Ewg's Guide to Triclosan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sodium Dodecyl Sulfate
Catalog Number: 102918, 190522, 194831, 198957, 811030, 811032, 811033, 811034, 811036 Sodium dodecyl sulfate Structure: Molecular Formula: C12H25NaSO4 Molecular Weight: 288.38 CAS #: 151-21-3 Synonyms: SDS; Lauryl sulfate sodium salt; Dodecyl sulfate sodium salt; Dodecyl sodium sulfate; Sodium lauryl sulfate; Sulfuric acid monododecyl ester sodium salt Physical Appearance: White granular powder Critical Micelle Concentration (CMC): 8.27 mM (Detergents with high CMC values are generally easy to remove by dilution; detergents with low CMC values are advantageous for separations on the basis of molecular weight. As a general rule, detergents should be used at their CMC and at a detergent-to-protein weight ratio of approximately ten. 13,14 Aggregation Number: 62 Solubility: Soluble in water (200 mg/ml - clear, faint yellow solution), and ethanol (0.1g/10 ml) Description: An anionic detergent3 typically used to solubilize8 and denature proteins for electrophoresis.4,5 SDS has also been used in large-scale phenol extraction of RNA to promote the dissociation of protein from nucleic acids when extracting from biological material.12 Most proteins bind SDS in a ratio of 1.4 grams SDS to 1 gram protein. The charges intrinsic to the protein become insignificant compared to the overall negative charge provided by the bound SDS. The charge to mass ratio is essentially the same for each protein and will migrate in the gel based only on protein size. Typical Working Concentration: > 10 mg SDS/mg protein Typical Buffer Compositions: SDS Electrophoresis -
Triclosan Disrupts Thyroid Hormones: Mode-Of-Action, Developmental Susceptibility, and Determination of Human Relevance
Triclosan Disrupts Thyroid Hormones: Mode-of-Action, Developmental Susceptibility, and Determination of Human Relevance Katie Beth Paul “A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Toxicology.” Chapel Hill 2011 Approved by: Kim L. R. Brouwer, Pharm.D., Ph.D. Kevin M. Crofton, Ph.D. Michael J. DeVito, Ph.D. Philip C. Smith, Ph.D James A. Swenberg, D.V.M., Ph.D. ©2011 Katie Beth Paul ALL RIGHTS RESERVED ii Abstract Katie Beth Paul Triclosan Disrupts Thyroid Hormones: Mode-of-Action, Developmental Susceptibility, and Determination of Human Relevance (Under the direction of Kevin M. Crofton, Ph.D.) Preliminary study demonstrated that triclosan (TCS), a bacteriostat in myriad consumer products, decreases serum thyroxine (T4) in rats. Adverse neurodevelopmental consequences result from thyroid hormone (TH) disruption; therefore determination of whether TCS disrupts THs during development, its mode-of-action (MOA), and the human relevance is critical. This research tested the hypothesis that TCS disrupts THs via activation of pregnane X and constitutive androstane receptors (PXR, CAR), mediating Phase I-II enzyme and hepatic transporter expression and protein changes, thereby increasing catabolism and elimination of THs, resulting in decreased TH concentrations. For Aim One, the hypothesized MOA was assessed using weanling female Long-Evans rats orally exposed to TCS (0-1000 mg/kg/day) for four days. Serum T4 decreased 35% at 300 mg/kg/day. Activity and expression of markers of Phase I (Cyp2b, Cyp3a1) and Phase II (Ugt1a1, Sult1c1) metabolism were moderately induced, consistent with PXR and/or CAR activation and increased hepatic catabolism. -
Tutorial on Working with Micelles and Other Model Membranes
Tutorial on Working with Micelles and Model Membranes Chuck Sanders Dept. of Biochemistry, Dept. of Medicine, and Center for Structural Biology Vanderbilt University School of Medicine. http://structbio.vanderbilt.edu/sanders/ March, 2017 There are two general classes of membrane proteins. This presentation is on working with integral MPs, which traditionally could be removed from the membrane only by dissolving the membrane with detergents or organic solvents. Multilamellar Vesicles: onion-like assemblies. Each layer is one bilayer. A thin layer of water separates each bilayer. MLVs are what form when lipid powders are dispersed in water. They form spontaneously. Cryo-EM Micrograph of a Multilamellar Vesicle (K. Mittendorf, C. Sanders, and M. Ohi) Unilamellar Multilamellar Vesicle Vesicle Advances in Anesthesia 32(1):133-147 · 2014 Energy from sonication, physical manipulation (such as extrusion by forcing MLV dispersions through filters with fixed pore sizes), or some other high energy mechanism is required to convert multilayered bilayer assemblies into unilamellar vesicles. If the MLVs contain a membrane protein then you should worry about whether the protein will survive these procedures in folded and functional form. Vesicles can also be prepared by dissolving lipids using detergents and then removing the detergent using BioBeads-SM dialysis, size exclusion chromatography or by diluting the solution to below the detergent’s critical micelle concentration. These are much gentler methods that a membrane protein may well survive with intact structure and function. From: Avanti Polar Lipids Catalog Bilayers can undergo phase transitions at a critical temperature, Tm. Native bilayers are usually in the fluid (liquid crystalline) phase. -
Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes
Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes May 2013 Authors Mark Ferrey Contributors/acknowledgements The MPCA is reducing printing and mailing costs This report contains the results of a study that by using the Internet to distribute reports and characterizes the presence of unregulated information to wider audience. Visit our website contaminants in Minnesota’s lakes. The study for more information. was made possible through funding by the MPCA reports are printed on 100 percent post- Minnesota Clean Water Fund and by funding by consumer recycled content paper manufactured the U.S. Environmental Protection Agency without chlorine or chlorine derivatives. (EPA), which facilitated the sampling of lakes for this study. The Minnesota Pollution Control Agency (MPCA) thanks the following for assistance and advice in designing and carrying out this study: Steve Heiskary, Pam Anderson, Dereck Richter, Lee Engel, Amy Garcia, Will Long, Jesse Anderson, Ben Larson, and Kelly O’Hara for the long hours of sampling for this study. Cynthia Tomey, Kirsten Anderson, and Richard Grace of Axys Analytical Labs for the expert help in developing the list of analytes for this study and logistics to make it a success. Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | www.pca.state.mn.us | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332 This report is available in alternative formats upon request, and online at www.pca.state.mn.us. Document number: tdr-g1-16 Contents Contents ........................................................................................................................................... -
Effect of Antimicrobial Triclosan on Reproductive System of Male
A tica nal eu yt c ic a a m A r a c t h a P Ibtisham et al., Pharm Anal Acta 2016, 7:11 Pharmaceutica Analytica Acta DOI: 10.4172/2153-2435.1000516 ISSN: 2153-2435 Review Article Open Access Effect of Antimicrobial Triclosan on Reproductive System of Male Rat Fahar Ibtisham, Aamir Nawab, Yi Zhao, Guanghui Li, Mei Xiao and Lilong An* Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, China *Corresponding author; Lilong An, Agricultural Collage, Guangdong Ocean University, Haida Road, Mazhang District, Zhanjiang 524088, Guangdong, China, Tel: +86-759-2383247; E-mail: [email protected] Received date: October 31, 2016; Accepted date: November 26, 2016; Published date: November 28, 2016 Copyright: © 2016 Ibtisham F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol: TCS) is a synthetic, broad-spectrum antibacterial agent used in broad range of household and personal care products including hand soap, toothpaste, and deodorants. Recently, concerns have been raised over TCS’s potential for endocrine and reproductive disruption. This review contains the information about deleterious toxic effects of TCS on reproductive system of male rat and the possible mechanism. The literature findings showed that TCS deadly affects the reproductive profile of male rats. According to literature TCS depress the testicular function of male rat including spermatogenesis and steroidogenesis by decreasing the androgen production. 3-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β- HSD) are two critical enzymes in the steroidogenesis pathway, while according to findings TCS treated rats had lowered concentration of androgen. -
Identification of Methyl Triclosan and Halogenated Analogues
SCIENCE OF THE TOTAL ENVIRONMENT 407 (2009) 2102– 2114 available at www.sciencedirect.com www.elsevier.com/locate/scitotenv Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada Thomas J. Leikera,1, Sonja R. Abneya, Steven L. Goodbredb, Michael R. Rosenc,⁎ aUS Geological Survey, Box 25046, MS 407, Denver, CO 80225-0046, USA bUS Geological Survey, California State University, Modoc Hall, 3020 State University Drive East, Suite 3005, Sacramento, CA 95819-6129, USA cUS Geological Survey, 2730 North Deer Run Road, Carson City NV, 89701, USA ARTICLE DATA ABSTRACT Article history: Methyl triclosan and four halogenated analogues have been identified in extracts of individual Received 22 August 2008 whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, Received in revised form and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. 3 November 2008 Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent Accepted 9 November 2008 triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number Available online 2 December 2008 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Keywords: Kovats retention indices of methyl triclosan with commercially obtained triclosan that was Triclosan derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of Methyl triclosan methyltriclosandetectedinbothwhole-body tissue and SPMD extracts were tentatively Common carp identified by high resolution mass spectrometry. -
Cleaning and Sanitizing I. Cleaning 2 Types Of
Cleaning and Sanitizing CLEANING AND SANITIZING I. CLEANING 2 TYPES OF CLEANING COMPOUNDS 2 PROPERTIES OF A CLEANER 2 FACTORS THAT AFFECT CLEANING EFFICIENCY 2 CLEANING OPERATION 3 II. SANITIZING 4 HEAT 4 CHEMICAL SANITIZERS 5 FACTORS AFFECTING SANITIZING 7 III. DISHWASHING MACHINES 8 HOT WATER SANITIZING 8 CHEMICAL SANITIZING 9 REQUIREMENTS FOR A SUCCESSFUL DISHWASHING OPERATION 10 CHECKING A DISHMACHINE 10 COMMON PROBLEMS 12 IV. DEFINITIONS: 14 V. QUIZ 16 VI. ANSWER KEY TO QUIZ 18 VII. REFERENCES: 18 1 Cleaning and Sanitizing This section is presented primarily for information. The only information the BETC participant will be responsible for is to know the sanitization standards for chemical and hot water sanitizing as found in the Rules for Food Establishment Sanitation. CLEANING AND SANITIZING I. CLEANING Cleaning is a process which will remove soil and prevent accumulation of food residues which may decompose or support the growth of disease causing organisms or the production of toxins. Listed below are the five basic types of cleaning compounds and their major functions: 1. Basic Alkalis - Soften the water (by precipitation of the hardness ions), and saponify fats (the chemical reaction between an alkali and a fat in which soap is produced). 2. Complex Phosphates - Emulsify fats and oils, disperse and suspend oils, peptize proteins, soften water by sequestering, and provide rinsability characteristics without being corrosive. 3 Surfactant - (Wetting Agents) Emulsify fats, disperse fats, provide wetting properties, form suds, and provide rinsability characteristics without being corrosive. 4. Chelating - (Organic compounds) Soften the water by sequestering, prevent mineral deposits, and peptize proteins without being corrosive. -
Conjugate and Prodrug Strategies As Targeted Delivery Vectors for Antibiotics † † ‡ Ana V
Review Cite This: ACS Infect. Dis. XXXX, XXX, XXX−XXX pubs.acs.org/journal/aidcbc Signed, Sealed, Delivered: Conjugate and Prodrug Strategies as Targeted Delivery Vectors for Antibiotics † † ‡ Ana V. Cheng and William M. Wuest*, , † Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States ‡ Emory Antibiotic Resistance Center, Emory School of Medicine, 201 Dowman Drive, Atlanta, Georgia 30322, United States ABSTRACT: Innate and developed resistance mechanisms of bacteria to antibiotics are obstacles in the design of novel drugs. However, antibacterial prodrugs and conjugates have shown promise in circumventing resistance and tolerance mechanisms via directed delivery of antibiotics to the site of infection or to specific species or strains of bacteria. The selective targeting and increased permeability and accumu- lation of these prodrugs not only improves efficacy over unmodified drugs but also reduces off-target effects, toxicity, and development of resistance. Herein, we discuss some of these methods, including sideromycins, antibody-directed prodrugs, cell penetrating peptide conjugates, and codrugs. KEYWORDS: oligopeptide, sideromycin, antibody−antibiotic conjugate, cell penetrating peptide, dendrimer, transferrin inding new and innovative methods to treat bacterial F infections comes with many inherent challenges in addition to those presented by the evolution of resistance mechanisms. The ideal antibiotic is nontoxic to host cells, permeates bacterial cells easily, and accumulates at the site of infection at high concentrations. Narrow spectrum drugs are also advantageous, as they can limit resistance development and leave the host commensal microbiome undisturbed.1 However, various resistance mechanisms make pathogenic infections difficult to eradicate: Many bacteria respond to antibiotic pressure by decreasing expression of active transporters and porins2 and 3,4 Downloaded via EMORY UNIV on April 18, 2019 at 12:34:17 (UTC). -
Linear Alkylbenzene Sulphonate (CAS No
Environmental Risk Assessment LAS Linear Alkylbenzene Sulphonate (CAS No. 68411-30-3) Revised ENVIRONMENTAL Aspect of the HERA Report = February 2013 = 1 1. Contents 2. Executive summary 3. Substance characterisation 3.1 CAS No. and grouping information 3.2 Chemical structure and composition 3.3 Manufacturing route and production/volume statistics 3.4 Consumption scenario in Europe 3.5 Use application summary 4. Environmental safety assessment 4.1 Environmental exposure assessment 4.1.1 Biotic and abiotic degradability 4.1.2 Removal 4.1.3 Monitoring studies 4.1.4 Exposure assessment: scenario description 4.1.5 Substance data used for the exposure calculation 4.1.6 PEC calculations 4.1.7 Bioconcentration 4.2 Environmental effects assessment 4.2.1 Ecotoxicity 4.2.1.1 Aquatic ecotoxicity 4.2.1.2 Terrestrial ecotoxicity 4.2.1.3 Sediment ecotoxicity 4.2.1.4 Ecotoxicity to sewage microorganisms 4.2.1.5 Reassurance on absence of estrogenic effects 4.2.2 PNEC calculations 4.2.2.1 Aquatic PNEC 4.2.2.2 Terrestrial PNEC 4.2.2.3 Sludge PNEC 4.2.2.4 Sediment PNEC 4.2.2.5 STP PNEC 4.3 Environment risk assessment 5. 5. References 6. Contributors to the report 6.1 Substance team 6.2 HERA environmental task force 6.3 HERA human health task force 6.4 Industry coalition for the OECD/ICCA SIDS assessment of LAS 2 2. Executive Summary Linear alkylbenzene sulphonate (LAS) is an anionic surfactant. It was introduced in 1964 as the readily biodegradable replacement for highly branched alkylbenzene sulphonates (ABS). -
Quaternary Ammonium Compositions and Their Uses
Europaisches Patentamt (19) European Patent Office Office europeen des brevets (11) EP 0 726 246 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt. CI.6: C07C 21 1/63, C01 B 33/44, 14.08.1996 Bulletin 1996/33 C1 p 1/62j Q21 C 5/02, (21) Application number: 96101900.7 A61 K 7/50 //C09D7/12 (22) Date of filing: 09.02.1996 (84) Designated Contracting States: • Campbell, Barbara DE DK ES FR GB IT NL Bristol, PA 1 9007 (US) • Chiavoni, Araxi (30) Priority: 10.02.1995 US 385295 Trenton, N J 0861 0 (US) • Magauran, Edward (71 ) Applicant: RHEOX INTERNATIONAL, INC. Westhampton, NJ 08060 (US) Hightstown, New Jersey 08520 (US) (74) Representative: Strehl Schubel-Hopf Groening & (72) Inventors: Partner • Cody, Charles, Dr. Maximilianstrasse 54 Robbinsville, NJ 08691 (US) 80533 Munchen (DE) (54) Quaternary ammonium compositions and their uses (57) Quaternary ammonium compositions are described which are made using diluents including soya bean oil, caster oil, mineral oils, isoparaffin/naphthenic and coconut oil. Such diluents remain as diluents in the final product and generally have a vapor pressure of 1mm of Hg or less at 25°C, and are liquid at ambient temperature. The quaternary/ammonium diluent com- positions have low volatile organic compound emission rates and high flash points, and can be tailored to partic- ular applications. Such applications include use a fabric softeners, cosmetics ingredients, deinking additives, surfactants, and reaction materials in the manufacture of organoclays. < CO CM CO CM o Q_ LU Printed by Rank Xerox (UK) Business Services 2.13.0/3.4 EP 0 726 246 A1 Description BACKGROUND OF THE INVENTION 5 1 . -
Soaps and Detergent Book
,â\ soAPS hù \-.-.1' ¿'>/'--'u\ r *gg, Ç DETERGENTS ,' '.-"- iI ' \' /'l'- ''t "*-**'*o'*q-å- þr,-'- COIUTEIUTS , Cleaning products play an essential role in our daily lives. By safely and effectively removing soils, germs HISTORY .........4 and other contaminants, they help us to stay healthy, I care for our homes and possessions, and make our ì surroundings more pleasant. The Soap and Detergent Association (SDA) recognizes that public understanding of the safety and benefits of cleaning products is critical to their proper use. So we've revised Soaþs and Detergents to feature the most current information in an easy-to-read format. This second edition summarizes key developments in the history of cleaning products; the science of how they work; the procedures used to evaluate their safety for people and the environment; the functions of various products and their ingredients; and the most common manufacturing processes. SDA hopes that consumers, educators, students, media, government officials, businesses and others ñnd Soaps and Detergents avaluable resource of information about cleaning products. o ' \o.-. t ¡: 2nd Edition li¡: orpq¿ The Soap ancl Detergent Association I :. I The Soap an4\Detergent Associatidn ^T',-¡ (\ "i' ) t'l T/ j *.'Ò. t., ,,./-t"'\\\,1 ,,! -\. r'í-\ HISTORY r The earlv Greeks bathed for Ð aesthetié reasons and apparently did not use soap. Instead, they I The origins of personal cleanliness cleaned their bodies with blocks of I date back to prehistoric times. Since clay, sand, pumice and ashes, then water is essential for life, the eadiest anointed themselves with oil, and people lived near water and knew scraped off the oil and dirt with a something about its cleansing 11 Records show that ancient metal instrument known as a strigil. -
The 5 Stupidest Chemicals That Shouldn't Be in Your House (PDF)
MARCH 2013 NRDC faCT SHEET FS:13-03-A The 5 Stupidest Chemicals That Shouldn’t be in Your House As you begin the annual spring cleaning purge, make sure that you aren’t leaving behind a house filled with toxic chemicals that can harm you, your family, and your pets. Get rid of the chemicals that harm more than they help. 1. ANTIBACTERIAL PRODUCTS 2. TOXIC FLAME RETARDANTS Soaps, cosmetics, cleansers, lotions, toothpaste and other Furniture foam is saturated with flame retardant chemicals products may carry an “antibacterial” label, but you are really that not only don’t stop furniture fires, but also make fires paying extra for unnecessary additives like triclosan and its more toxic by forming deadly gases and soot, the real killers chemical cousin triclocarban—which may be doing more in most fires. What’s worse, flame retardant chemicals are harm than good. Triclosan is found in over 80 percent of linked to real and measurable health impacts, including Americans’ bodies and exposure has been linked to allergies, lower IQs and decreased attention spans for children exposed impaired reproduction, hormone disruption, and weakened in the womb, male infertility, male birth defects, and early muscles. The U.S. Food and Drug Administration (FDA) puberty in girls. A recent study in animals linked flame admitted that triclosan is no more effective at preventing retardants to autism and obesity. illness than regular soap. Widespread use—in everything Americans carry much higher levels of flame retardants from cutting boards, yoga mats, bedding, soaps and gels— in their bodies than anyone else in the world, due in large could also be promoting drug-resistant bacteria.