Conservation of Greater Sage-Grouse

Total Page:16

File Type:pdf, Size:1020Kb

Conservation of Greater Sage-Grouse #714 CHAPTER TWENTY-FOUR Conservation of Greater Sage-Grouse A SYNTHESIS OF CURRENT TRENDS AND FUTURE MANAGEMENT J. W. Connelly, S. T. Knick, C. E. Braun, W. L. Baker, E. A. Beever, T. Christiansen, K. E. Doherty, E. O. Garton, S. E. Hanser, D. H. Johnson, M. Leu, R. F. Miller, D. E. Naugle, S. J. Oyler-McCance, D. A. Pyke, K. P. Reese, M. A. Schroeder, S. J. Stiver, B. L. Walker, and M. J. Wisdom Abstract. Recent analyses of Greater Sage-Grouse very low densities in some areas, coupled with (Centrocercus urophasianus) populations indicate large areas of important sagebrush habitat that are substantial declines in many areas but relatively relatively unaffected by the human footprint, sug- stable populations in other portions of the species’ gest that Greater Sage-Grouse populations may be range. Sagebrush (Artemisia spp.) habitats neces- able to persist into the future. We summarize the sary to support sage-grouse are being burned by status of sage-grouse populations and habitats, large wildfires, invaded by nonnative plants, and provide a synthesis of major threats and chal- developed for energy resources (gas, oil, and lenges to conservation of sage-grouse, and suggest wind). Management on public lands, which con- a roadmap to attaining conservation goals. tain 70% of sagebrush habitats, has changed over the last 30 years from large sagebrush control Key Words: Centrocercus urophasianus, Greater projects directed at enhancing livestock grazing to Sage-Grouse, habitats, management, populations, a greater emphasis on projects that often attempt restoration, sagebrush. to improve or restore ecological integrity. Never- theless, the mandate to manage public lands to Conservación del Greater Sage-Grouse: provide traditional consumptive uses as well as Una Síntesis de las Tendencias Actuales y del recreation and wilderness values is not likely to Manejo Futuro change in the near future. Consequently, demand and use of resources contained in sagebrush land- Resumen. Los análisis recientes de poblaciones de scapes plus the associated infrastructure to sup- Greater Sage-Grouse (Centrocercus urophasianus) port increasing human populations in the western indican declinaciones substanciales en muchas United States will continue to challenge efforts to áreas, pero con poblaciones relativamente esta- conserve Greater Sage-Grouse. The continued bles en otras porciones de la distribución de esta widespread distribution of sage-grouse, albeit at especie. Los hábitats de artemisa (Artemisia spp.) Connelly, J. W., S. T. Knick, C. E. Braun, W. L. Baker, E. A. Beever, T. Christiansen, K. E. Doherty, E. O. Garton, S. E. Hanser, D. H. Johnson, M. Leu, R. F. Miller, D. E. Naugle, S. J. Oyler-McCance, D. A. Pyke, K. P. Reese, M. A. Schroeder, S. J. Stiver, B. L. Walker, and M. J. Wisdom. 2011. Conservation of Greater Sage-Grouse: a synthesis of current trends and future management. Pp. 549–563 in S. T. Knick and J. W. Connelly (editors). Greater Sage-Grouse: ecology and conservation of a landscape species and habitats. Studies in Avian Biology (vol. 38), University of California Press, Berkeley, CA. 549 Knick_ch24.indd 549 3/1/11 11:43:25 AM necesarios para sustentar al sage-grouse están poblaciones humanas en el oeste de los Estados siendo quemados por grandes incendios natu- Unidos, continuarán desafiando los esfuerzos rales, invadidos por plantas introducidas, y para conservar al Greater Sage-Grouse. La ince- desarrollados para recursos energéticos (gas, sante extensa distribución del sage-grouse, no petróleo, y energía eólica). El manejo de tierras obstante sus bajas densidades en algunas áreas, públicas, las cuales contienen el 70% del hábitat junto con grandes áreas del importante hábitat de de sagebrush, ha cambiado durante los últimos artemisa que se encuentran relativamente ina- 30 años: desde grandes proyectos de control del fectadas por la mano del hombre, sugieren que sagebrush dirigidos a aumentar el pastoreo de las poblaciones del Greater Sage-Grouse podrán ganado, a un mayor énfasis en los proyectos que persistir en el futuro. Resumimos el estado de las intentan a menudo mejorar o restaurar la integri- poblaciones y de los hábitats del sage-grouse, pro- dad ecológica. Sin embargo, el mandato que incita porcionamos una síntesis de amenazas y de a manejar tierras públicas para proporcionar apli- desafíos importantes a la conservación del sage- caciones de consumo tradicionales, así como grouse, y sugerimos un mapa para lograr metas valores de recreación y de áreas naturales, proba- de conservación. blemente no vaya a cambiar en un futuro cercano. Por lo tanto, la demanda y el uso de los recursos Palabras Clave: artemisa (sagebrush), Centrocercus contenidos en paisajes de artemisa, más la infrae- urophasianus, gestión, Greater Sage-Grouse, hábi- structura asociada al soporte de las crecientes tats, poblaciones, restauración. he Greater Sage-Grouse (Centrocercus dominated landscapes to exotic annual grasslands urophasianus; hereafter, sage-grouse), now following these fires further increases the likeli- Toccupies only 56% of its likely distribution hood of future fire (Miller et al., this volume, prior to European settlement (Schroeder et al. chapter 10) and decreases any potential for recov- 2004). Range-wide, populations have been declin- ery or restoration (Pyke, this volume, chapter 23). ing at an average of 2.0% per year from 1965 to Along with these habitat changes, sage-grouse 2003 (Connelly et al. 2004). Concerns about declin- populations in some portions of the species’ range ing sage-grouse populations (Braun 1995, Connelly have continued to decline (Garton et al., this vol- and Braun 1997, Connelly et al. 2004, Schroeder ume, chapter 15) despite the collaborative efforts et al. 2004) coupled with information on habitat of many local working groups (Stiver, this volume, loss (Connelly et al. 2004) have prompted multiple chapter 2). petitions to list the species under the Endangered We do not expect land uses to decrease, Species Act (Stiver, this volume, chapter 2). because growing human populations will The United States Fish and Wildlife Service increase demand for traditional consumptive determined in 2010 that listing Greater Sage- resources and recreation. Thus, the human foot- Grouse under the Endangered Species Act was print (Leu and Hanser, this volume, chapter 13) biologically warranted but was precluded by other is likely to continue to influence sagebrush-dom- higher priorities (United States Department of inated landscapes (Knick et al., this volume, the Interior 2010). During the four years since the chapter 12). Nevertheless, the continued wide- first detailed range-wide analysis of sage-grouse spread distribution of sage-grouse (although populations and sagebrush habitats (Connelly some areas have very low densities) and rela- et al. 2004), negative impacts of energy develop- tively large areas providing key sagebrush ment and West Nile virus on Greater Sage-Grouse habitats suggest that long-term conservation of were documented (Naugle et al. 2004, 2005; Hol- sage-grouse populations should be possible. This loran et al. 2005; Aldridge and Boyce 2007; chapter summarizes information on Greater Doherty et al. 2008; Walker 2008). Hundreds of Sage-Grouse populations and habitats presented thousands of hectares of sagebrush (Artemisia in this volume, provides a synthesis of major spp.) steppe were also burned by wildfire (Miller threats and challenges to conservation of Greater et al., this volume, chapter 10; Baker, this volume, Sage-Grouse, and suggests a roadmap to attain- chapter 11). Large-scale conversion of sagebrush- ing conservation goals. 550 STUDIES IN AVIAN BIOLOGY NO. 38 Knick and Connelly KKnick_ch24.inddnick_ch24.indd 555050 33/1/11/1/11 111:43:251:43:25 AAMM All state and provincial fish and wildlife agencies CURRENT KNOWLEDGE OF POPULATIONS monitor sage-grouse breeding populations annu- The Greater Sage-Grouse is genetically distinct ally, but monitoring techniques have varied some- from the congeneric Gunnison Sage-Grouse what among areas and years both within and ( Centrocercus minimus). Greater Sage-Grouse pop- among agencies. This methodological variation ulations in Washington and the Lyon-Mono popu- complicates attempts to understand grouse popu- lation, spanning the border between Nevada and lation trends and make comparisons among areas California, also have unique genetic characteris- (Connelly et al. 2004). Population monitoring tics (Oyler-McCance and Quinn, this volume, efforts increased substantially between 1965 and chapter 5) but have not been described as separate 2007 throughout the range of sage-grouse (Garton species. The distribution of genetic variation has et al., this volume, chapter 15). The largest increases shifted gradually across the range, suggesting in effort occurred in the Great Plains Sage-Grouse movement among neighboring populations is not Management Zone (SMZ)(parts of Alberta, yet likely across the species’ range (Oyler- McCance Saskatchewan, Montana, North Dakota, South et al. 2005b). Most populations have similar levels Dakota, and Wyoming) and Colorado Plateau SMZ of genetic diversity even at the periphery of the (representing parts of Utah and Colorado). In 2007, range. With declining populations and habitat as a minimum of 88,816 male sage-grouse were well as increased threats from anthropogenic counted on 5,042 leks throughout western North sources, however, current connectivity among America (Garton et al., this volume, chapter 15). populations may
Recommended publications
  • One for All - Artemisia Absinthium (Afsanteen) “A Potent Unani Drug”
    Review article One for All - Artemisia absinthium (Afsanteen) “A Potent Unani Drug” Ayshah Hashimi1, Mantasha Binth Siraj2, Yasmeen Ahmed3, Md. Akhtar Siddiqui4, Umar Jahangir5* 1,2,3 M.D. Scholar, 4 Professor, 5 Assistant Professor Department of Moalajat, School of Unani Medical Education and Research Jamia Hamdard, New Delhi, India ABSTRACT The therapeutic use of the wormwood plant Artemisia absinthium L. dates back to at least Roman times. There are more than 200 plants in the genus Artemisia- including southern wormwood, petite wormwood and Grande wormwood and encompasses about 500 species. The best-known species of wormwood is Artemisia absinthium, native to temperate Eurasia and North Africa and is branded for its extreme bitterness. It is a magical greens booze used as carminative to support healthy appetite, balances healthy flora, cleanse the digestive tract of parasite and toxins. It possesses anti-inflammatory, immunomodulatory, hepatoprotective, anti-helminthic and anti-depressant activity. Thujone excites nervous system when taken in small amount. Due to contrary history of wormwood, its application in individuals should be preceded by a thorough and cautious risk-benefit analysis. In this appraisal an attempt is done to validate scientifically, mentioned therapeutic potential of Artemisia absinthium in classical Unani literature using PubMed, Science Direct researches. Keywords Afsanteen, Wormwood, Thujone, Unani, Hepatoprotective INTRODUCTION largest and highly advanced family with approximately 1528 (Mukherjee, 2006), (TYROCITY, 2018) or 1620 (Petruzzello, Healing with medicinal plants is as old as mankind itself. 2018), (Panero, et al., 2012) genera and 22750 or 23600 Since prehistoric times, in quest for rescue for their disease, the species of herbs, shrubs and trees.
    [Show full text]
  • Chetco Bar Fire Salvage Project Comment Analysis Page 1 Of
    Chetco Bar Fire Salvage Project Comment Analysis Response and Concern Status Report Generated: 6/22/2018 12:48 PM Project: Chetco Fire Salvage Project (53150) Comment Period: Other - 30-Day Comment and ESD Comment Period Period Dates: 4/16/2018 - 5/16/2018 and 5/18/2018 - 6/18/2018 Name Comment Text Response Text Comment # ESD Comments Received 5/18/2018 - 6/18/2018 Vaile, Joseph 1-2 An ESD may prove counterproductive to the goals of the agency, if it The Forest Service has been engaging the public in a robust and thorough process since the prevents meaningful mitigation measures to the proposed action. The Chetco Bar fire began. Refer also to the response to comment 1-1 for more information on use of the ESD may prevent the Forest Service from engaging the public design criteria and evaluation for feasibility. in a robust and thorough planning process that could be accomplished through an objection process. Page 1 of 341 Chetco Bar Fire Salvage Project Comment Analysis Name Comment Text Response Text 1-5 Please note that the discussion of the agency's desire for an ESD at page The EA states "An additional consideration is the health and safety of forest visitors and 2-6 of the Chetco Bar Fire Salvage EA makes reference to a concern for nearby private landowners due to numerous dead trees, as well as Forest Service staff and "the health and safety of forest visitors." We wholeheartedly agree that forest industry workers working in the Chetco Bar Fire Salvage project area. Traveling or this is a legitimate concern.
    [Show full text]
  • Plant Species and Functional Diversity Along Altitudinal Gradients, Southwest Ethiopian Highlands
    Plant Species and Functional Diversity along Altitudinal Gradients, Southwest Ethiopian Highlands Dissertation Zur Erlangung des akademischen Grades Dr. rer. nat. Vorgelegt der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth von Herrn Desalegn Wana Dalacho geb. am 08. 08. 1973, Äthiopien Bayreuth, den 27. October 2009 Die vorliegende Arbeit wurde in dem Zeitraum von April 2006 bis October 2009 an der Universität Bayreuth unter der Leitung von Professor Dr. Carl Beierkuhnlein erstellt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Prüfungsausschuss 1. Prof. Dr. Carl Beierkuhnlein (1. Gutachter) 2. Prof. Dr. Sigrid Liede-Schumann (2. Gutachter) 3. PD. Dr. Gregor Aas (Vorsitz) 4. Prof. Dr. Ludwig Zöller 5. Prof. Dr. Björn Reineking Datum der Einreichung der Dissertation: 27. 10. 2009 Datum des wissenschaftlichen Kolloquiums: 21. 12. 2009 Contents Summary 1 Zusammenfassung 3 Introduction 5 Drivers of Diversity Patterns 5 Deconstruction of Diversity Patterns 9 Threats of Biodiversity Loss in the Ttropics 10 Objectives, Research Questions and Hypotheses 12 Synopsis 15 Thesis Outline 15 Synthesis and Conclusions 17 References 21 Acknowledgments 27 List of Manuscripts and Specification of Own Contribution 30 Manuscript 1 Plant Species and Growth Form Richness along Altitudinal Gradients in the Southwest Ethiopian Highlands 32 Manuscript 2 The Relative Abundance of Plant Functional Types along Environmental Gradients in the Southwest Ethiopian highlands 54 Manuscript 3 Land Use/Land Cover Change in the Southwestern Ethiopian Highlands 84 Manuscript 4 Climate Warming and Tropical Plant Species – Consequences of a Potential Upslope Shift of Isotherms in Southern Ethiopia 102 List of Publications 135 Declaration/Erklärung 136 Summary Summary Understanding how biodiversity is organized across space and time has long been a central focus of ecologists and biogeographers.
    [Show full text]
  • Polypodiaceae (PDF)
    This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Zhang, X. C., S. G. Lu, Y. X. Lin, X. P. Qi, S. Moore, F. W. Xing, F. G. Wang, P. H. Hovenkamp, M. G. Gilbert, H. P. Nooteboom, B. S. Parris, C. Haufler, M. Kato & A. R. Smith. 2013. Polypodiaceae. Pp. 758–850 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. POLYPODIACEAE 水龙骨科 shui long gu ke Zhang Xianchun (张宪春)1, Lu Shugang (陆树刚)2, Lin Youxing (林尤兴)3, Qi Xinping (齐新萍)4, Shannjye Moore (牟善杰)5, Xing Fuwu (邢福武)6, Wang Faguo (王发国)6; Peter H. Hovenkamp7, Michael G. Gilbert8, Hans P. Nooteboom7, Barbara S. Parris9, Christopher Haufler10, Masahiro Kato11, Alan R. Smith12 Plants mostly epiphytic and epilithic, a few terrestrial. Rhizomes shortly to long creeping, dictyostelic, bearing scales. Fronds monomorphic or dimorphic, mostly simple to pinnatifid or 1-pinnate (uncommonly more divided); stipes cleanly abscising near their bases or not (most grammitids), leaving short phyllopodia; veins often anastomosing or reticulate, sometimes with included veinlets, or veins free (most grammitids); indument various, of scales, hairs, or glands. Sori abaxial (rarely marginal), orbicular to oblong or elliptic, occasionally elongate, or sporangia acrostichoid, sometimes deeply embedded, sori exindusiate, sometimes covered by cadu- cous scales (soral paraphyses) when young; sporangia with 1–3-rowed, usually long stalks, frequently with paraphyses on sporangia or on receptacle; spores hyaline to yellowish, reniform, and monolete (non-grammitids), or greenish and globose-tetrahedral, trilete (most grammitids); perine various, usually thin, not strongly winged or cristate.
    [Show full text]
  • Challenge of the Big Trees
    Challenge of the Big Trees Challenge of the Big Trees CHALLENGE OF THE BIG TREES Lary M. Dilsaver and William C. Tweed ©1990, Sequoia Natural History Association, Inc. CONTENTS NEXT >>> Challenge of the Big Trees ©1990, Sequoia Natural History Association dilsaver-tweed/index.htm — 12-Jul-2004 http://www.nps.gov/history/history/online_books/dilsaver-tweed/index.htm[7/2/2012 5:14:17 PM] Challenge of the Big Trees (Table of Contents) Challenge of the Big Trees Table of Contents COVER LIST OF MAPS LIST OF PHOTOGRAPHS FOREWORD PREFACE CHAPTER ONE: The Natural World of the Southern Sierra CHAPTER TWO: The Native Americans and the Land CHAPTER THREE: Exploration and Exploitation (1850-1885) CHAPTER FOUR: Parks and Forests: Protection Begins (1885-1916) CHAPTER FIVE: Selling Sequoia: The Early Park Service Years (1916-1931) CHAPTER SIX: Colonel John White and Preservation in Sequoia National Park (1931- 1947) CHAPTER SEVEN: Two Battles For Kings Canyon (1931-1947) CHAPTER EIGHT: Controlling Development: How Much is Too Much? (1947-1972) CHAPTER NINE: New Directions and A Second Century (1972-1990) APPENDIX A: Visitation Statistics, 1891-1988 APPENDIX B: Superintendents of Sequoia, General Grant, and Kings Canyon National Parks NOTES TO CHAPTERS PUBLISHED SOURCES ARCHIVAL RESOURCES ACKNOWLEDGMENTS INDEX (omitted from online edition) ABOUT THE AUTHORS http://www.nps.gov/history/history/online_books/dilsaver-tweed/contents.htm[7/2/2012 5:14:22 PM] Challenge of the Big Trees (Table of Contents) List of Maps 1. Sequoia and Kings Canyon National Parks and Vicinity 2. Important Place Names of Sequoia and Kings Canyon National Parks 3.
    [Show full text]
  • Die Plantfamilie ASTERACEAE: 6
    ISSN 0254-3486 = SA Tydskrif vir Natuurwetenskap en Tegnologie 23, no. 1 & 2 2004 35 Algemene artikel Die plantfamilie ASTERACEAE: 6. Die subfamilie Asteroideae P.P.J. Herman Nasionale Botaniese Instituut, Privaat sak X101, Pretoria, 0001 e-pos: [email protected] UITTREKSEL Die tribusse van die subfamilie Asteroideae word meer volledig in hierdie artikel beskryf. Die genusse wat aan dié tribusse behoort word gelys en hulle verspreiding aangedui. ABSTRACT The plant family Asteraceae: 6. The subfamily Asteroideae. The tribes of the subfamily Asteroideae are described in this article. Genera belonging to the different tribes are listed and their distribution given. INLEIDING Tribus ANTHEMIDEAE Cass. Hierdie artikel is die laaste in die reeks oor die plantfamilie Verteenwoordigers van hierdie tribus is gewoonlik aromaties, Asteraceae.1-5 In die vorige artikel is die klassifikasie bokant byvoorbeeld Artemisia afra (wilde-als), Eriocephalus-soorte, familievlak asook die indeling van die familie Asteraceae in sub- Pentzia-soorte.4 Die feit dat hulle aromaties is, beteken dat hulle families en tribusse bespreek.5 Hierdie artikel handel oor die baie chemiese stowwe bevat. Hierdie stowwe word dikwels subfamilie Asteroideae van die familie Asteraceae, met ’n aangewend vir medisyne (Artemisia) of insekgif (Tanacetum).4 bespreking van die tribusse en die genusse wat aan die verskillende Verder is hulle blaartjies gewoonlik fyn verdeeld en selfs by dié tribusse behoort. Die ‘edelweiss’ wat in die musiekblyspel The met onverdeelde blaartjies, is die blaartjies klein en naaldvormig sound of music besing word, behoort aan die tribus Gnaphalieae (Erica-agtig). Die pappus bestaan gewoonlik uit vry of vergroeide van die subfamilie Asteroideae.
    [Show full text]
  • South Pole-Aitken Basin
    Feasibility Assessment of All Science Concepts within South Pole-Aitken Basin INTRODUCTION While most of the NRC 2007 Science Concepts can be investigated across the Moon, this chapter will focus on specifically how they can be addressed in the South Pole-Aitken Basin (SPA). SPA is potentially the largest impact crater in the Solar System (Stuart-Alexander, 1978), and covers most of the central southern farside (see Fig. 8.1). SPA is both topographically and compositionally distinct from the rest of the Moon, as well as potentially being the oldest identifiable structure on the surface (e.g., Jolliff et al., 2003). Determining the age of SPA was explicitly cited by the National Research Council (2007) as their second priority out of 35 goals. A major finding of our study is that nearly all science goals can be addressed within SPA. As the lunar south pole has many engineering advantages over other locations (e.g., areas with enhanced illumination and little temperature variation, hydrogen deposits), it has been proposed as a site for a future human lunar outpost. If this were to be the case, SPA would be the closest major geologic feature, and thus the primary target for long-distance traverses from the outpost. Clark et al. (2008) described four long traverses from the center of SPA going to Olivine Hill (Pieters et al., 2001), Oppenheimer Basin, Mare Ingenii, and Schrödinger Basin, with a stop at the South Pole. This chapter will identify other potential sites for future exploration across SPA, highlighting sites with both great scientific potential and proximity to the lunar South Pole.
    [Show full text]
  • ANIC IMPACTS: MS and IRONMENTAL P ONS Abstracts Edited by Rainer Gersonde and Alexander Deutsch
    ANIC IMPACTS: MS AND IRONMENTAL P ONS APRIL 15 - APRIL 17, 1999 Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Abstracts Edited by Rainer Gersonde and Alexander Deutsch Ber. Polarforsch. 343 (1999) ISSN 01 76 - 5027 Preface .......3 Acknowledgements .......6 Program ....... 7 Abstracts P. Agrinier, A. Deutsch, U. Schäre and I. Martinez: On the kinetics of reaction of CO, with hot Ca0 during impact events: An experimental study. .11 L. Ainsaar and M. Semidor: Long-term effect of the Kärdl impact crater (Hiiumaa, Estonia) On the middle Ordovician carbonate sedimentation. ......13 N. Artemieva and V.Shuvalov: Shock zones on the ocean floor - Numerical simulations. ......16 H. Bahlburg and P. Claeys: Tsunami deposit or not: The problem of interpreting the siliciclastic K/T sections in northeastern Mexico. ......19 R. Coccioni, D. Basso, H. Brinkhuis, S. Galeotti, S. Gardin, S. Monechi, E. Morettini, M. Renard, S. Spezzaferri, and M. van der Hoeven: Environmental perturbation following a late Eocene impact event: Evidence from the Massignano Section, Italy. ......21 I von Dalwigk and J. Ormö Formation of resurge gullies at impacts at sea: the Lockne crater, Sweden. ......24 J. Ebbing, P. Janle, J, Koulouris and B. Milkereit: Palaeotopography of the Chicxulub impact crater and implications for oceanic craters. .25 V. Feldman and S.Kotelnikov: The methods of shock pressure estimation in impacted rocks. ......28 J.-A. Flores, F. J. Sierro and R. Gersonde: Calcareous plankton stratigraphies from the "Eltanin" asteroid impact area: Strategies for geological and paleoceanographic reconstruction. ......29 M.V.Gerasimov, Y. P. Dikov, 0 . I. Yakovlev and F.Wlotzka: Experimental investigation of the role of water in the impact vaporization chemistry.
    [Show full text]
  • 'Liberty'cargo Ship
    ‘LIBERTY’ CARGO SHIP FEATURE ARTICLE written by James Davies for KEY INFORMATION Country of Origin: United States of America Manufacturers: Alabama Dry Dock Co, Bethlehem-Fairfield Shipyards Inc, California Shipbuilding Corp, Delta Shipbuilding Co, J A Jones Construction Co (Brunswick), J A Jones Construction Co (Panama City), Kaiser Co, Marinship Corp, New England Shipbuilding Corp, North Carolina Shipbuilding Co, Oregon Shipbuilding Corp, Permanente Metals Co, St Johns River Shipbuilding Co, Southeastern Shipbuilding Corp, Todd Houston Shipbuilding Corp, Walsh-Kaiser Co. Major Variants: General cargo, tanker, collier, (modifications also boxed aircraft transport, tank transport, hospital ship, troopship). Role: Cargo transport, troop transport, hospital ship, repair ship. Operated by: United States of America, Great Britain, (small quantity also Norway, Belgium, Soviet Union, France, Greece, Netherlands and other nations). First Laid Down: 30th April 1941 Last Completed: 30th October 1945 Units: 2,711 ships laid down, 2,710 entered service. Released by WW2Ships.com USA OTHER SHIPS www.WW2Ships.com FEATURE ARTICLE 'Liberty' Cargo Ship © James Davies Contents CONTENTS ‘Liberty’ Cargo Ship ...............................................................................................................1 Key Information .......................................................................................................................1 Contents.....................................................................................................................................2
    [Show full text]
  • Readings in the History of the Soil Conservation Service
    United States Department of Agriculture Readings in the Soil Conservation Service History of the Soil Conservation Service Economics and Social Sciences Division, NHQ Historical Notes Number 1 Introduction The articles in this volume relate in one way or another to the history of the Soil Conservation Service. Collectively, the articles do not constitute a comprehensive history of SCS, but do give some sense of the breadth and diversity of SCS's missions and operations. They range from articles published in scholarly journals to items such as "Soil Conservation: A Historical Note," which has been distributed internally as a means of briefly explaining the administrative and legislative history of SCS. To answer reference requests I have made reprints of the published articles and periodically made copies of some of the unpublished items. Having the materials together in a volume is a very convenient way to satisfy these requests in a timely manner. Also, since some of these articles were distributed to SCS field offices, many new employees have joined the Service. I wanted to take the opportunity to reach them. SCS employees are the main audience. We have produced this volume in the rather unadorned and inexpensive manner so that we can distribute the volume widely and have it available for training sessions and other purposes. Also we can readily add articles in the future. If anyone should wish to quote or cite any of the published articles, please use the citations provided at the beginning of the article. For other articles please cite this publication. Steven Phillips, a graduate student in history at Georgetown University and a 1992 summer intern here with SCS, converted the articles to this uniform format, and is hereby thanked for his very professional efforts.
    [Show full text]
  • Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E
    Chapter38 Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E. Watson and Robert Vogt HISTORICAL OVERVIEW The circumscription of Anthemideae remained relatively unchanged since the early artifi cial classifi cation systems According to the most recent generic conspectus of Com- of Lessing (1832), Hoff mann (1890–1894), and Bentham pos itae tribe Anthemideae (Oberprieler et al. 2007a), the (1873), and also in more recent ones (e.g., Reitbrecht 1974; tribe consists of 111 genera and ca. 1800 species. The Heywood and Humphries 1977; Bremer and Humphries main concentrations of members of Anthemideae are in 1993), with Cotula and Ursinia being included in the tribe Central Asia, the Mediterranean region, and southern despite extensive debate (Bentham 1873; Robinson and Africa. Members of the tribe are well known as aromatic Brettell 1973; Heywood and Humphries 1977; Jeff rey plants, and some are utilized for their pharmaceutical 1978; Gadek et al. 1989; Bruhl and Quinn 1990, 1991; and/or pesticidal value (Fig. 38.1). Bremer and Humphries 1993; Kim and Jansen 1995). The tribe Anthemideae was fi rst described by Cassini Subtribal classifi cation, however, has created considerable (1819: 192) as his eleventh tribe of Compositae. In a diffi culties throughout the taxonomic history of the tribe. later publication (Cassini 1823) he divided the tribe into Owing to the artifi ciality of a subtribal classifi cation based two major groups: “Anthémidées-Chrysanthémées” and on the presence vs. absence of paleae, numerous attempts “An thé midées-Prototypes”, based on the absence vs. have been made to develop a more satisfactory taxonomy presence of paleae (receptacular scales).
    [Show full text]
  • Thermo-Optical Simulation and Experiment for the Assessment Of
    Araki et al. Earth, Planets and Space (2016) 68:101 DOI 10.1186/s40623-016-0475-4 FULL PAPER Open Access Thermo‑optical simulation and experiment for the assessment of single, hollow, and large aperture retroreflector for lunar laser ranging Hiroshi Araki1*, Shingo Kashima1, Hirotomo Noda1, Hiroo Kunimori2, Kouta Chiba3, Hitomi Mashiko3, Hiromasa Kato3, Toshimichi Otsubo4, Yoshiaki Matsumoto5, Seiitsu Tsuruta6, Kazuyoshi Asari6, Hideo Hanada6, Susumu Yasuda7, Shin Utsunomiya1 and Hideo Takino8 Abstract A single aperture and hollow retroreflector [corner-cube mirror (CCM)] that in principle has no internal optical path difference is a key instrument for achieving lunar laser ranging one order or more accurate than the current level (~2 cm). We are developing CCM whose aperture is 20 cm with optimized dihedral angles. The 20-cm CCM yields two times peak height for returned laser pulse compared with Apollo 15’s retroreflector. Two investigations were conducted to confirm the feasibility of the 20-cm aperture CCM. The first is thermo-optical simulation and evalua- tion of the 20-cm CCM in the lunar thermal environment. Through this simulation, it has turned out for the first time that 20-cm aperture CCM made of single-crystal Si or “ultra-low expansion glass–ceramics” such as CCZ-EX® (OHARA Inc.) can be used for CCM with no thermal control, if the perfectly fixed point of CCM is limited to one. The second is annealing and shear loading experiments of single-crystal silicon (Si) samples. Through these experiments, high-tem- perature annealing from 100 to 1000 °C is confirmed to be effective for the enhancement of the adhesive strength between optically contacted surfaces with no optical damage in roughness and accuracy, indicating that this anneal- ing process would enhance the rigidity of CCM fabricated by the optically contacted plates.
    [Show full text]