A Phylogeny of Cariniana (Lecythidaceae) Based on Morphological and Anatomical Data

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogeny of Cariniana (Lecythidaceae) Based on Morphological and Anatomical Data A phylogeny of Cariniana (Lecythidaceae) based on morphological and anatomical data 2 3 YA-YI HUANG!, SCOTT A. MORI , AND GHILLEAN T. PRANCE 1 The New York Botanical Gardenffhe City University of New York, Bronx, New York, NY 10458-5126, USA; e-mail: [email protected] zInstitute of Systematic Botany, The New York Botanical Garden, Bronx, New York, NY 10458­ 5126, USA; e-mail: [email protected] 3 The Old Vicarage, Silver Street, Lyme Regis, Dorset, UK; e-mail: [email protected] Abstract. Cariniana as previously circumsclibed is a genus of 16 species restricted to neotropical forest habitats on well-drained sites. A phylogenetic analysis of the genus based on 33 morphological and anatomical characters was undertaken. The results show that Cariniana consists of two clades: the AllantomalCariniana decandra clade includes Allantoma lineata and seven species of actinomorphic-flowered Cariniana and is characterized by 5-merous flowers, camose petals, incurved petal apex, scarcely lobed calyces, eucamptodromous secondary veins, dichotomizing venation, and poorly developed areolation; the C. legalis clade is made up of nine species and is characterized by an obliquely zygomorphic androecium, reticulate tertialy venation, and anomocytic stomata. The actinomorphic-flowered Cariniana are more closely re­ lated to the monotypic Allantoma lineata than they are to the species of the C. legalis clade. In order to reflect these relationships, Cariniana is divided into two genera: species in the C. legalis clade, which includes the generic type C. legalis, remain as Cariniana while species of Cariniana in the AllantomalCariniana decandra clade are transferred to Allantoma. The following new combinations are proposed: AIIantoma decandra, A. integrifolia, A. kuhImannii, A. pluriftora (a nomen novum for Cariniana multiflora because Allantoma multiflora is a synonym of Couratari multiflora), A. pachyantha, A. pauciramosa, and A. uaupensis. Key Words: Allantoma lineata, Cariniana, Cariniana legalis, floral symmetly, Lecythidoideae. Cariniana Casar. is a Neotropical genus of Miers reinstated the genus Cariniana and the pantropical family Lecythidaceae. This pointed out the striking differences between genus was named after Prince Eugene de Cariniana and Couratari in the androecium Savioe-Carignan who sponsored Casaretto's and seed wings. The definition of the genus trip to Brazil. The genus Cariniana was has not changed since Miers. Fifteen species recognized by only a few botanists after it were recognized in the most recent mono­ was published and species of Cariniana were graph (Prance, 1979b), and one species (c. generally published in Couratari Aubi. The parvifolia) has been descIibed since publica­ distinction between Cariniana and Couratari tion of that monograph (Mori, 1995). was not established for a long time because Species of Cariniana have the smallest species of both genera have cylindric or flowers in Lecythidaceae, 3-10cular ovaries, campanulate fruits and winged seeds. Berg cylindric fruits, and seeds with unilateral (1856) placed Cariniana in synonymy under wings. Species of the genus are either canopy Couratari, and his classification was followed or emergent trees distributed in non-flooded by Bentham and Hooker (1865). In 1874, habitats (terra firme) in northern Colombia, Brittonia, 60(1), 2008, pp. 69-81. ISSUED: 30 April 2008 © 2008, by The New York Botanical Garden Press, Bronx, NY 10458-5126 U.S.A. 70 BRITTONIA [VOL. 60 Venezuela, Brazil, the coastal forests of eastern did not formally recognize these differences, he Brazil, and the cerrado vegetation of central was aware that there were two different groups Brazil. Representatives of the genus are absent in his concept of Cariniana. in the Guianas and eastern Amazonia. In recent Ducke (1925, 1948) was the first to point keys to the genera of Lecythidaceae (Mori & out the similarity of Allantoma lineata Miers Prance, 1990; Prance & Mori, 1979), Carini­ to some species of Cariniana (e.g., C. ana has been included under both "androecium uaupensis). In his paper, he compared species actinomorphic" and "androecium zygomor­ of different families growing in periodically phic" leads in the keys because the flowers of flooded habitats along Amazonian rivers with some of the species are actinomorphic related species growing in non-flooded hab­ (Fig. lA) while others are zygomorphic itats, and stated that the only difference (Fig. IB). Prance (1979b) placed species of between the two genera of Lecythidaceae Cariniana with actinomorphic flowers and a studied was that the seeds of Cariniana relatively low number of stamens together possess a wing that facilitates dispersal by in his sequence of species numbered 5-11 the wind whereas those of Allantoma have (c. decandra Ducke, C. integr[folia Ducke, C. elongated seeds without wings. The seeds of kuhlmannii Ducke, C. multiflora Ducke, C. A. lineata fall into the water when the fruits pachyantha A. C. Sm., C. pauciramosa W. A. open and are dispersed by currents. Ongoing Rodrigues and C. uaupensis (Spruce ex O. molecular studies (Mori et al., 2007) show Berg) Miers). Species with zygomorphic flow­ that a least one species of actinomorphic­ ers usually have more than 40 stamens inserted flowered Cariniana (c. decandra) fonns a over the interior of the androecium, and group with the monotypic Allantoma lineata, form another group including C. domestica which also has actinomorphic androecia. (Mart.) Miers, C. estrellensis (Raddi) Kuntze, Additional features shared between Allan­ C. ianeirensis R. Knuth, C. legalis (Mart.) toma and actinomorphic-flowered Cariniana Kuntze, C. micrantha Ducke, C. parvifolia S. are 5-merous flowers, camose petals hooked A. Mori, Prance & Menandro, C. pendultflora at the apex, and percurrent tertiary venation. Prance, C. pyriformis Miers, and C. rubra The name Allantoma comes from the Gardner ex Miers. Although Prance (1979b) Greek cx.Mcx.<; (= sausage) and 51-1-0<; (= like) A [ 3mm. Cariniana integrifolia Cariniana micrantha FIG. 1. Androecia of Cariniana. A. Actinomorphic androecium of a species of the AllantomalG. decandra clade. B. Zygomorphic androecium of a species of the G. legalis clade. 2008] HUANG ET AL.: PHYLOGENY OF CARINIANA (LECYTHIDACEAE) 71 in reference to the cylindrical fiuit. When and small watercourses of the upper Orinoco, Miers (1874) first published this genus to Negro, and Amazon River basins. In the latter accommodate 12 species, he included the it occurs from the mouth of the Rio Negro flowers of species of Couratari and the fruits downstream to the mouth of the Amazon and seeds of Allantoma lineata in his generic River. It is characterized by actinomorphic concept. Using this concept, Huber (1902) androecia, percurrent tertiary venation, car­ described the new genus Goeldinia based on nose petals with hooked apices, cylindrical a flowering collection of Allantoma lineata. fruit, and non-winged seeds. Later Ducke (1925) recognized that Huber's The purpose ofthis paper was to address the species of Goeldinia represented the flowers following questions: 1) what is the relationship of the part of Allantoma defined by fiuits and between species of Cariniana with actino­ seeds in Mier's protologue, and placed morphic androecia and species of Cariniana Huber's two species of Goeldinia in synony­ with zygomorphic androecia, and 2) what is my under A. lineata. It was Eyma (1932) who the relationship between Cariniana and first realized that Miers had included two Allantoma lineata? We addressed these two genera in Allantoma, one corresponding to questions by constructing a phylogeny based flowering material (= Couratari) and the other on anatomical and morphological characters. represented by fruiting material (= Allan­ toma). The fact that Miers did not select a type species further complicated the issue. Materials and methods Eyma pointed this problem out to Sprague Morphological and anatomical characters (1932) who selected A. torulosa Miers as the are based on original observations from her­ lectotype fi'om among those species recog­ barium specimens archived at The New York nized by Miers that were based on fruit Botanical Garden (NY) and the Missouri collections. He argued that the name Allan­ Botanical Garden (MO), or are derived from toma referred to the shape of the fiuit, and, the pickled collection of Lecythidaceae at NY. thus, the generic type should be based on a The ingroup consists of Allantoma lineata species typified by a fruiting collection. To (Prance, 1979a), all 15 species of Cariniana have lectotypified Allantoma with a flowering recognized by Prance in the most recent collection would have created a synonym of monograph (Prance, 1979b), and one species the zygomorphic-flowered Couratari. desclibed after the publication of the mono­ Following Eyma's definition, Knuth (1939) graph (Mori, 1995). Because the relationship recognized 12 species ofAllantoma and placed of Cariniana and Allantoma with other those with 4-chambered fruits in section Neotropical Lecythidaceae is uncertain, six Tetrakolpos and those with 5-chambered fruits species were chosen as outgroups: two species in section Pentakolpus. Most species recog­ from two actinomorphic-flowered genera nized by Knuth were distinguished by minor (Grias cauliflora L. and Gustavia hexapetala fruit differences. Prance (1 979a), the most (AubI.) Sm.), two species (Couroupita guia­ recent monographer of the genus, stated that nensis Aubi. and Couroupita nicaraguarensis different stages of fruit development, the DC.) from the basal
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • William Wayt Thomas1,2 & Melissa Tulig1
    Rodriguésia 66(4): 983-987. 2015 http://rodriguesia.jbrj.gov.br DOI: 10.1590/2175-7860201566404 Hard Copy to Digital: Flora Neotropica and the World Flora Online William Wayt Thomas1,2 & Melissa Tulig1 Abstract One of the greatest challenges in achieving the goals of the World Flora Online (WFO) will be to make available the huge amount of botanical information that is not yet available digitally. The New York Botanical Garden is using the Flora Neotropica monograph series as a model for digitization. We describe our efforts at digitizing Flora Neotropica monographs and why digitization of hardcopy descriptions must be a priority for the WFO project. Key words: Electronic monographs, open access, Flora Neotropica, monographs. Resumo Um dos maiores desafios para alcançar as metas do projeto World Flora Online (WFO), será a disponibilizar a enorme quantidade de informações botânicas que ainda não estão disponíveis digitalmente. O New York Botanical Garden está utilizando a série de monografias da Flora Neotropica como um modelo para a digitalização. Nós aqui descrevemos nossos esforços na digitalização das monografias da Flora Neotropica e porque a digitalização das descrições impressas deve ser uma prioridade para o projeto WFO. Palavras-chave: Monografias eletrônicas, open access, Flora Neotropica, monografias. Introduction is called the World Flora Online (WFO). This consortium of professionals will create open- The World Flora Online (WFO) was access one-stop searching of world flora with developed as part of the United Nation’s Global verified information, including new and previously Strategy for Plant Conservation with the goal of published data, and coordinated with links to other providing “an online flora of all known plants,” One plant database and catalog Web sites.
    [Show full text]
  • A Population Genetic Survey of the Tropical Tree Cariniana Estrellensis (Lecythidaceae) in a Highly Fragmented Habitat
    Heredity (2016) 116, 339–347 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Small but not isolated: a population genetic survey of the tropical tree Cariniana estrellensis (Lecythidaceae) in a highly fragmented habitat MC Guidugli1,2, AG Nazareno3, JM Feres1,2, EPB Contel1,2, MA Mestriner1 and AL Alzate-Marin1,2 Here, we explore the mating pattern and genetic structure of a tropical tree species, Cariniana estrellensis, in a small population in which progeny arrays (n = 399), all adults (n = 28) and all seedlings (n = 39) were genotyped at nine highly informative microsatellite loci. From progeny arrays we were able to identify the source tree for at least 78% of pollination events. The gene immigration rates, mainly attributable to pollen, were high, varying from 23.5 to 53%. Although gene dispersal over long distance was observed, the effective gene dispersal distances within the small population were relatively short, with mean pollination distances varying from 69.9 to 146.9 m, and seed dispersal distances occurring up to a mean of 119.6 m. Mating system analyses showed that C. estrellensis is an allogamous species (tm = 0.999), with both biparental inbreeding (tm − ts = − 0.016) and selfing rates (s = 0.001) that are not significantly different from zero. Even though the population is small, the presence of private alleles in both seedlings and progeny arrays and the elevated rates of gene immigration indicate that the C. estrellensis population is not genetically isolated. However, genetic diversity expressed by allelic richness was significantly lower in postfragmentation life stages.
    [Show full text]
  • Ethnobotany of Riverine Populations from the Rio Negro, Amazonia (Brazil)
    Journal of Ethnobiology 27(1): 46–72 Spring/Summer 2007 ETHNOBOTANY OF RIVERINE POPULATIONS FROM THE RIO NEGRO, AMAZONIA (BRAZIL) ANDRE´ A LEME SILVA,a JORGE TAMASHIROb and ALPINA BEGOSSIc aDepartamento de Ecologia, Instituto de Biocieˆncias Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil, CEP 05580-900 ^[email protected]& bDepartamento de Botaˆnica, UNICAMP Campinas, Sa˜o Paulo, Brazil ^[email protected]& cFisheries and Food Institute, Rua Coronel Quirino 1636, Campinas, Sa˜o Paulo 13025-002, Brazil, and Fisheries Management and Training Program, PREAC-UNICAMP ^[email protected]& ABSTRACT.—This paper presents a comparative study of plant knowledge and use in rural and urban areas in the municipality of Barcelos in the Rio Negro, Amazonas, Brazil, based on a total of 81 interviews. Using diversity indices (Shannon-Wiener), plant knowledge is compared among communities (urban- rural population), and between sex (male-female) and age (older or younger than 40 years) categories within each community. Among our informants, we found quantitative differences concerning the knowledge of medicinal plants between sex and age categories. Some individuals play a key role relating to medicinal plant knowledge, and steps should be taken in order to include them in management and conservation plans. Key words: ethnobotany, diversity indices, plant knowledge and use, Rio Negro, Brazilian Amazon. RESUMO.—Com base em um total de 81 entrevistas, no´s apresentamos um estudo etnobotaˆnico comparativo entre populac¸o˜es urbanas e rurais na municipalidade de Barcelos no Rio Negro, Amazonas, Brasil. Usando´ ındices de diversidade (Shannon-Wiener), o conhecimento de plantas e´ comparado entre as comunidades estudadas (populac¸a˜o urbana e rural), geˆnero (masculino e feminino) e categorias de idade (menos que 40 anos e mais que 40 anos de idade).
    [Show full text]
  • (Cariniana Pyriformis Miers) En La
    Plan de Manejo y Conservación del Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR 2020 Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR PLAN DE MANEJO Y CONSERVACIÓN DEL ABARCO (Cariniana pyriformis Miers) EN LA JURISDICCIÓN CAR DIRECCIÓN DE RECURSOS NATURALES DRN LUIS FERNADO SANABRIA MARTINEZ Director General RICHARD GIOVANNY VILLAMIL MALAVER Director Técnico DRN JOHN EDUARD ROJAS ROJAS Coordinador Grupo de Biodiversidad DRN JOSÉ EVERT PRIETO CAPERA Grupo de Biodiversidad DRN CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA CAR ACTUALIZACIÓN 2020 2 TERRITORIO AMBIENTALMENTE SOSTENIBLE Bogotá, D. C. Avenida La Esperanza # 62 – 49, Centro Comercial Gran Estación costado Esfera, pisos 6 y 7 Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR Los textos de este documento podrán ser utilizados total o parcialmente siempre y cuando sea citada la fuente. Corporación Autónoma Regional de Cundinamarca Bogotá-Colombia Diciembre 2020 Este documento deberá citarse como: Corporación Autónoma Regional de Cundinamarca CAR. 2020. Plan de manejo y conservación d Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR. 53p. 2020. Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR. Todos los derechos reservados. 3 TERRITORIO AMBIENTALMENTE SOSTENIBLE Bogotá, D. C. Avenida La Esperanza # 62 – 49, Centro Comercial Gran Estación costado Esfera, pisos 6 y 7 Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR PLAN DE MANEJO Y CONSERVACIÓN DEL ABARCO (Cariniana pyriformis Miers) EN LA JURISDICCIÓN CAR Autor: Giovanny Andrés Morales Mora Plan de manejo y conservación del Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR.
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Gustavia Sessilis and a Key to Its Species Acta Botánica Mexicana, No
    Acta botánica mexicana ISSN: 0187-7151 ISSN: 2448-7589 Instituto de Ecología A.C., Centro Regional del Bajío Batista Guerra, Juvenal E.; Ortiz, Orlando O. The Gustavia clade (Lecythidaceae) in Central America: a new record of Gustavia sessilis and a key to its species Acta botánica mexicana, no. 127, e1708, 2020 Instituto de Ecología A.C., Centro Regional del Bajío DOI: https://doi.org/10.21829/abm127.2020.1708 Available in: https://www.redalyc.org/articulo.oa?id=57466093028 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Scientific note The Gustavia clade (Lecythidaceae) in Central America: a new record of Gustavia sessilis and a key to its species El clado Gustavia (Lecythidaceae) en América Central: un nuevo registro de Gustavia sessilis y una clave para sus especies Juvenal E. Batista Guerra1,2 , Orlando O. Ortiz1 Abstract: Background and Aims: Gustavia sessilis is a neotropical tree, belonging to the Lecythidaceae family, until now known from the Colombian Chocó region only. In this paper, we report G. sessilis for the first time for Central America. Methods: Central American specimens of G. sessilis were collected in 2019 from the Darién Province (eastern Panama). Plant identifications were confirmed by comparing collected specimens with those identified earlier and housed in the MO, PMA, SCZ and UCH herbaria. Type specimens were examined by consulting the JSTOR Global Plants database. The estimations of the conservation status were made based on the criteria of the IUCN.
    [Show full text]
  • Complete Plastome Sequences from Bertholletia Excelsa and 23 Related Species Yield Informative Markers for Lecythidaceae
    GENOMIC RESOURCES ARTICLE Complete plastome sequences from Bertholletia excelsa and 23 related species yield informative markers for Lecythidaceae Ashley M. Thomson1,2*, Oscar M. Vargas1* , and Christopher W. Dick1,3 Manuscript received 1 October 2017; revision accepted PREMISE OF THE STUDY: The tropical tree family Lecythidaceae has enormous ecological and 11 January 2018. economic importance in the Amazon basin. Lecythidaceae species can be difficult to identify 1 Department of Ecology and Evolutionary Biology, University of without molecular data, however, and phylogenetic relationships within and among the most Michigan, Ann Arbor, Michigan 48109, USA diverse genera are poorly resolved. 2 Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada METHODS: To develop informative genetic markers for Lecythidaceae, we used genome 3 Smithsonian Tropical Research Institute, Panama City skimming to de novo assemble the full plastome of the Brazil nut tree (Bertholletia excelsa) 0843-03092, Republic of Panama and 23 other Lecythidaceae species. Indices of nucleotide diversity and phylogenetic signal 4 Author for correspondence: [email protected] were used to identify regions suitable for genetic marker development. *These authors contributed equally to this work. RESULTS: The B. excelsa plastome contained 160,472 bp and was arranged in a quadripartite Citation: Thomson, A. M., O. M. Vargas, and C. W. Dick. 2018. structure. Using the 24 plastome alignments, we developed primers for 10 coding and non- Complete plastome sequences from Bertholletia excelsa and 23 related species yield informative markers for Lecythidaceae. coding DNA regions containing exceptional nucleotide diversity and phylogenetic signal. We Applications in Plant Sciences 6(5): e1151.
    [Show full text]
  • Morfologia De Frutos, Sementes E Plântulas De Lecythidoideae
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BOTÂNICA) MORFOLOGIA DE FRUTOS, SEMENTES E PLÂNTULAS DE LECYTHIDOIDEAE LORENA PATRICIA FIGUEIRA RODRIGUES Manaus, Amazonas Julho, 2020 LORENA PATRICIA FIGUEIRA RODRIGUES MORFOLOGIA DE FRUTOS, SEMENTES E PLÂNTULAS DE LECYTHIDOIDEAE ORIENTADORA: ISOLDE DOROTHEA KOSSMANN FERRAZ Dissertação apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em Ciências Biológicas, área de concentração Botânica. Manaus, Amazonas Julho, 2020 Relação da banca julgadora Dra. Maria Anália Duarte de Souza Universidade Federal do Amazonas - UFAM Dra. Denise Maria Trombert de Oliveira Universidade Federal de Minas Gerais – UFMG Dra. Ely Simone Cajueiro Gurgel Museu Paraense Emílio Goeldi – MPEG ii iii F475m Rodrigues, Lorena Patricia Figueira Morfologia de frutos, sementes e plântulas de Lecythidoideae / Lorena Patricia Figueira Rodrigues; orientadora Isolde Dorothea Kossmann Ferraz. -- Manaus: [s.l.], 2020. 145 f. Dissertação (Mestrado – Programa de Pós Graduação em Botânica) – Coordenação do Programa de Pós – Graduação, INPA, 2020. 1. morfologia de propágulos. 2. polaridade na germinação. 3. morfologia de plântula. 4. taxonomia. 5. análise multivariada. I. Ferraz, Isolde Dorothea Kossmann, orient. II. Título. CDD: 580 Sinopse: Este estudo descreve e ilustra algumas espécies Neotropicais de Lecythidaceae (subfamília Lecythidoideae), nativas das florestas amazônicas. O estudo é divido em dois capítulos:
    [Show full text]