A Portrait of the Mitochondrial Genome 40 Years After the First Complete Sequence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jpn. J. Protozool. 38(2) 171-183
Jpn. J. Protozool. Vol. 38, No. 2. (2005) 171 Review On the origin of mitochondria and Rickettsia-related eukaryotic endo- symbionts B. Franz Lang1*, Henner Brinkmann1, Liisa B. Koski1, Masahiro Fujishima2, Hans-Dieter Görtz3 and Gertraud Burger1 1Program in Evolutionary Biology, Canadian Institute for Advanced Research; Centre Robert Cedergren, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard- Montpetit, Montréal, Québec, H3T 1J4, Canada. 2Biological Institute, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan. 3Abteilung Zoologie, Biologisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany. SUMMARY sence of genes for oxidative phosphorylation, the TCA cycle, and many other metabolic pathways, Resent insights into the origin and early evo- but the presence of several pathogenesis-related lution of mitochondria come from two approaches: genes and a high number of bacterial IS elements. the investigation of mtDNAs from minimally de- Phylogenetic analyses with multiple protein se- rived (primitive) mitochondriate eukaryotes, in quences place H. obtusa basally to the Rickettsia- particular jakobid flagellates, and of genomes from Ehrlichia-Wolbachia assemblage of bacterial intracellular α-proteobacterial symbionts. Of par- pathogens. This leads us to postulate that H. ob- ticular interest in this context is Holospora obtusa, tusa is the closest bacterial relative of mitochon- an intracellular bacterial endosymbiont that resides dria known to date. and replicates in the somatic nucleus of its eu- karyotic host, the ciliate Paramecium caudatum. Currently we have sequenced close to 50% of the INTRODUCTION ~ 1.7 Mbp H. obtusa genome, revealing the ab- One of the major advancements in under- standing eukaryotic evolution was the discovery that mitochondria evolved from an endosymbiotic α-Proteobacterium, and that mitochondrial DNA *Corresponding author (mtDNA) is a relict bacterial genome. -
One for All - Artemisia Absinthium (Afsanteen) “A Potent Unani Drug”
Review article One for All - Artemisia absinthium (Afsanteen) “A Potent Unani Drug” Ayshah Hashimi1, Mantasha Binth Siraj2, Yasmeen Ahmed3, Md. Akhtar Siddiqui4, Umar Jahangir5* 1,2,3 M.D. Scholar, 4 Professor, 5 Assistant Professor Department of Moalajat, School of Unani Medical Education and Research Jamia Hamdard, New Delhi, India ABSTRACT The therapeutic use of the wormwood plant Artemisia absinthium L. dates back to at least Roman times. There are more than 200 plants in the genus Artemisia- including southern wormwood, petite wormwood and Grande wormwood and encompasses about 500 species. The best-known species of wormwood is Artemisia absinthium, native to temperate Eurasia and North Africa and is branded for its extreme bitterness. It is a magical greens booze used as carminative to support healthy appetite, balances healthy flora, cleanse the digestive tract of parasite and toxins. It possesses anti-inflammatory, immunomodulatory, hepatoprotective, anti-helminthic and anti-depressant activity. Thujone excites nervous system when taken in small amount. Due to contrary history of wormwood, its application in individuals should be preceded by a thorough and cautious risk-benefit analysis. In this appraisal an attempt is done to validate scientifically, mentioned therapeutic potential of Artemisia absinthium in classical Unani literature using PubMed, Science Direct researches. Keywords Afsanteen, Wormwood, Thujone, Unani, Hepatoprotective INTRODUCTION largest and highly advanced family with approximately 1528 (Mukherjee, 2006), (TYROCITY, 2018) or 1620 (Petruzzello, Healing with medicinal plants is as old as mankind itself. 2018), (Panero, et al., 2012) genera and 22750 or 23600 Since prehistoric times, in quest for rescue for their disease, the species of herbs, shrubs and trees. -
1 Lessons from Simple Marine Models on the Bacterial Regulation
bioRxiv preprint doi: https://doi.org/10.1101/211797; this version posted October 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lessons from simple marine models on the bacterial regulation of eukaryotic development Arielle Woznicaa and Nicole Kinga,1 a Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States 1 Corresponding author, [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/211797; this version posted October 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Highlights 2 - Cues from environmental bacteria influence the development of many marine 3 eukaryotes 4 5 - The molecular cues produced by environmental bacteria are structurally diverse 6 7 - Eukaryotes can respond to many different environmental bacteria 8 9 - Some environmental bacteria act as “information hubs” for diverse eukaryotes 10 11 - Experimentally tractable systems, like the choanoflagellate S. rosetta, promise to 12 reveal molecular mechanisms underlying these interactions 13 14 Abstract 15 Molecular cues from environmental bacteria influence important developmental 16 decisions in diverse marine eukaryotes. Yet, relatively little is understood about the 17 mechanisms underlying these interactions, in part because marine ecosystems are 18 dynamic and complex. -
Platyhelminthes, Nemertea, and "Aschelminthes" - A
BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. -
Associated Organisms Inhabiting the Calcareous Sponge Clathrina Lutea in La Parguera Natural
bioRxiv preprint doi: https://doi.org/10.1101/596429; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Associated organisms inhabiting the calcareous sponge Clathrina lutea in La Parguera Natural 2 Reserve, Puerto Rico 3 4 Jaaziel E. García-Hernández1,2*, Nicholas M. Hammerman2,3*, Juan J. Cruz-Motta2 & Nikolaos V. 5 Schizas2 6 * These authors contributed equally 7 1University of Puerto Rico at Mayagüez, Department of Biology, PO Box 9000, Mayagüez, PR 8 00681 9 2University of Puerto Rico at Mayagüez, Department of Marine Sciences, Marine Genomic 10 Biodiversity Laboratory, PO Box 9000, Mayagüez, PR 00681 11 3School of Biological Sciences, University of Queensland, Gehrmann Laboratories, Level 8, 12 Research Road, St Lucia, QLD 4072, Australia 13 14 15 Nikolaos V. Schizas, [email protected], FAX: 787-899-5500 16 17 Running Head: Infauna of the calcareous sponge Clathrina lutea 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/596429; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 21 ABSTRACT 22 Sponges provide an array of ecological services and benefits for Caribbean coral reefs. They 23 function as habitats for a bewildering variety of species, however limited attention has been paid 24 in the systematics and distribution of sponge-associated fauna in the class Calcarea or for that 25 matter of sponges in the Caribbean. -
Culturing and Targeted Pacbio RS Amplicon Sequencing Reveals a Higher Order Taxonomic Diversity and Global Distribution
bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Enigmatic Diphyllatea eukaryotes: Culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution Orr Russell J.S.1,2*, Zhao Sen3,4, Klaveness Dag5, Yabuki Akinori6, Ikeda Keiji7, Makoto M. Watanabe7, Shalchian-Tabrizi Kamran1,2* 1 Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 2 Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 3 Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway 4 Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway 5 Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway 6 Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan 7 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan * Corresponding authors: Russell J. S. Orr & Kamran Shalchian-Tabrizi Email: [email protected] Mobile: +4748187013 Email: [email protected] Mobile: +4741045328 Address: Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway Keywords: Diphyllatea, PacBio, rRNA, phylogeny, diversity, Collodictyon, amplicon, Sulcozoa 1 bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. -
The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years. -
Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet. -
Bacterial Cues Regulate Multicellular Development and Mating in the Choanoflagellate, S
Bacterial cues regulate multicellular development and mating in the choanoflagellate, S. rosetta By Arielle Woznica A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicole King, Chair Professor Russell Vance Professor Diana Bautista Professor Brian Staskawicz Spring 2017 Abstract Bacterial cues regulate multicellular development and mating in the choanoflagellate, S. rosetta By Arielle Woznica Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Nicole King, Chair Animals first diverged from their unicellular ancestors in oceans dominated by bacteria, and have lived in close association with bacteria ever since. Interactions with bacteria critically shape diverse aspects of animal biology today, including developmental processes that were long thought to be autonomous. Yet, the multicellularity of animals and the often-complex communities of bacteria with which they are associated make it challenging to characterize the mechanisms underlying many bacterial-animal interactions. Thus, developing experimentally tractable host-microbe model systems will be essential for revealing the molecules and mechanisms by which bacteria influence animal development. The choanoflagellate Salpingoeca rosetta, one of the closest living relatives of animals, has emerged as an attractive model for studying host-microbe interactions. Like all choanoflagellates, S. rosetta feeds on bacteria; however, we have found that interactions between S. rosetta and bacteria extend beyond those of predator and prey. In fact, two key transitions in the life history of S. rosetta, multicellular “rosette” development and sexual reproduction, are regulated by environmental bacteria. -
Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. -
Review of the Mineralogy of Calcifying Sponges
Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean. -
Conservation of Greater Sage-Grouse
#714 CHAPTER TWENTY-FOUR Conservation of Greater Sage-Grouse A SYNTHESIS OF CURRENT TRENDS AND FUTURE MANAGEMENT J. W. Connelly, S. T. Knick, C. E. Braun, W. L. Baker, E. A. Beever, T. Christiansen, K. E. Doherty, E. O. Garton, S. E. Hanser, D. H. Johnson, M. Leu, R. F. Miller, D. E. Naugle, S. J. Oyler-McCance, D. A. Pyke, K. P. Reese, M. A. Schroeder, S. J. Stiver, B. L. Walker, and M. J. Wisdom Abstract. Recent analyses of Greater Sage-Grouse very low densities in some areas, coupled with (Centrocercus urophasianus) populations indicate large areas of important sagebrush habitat that are substantial declines in many areas but relatively relatively unaffected by the human footprint, sug- stable populations in other portions of the species’ gest that Greater Sage-Grouse populations may be range. Sagebrush (Artemisia spp.) habitats neces- able to persist into the future. We summarize the sary to support sage-grouse are being burned by status of sage-grouse populations and habitats, large wildfires, invaded by nonnative plants, and provide a synthesis of major threats and chal- developed for energy resources (gas, oil, and lenges to conservation of sage-grouse, and suggest wind). Management on public lands, which con- a roadmap to attaining conservation goals. tain 70% of sagebrush habitats, has changed over the last 30 years from large sagebrush control Key Words: Centrocercus urophasianus, Greater projects directed at enhancing livestock grazing to Sage-Grouse, habitats, management, populations, a greater emphasis on projects that often attempt restoration, sagebrush. to improve or restore ecological integrity. Never- theless, the mandate to manage public lands to Conservación del Greater Sage-Grouse: provide traditional consumptive uses as well as Una Síntesis de las Tendencias Actuales y del recreation and wilderness values is not likely to Manejo Futuro change in the near future.