 373 K by using H2O–H2 gas mixture and its kinetics of the decarburization is investigated. In the decarburization process, the car- bon diffusion through the decarburized austenite phase but not the decomposition of cementite is the rate controlling step of the decarburizing process.
    [Show full text]
  • Kinetics of Decarburization Reaction in Oxygen Steelmaking Process
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering - Papers (Archive) Sciences 1-1-2010 Kinetics of decarburization reaction in oxygen steelmaking process Neslihan Dogan University of Wollongong, [email protected] Geoffrey A. Brooks Muhammad A. Rhamdhani Follow this and additional works at: https://ro.uow.edu.au/engpapers Part of the Engineering Commons https://ro.uow.edu.au/engpapers/661 Recommended Citation Dogan, Neslihan; Brooks, Geoffrey A.; and Rhamdhani, Muhammad A.: Kinetics of decarburization reaction in oxygen steelmaking process 2010, 9-11. https://ro.uow.edu.au/engpapers/661 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] PRESENTATION ­ 3 KINETICS OF DECARBURIZATION REACTION IN OXYGEN STEELMAKING PROCESS Neslihan Dogan, Geoffrey A. Brooks and Muhammad A. Rhamdhani Swinburne University of Technology, Hawthorn, VIC 3122 Australia Key words: global model, decarburization, emulsion, oxygen steelmaking, bloated droplet The steelmaking process is complex since it involves simultaneous multi-phase (solid- gas-liquid) interactions, chemical reactions, heat and mass transfer and complex flow patterns at high temperatures. The transient nature of the process also adds more complexities and the severe operating conditions inhibit the direct measurement and observation of the process. This difficulty can be addressed by developing models, which make it possible to describe the complicated nature of the process itself and to understand the interconnection of important process variables. A global model of oxygen steelmaking focusing on the overall decarburization of the process and including the new bloated droplet theory has been developed.
    [Show full text]
  • Plasma-Assisted Nitriding of M2 Tool Steel: an Experimental and Theoretical Approach
    Plasma-assisted nitriding of M2 tool steel: An experimental and theoretical approach J.M. González-Carmona1,3, G.C. Mondragón-Rodríguez1,3, J.E. Galván-Chaire1,3, A.E. Gómez- Ovalle1, L.A. Cáceres-Díaz2, J. González-Hernández, J.M. Alvarado-Orozco1,3* 1Center of Engineering and Industrial Development, CIDESI, Surface Engineering Department, Querétaro, Av. Pie de la Cuesta 702, 76125 Santiago de Querétaro, México 2Centro de Tecnología Avanzada, CIATEQ A.C., Consorcio de Moldes, Troqueles y Herramentales, Eje 126 #225 Industrial San Luis, 78395, San Luis Potosí, México. 3Cosejo Nacional de Ciencia y Tecnología CONACyT, consorcio de Manufactura Aditiva, CONMAD, Av. Pie de la Cuesta 702, Desarrollo San Pablo, Querétaro, México. *corresponding author(s): [email protected] Abstract Present work was aimed to investigate the effect of nitriding time; 1, 1.5, 2.5 & 3.5 h, on surface characteristics & mechanical properties (surface nano-hardness, hardness Vickers, and adhesion) of AISI M2 tool steel. Mechanically effective compound (4 to 17.6 um) and diffusion layers (50.8 to 82.4 um) were obtained. Plasma nitriding considerably improved Surface engineering has been recognized as a family of technologies used to modify or improve the surface properties of a substrate. Nano-hardness, E-moduli and resistance to scratch of AISI M2 steel. Surface properties enhancement was associated to two harmonious effects at the nano-scale resulted by (a) stable nitride phases formation such as: γ′-Fe4N, ε-Fe2,3N, and (b) no brittle nitride networks and no critical decarburization of the steel upon nitriding. Thermodynamic calculations are in agreement with the experimental findings.
    [Show full text]