Bacterial Cues Regulate Multicellular Development and Mating in the Choanoflagellate, S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Lessons from Simple Marine Models on the Bacterial Regulation
bioRxiv preprint doi: https://doi.org/10.1101/211797; this version posted October 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lessons from simple marine models on the bacterial regulation of eukaryotic development Arielle Woznicaa and Nicole Kinga,1 a Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States 1 Corresponding author, [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/211797; this version posted October 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Highlights 2 - Cues from environmental bacteria influence the development of many marine 3 eukaryotes 4 5 - The molecular cues produced by environmental bacteria are structurally diverse 6 7 - Eukaryotes can respond to many different environmental bacteria 8 9 - Some environmental bacteria act as “information hubs” for diverse eukaryotes 10 11 - Experimentally tractable systems, like the choanoflagellate S. rosetta, promise to 12 reveal molecular mechanisms underlying these interactions 13 14 Abstract 15 Molecular cues from environmental bacteria influence important developmental 16 decisions in diverse marine eukaryotes. Yet, relatively little is understood about the 17 mechanisms underlying these interactions, in part because marine ecosystems are 18 dynamic and complex. -
23.3 Groups of Protists
Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes. -
The Choanoflagellate S. Rosetta Integrates Cues from Diverse Bacteria to Enhance Multicellular Development
The choanoflagellate S. rosetta integrates cues from diverse bacteria to enhance multicellular development By Ella Victoria Ireland A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicole King, Chair Professor Russell Vance Professor Iswar Hariharan Professor Brian Staskawicz Fall 2019 Abstract The choanoflagellate S. rosetta integrates cues from diverse bacteria to enhance multicellular development By Ella Victoria Ireland Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Nicole King, Chair Bacteria play critical roles in regulating animal development, homeostasis and disease. Animals are often hosts to hundreds of different species of bacteria, which produce thousands of different molecules with the potential to influence animal biology. Direct interactions between different species of bacteria, as well as the environmental context of the animal-bacteria interaction, can have a significant impact on the outcome for the animal (Chapter 1). While we are beginning to understand the role of context in bacteria-animal interactions, surprisingly little is known about how animals integrate multiple distinct bacterial inputs. In my doctoral research I studied the choanoflagellate Salpingoeca rosetta, one of the closest living relatives of animals, to learn more about how eukaryotes integrate diverse bacterial cues. As with animals, bacteria regulate critical aspects of S. rosetta biology. The bacterium Algoriphagus machipongonensis produces sulfonolipid Rosette Inducing Factors (RIFs), which induce multicellular “rosette” development in S. rosetta. In contrast, the bacterium Vibrio fischeri produces a chondroitinase, EroS, which acts as an aphrodisiac and induces S. -
Hsp70 Sequences Indicate That Choanoflagellates Are Closely Related to Animals Elizabeth A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Brief Communication 967 Hsp70 sequences indicate that choanoflagellates are closely related to animals Elizabeth A. Snell*, Rebecca F. Furlong* and Peter W.H. Holland Over 130 years ago, James-Clark [1, 2] noted a band of 1.4 kb, the predicted size if the hsp70 gene con- remarkable structural similarity between the tains no intron between the priming sites. After cloning feeding cells of sponges (choanocytes) and a group and sequencing, we identified two distinct products. The of free-living protists, the choanoflagellates. Both first has the potential to encode a protein similar to the cell types possess a single flagellum surrounded by nuclear-encoded Hsp70proteins of other eukaryotes and a collar of fine tentacles [3]. The similarity led to dissimilar to Hsp70proteins of organelles and bacteria. the hypothesis that sponges, and, by implication, We conclude that this represents the nuclear hsp70 gene other animals, evolved from choanoflagellate-like of Monosiga ovata (Figure 1). ancestors. Phylogenetic analysis of ribosomal DNA neither supports nor refutes this hypothesis [4–6]. The nucleotide sequence of the second amplified product Here, we report the sequence of an hsp70 gene and also matched hsp70 but did not possess a complete open pseudogene from the freshwater choanoflagellate reading frame throughout the sequence. Alignment with Monosiga ovata. These represent the first nuclear- known hsp70 genes revealed that there is a single nucleo- encoded protein-coding sequences reported for tide deletion in the sequence, resulting in a frame shift. -
Supplementary Information Materials and Methods
Supplementary Information Materials and methods Preparation of Proteins Plasmids for expression of full-length E. coli or H. sapiens AlaRS were constructed through PCR amplification of the desired region of the AlaRS genes with oligonucleotides containing NdeI-XhoI or NdeI-BamHI sites and ligated into pET20b to generate pET20b-EcAlaRS and pET20b-HsAlaRS. Plasmids for expression of mutant E. coli AlaRS (N303A, N303D, D400A, D400N, N303A/D400A) and H. sapiens AlaRS (N317A, N317D, D416A, D416N, N317A/D416A) were constructed by the standard Quikchange mutagenesis of pET20b-EcAlaRS or pET20b-HsAlaRS. These proteins were expressed in E. coli BL21 (DE3) cells (Stratagene) and purified by Ni-NTA affinity column (Qiagen) and a Q high performance column (GE Healthcare). All proteins were dialyzed against 5 mM Tris-HCl buffer, pH 8.0, 50 mM NaCl and 2 mM DTT. Preparation of tRNAs Transfer RNAs were produced by in vitro transcription. 10 mL transcription reactions were carried out at 37 °C for 2 hours in buffer (40 mM Tris-HCl, pH 8.0, 25 mM NaCl, 20 mM MgCl2, 2 mM 1,8- diaminooctane, 10 mM DTT) with T7 RNA polymerase (40 U/μL), and BstNI-linearized pUC18-tRNAAla plasmid DNA template (1 μM). The transcribed tRNAs were purified by a 8 M urea-denaturing PAGE gel or in combination with a DEAE column, annealed and concentrated. The quantity of tRNA was determined by A260. www.pnas.org/cgi/doi/10.1073/pnas.1807109115 Active Site Titration Assays Active site titration was performed at 25 °C in assay buffer (50 mM HEPES, pH 7.5, 20 mM KCl, 5 mM 32 MgCl2, 2 mM DTT, 0.05 U/mL dialyzed yeast inorganic pyrophosphatase) with γ- [P]-ATP (20 μM) and L- Ala (1 mM). -
The Evolution of the Mitochondrial Proteome in Animals
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 The evolution of the mitochondrial proteome in animals Viraj Muthye Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Bioinformatics Commons Recommended Citation Muthye, Viraj, "The evolution of the mitochondrial proteome in animals" (2019). Graduate Theses and Dissertations. 17752. https://lib.dr.iastate.edu/etd/17752 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial proteome in animals by Viraj Rajendra Muthye A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Bioinformatics and Computational Biology Program of Study Committee: Dennis Lavrov, Co-major Professor Carolyn Lawrence-Dill, Co-major Professor Karin Dorman Robert Jernigan Iddo Friedberg The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright c Viraj Rajendra Muthye, 2019. All rights reserved. ii DEDICATION To my wife, younger brother, parents and friends for their unconditional support, commitment and encouragement throughout my life iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS . -
1 Detection of Horizontal Gene Transfer in the Genome of the Choanoflagellate Salpingoeca
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.28.176636; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Detection of Horizontal Gene Transfer in the Genome of the Choanoflagellate Salpingoeca 2 rosetta 3 4 Danielle M. Matriano1, Rosanna A. Alegado2, and Cecilia Conaco1 5 6 1 Marine Science Institute, University of the Philippines, Diliman 7 2 Department of Oceanography, Hawaiʻi Sea Grant, Daniel K. Inouye Center for Microbial 8 Oceanography: Research and Education, University of Hawai`i at Manoa 9 10 Corresponding author: 11 Cecilia Conaco, [email protected] 12 13 Author email addresses: 14 Danielle M. Matriano, [email protected] 15 Rosanna A. Alegado, [email protected] 16 Cecilia Conaco, [email protected] 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.28.176636; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 25 Horizontal gene transfer (HGT), the movement of heritable materials between distantly related 26 organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the 27 closest unicellular relatives of metazoans, and its possible roles in the evolution of animal 28 multicellularity remains unexplored. -
Selective Factors in the Evolution of Multicellularity in Choanoflagellates
Received: 4 November 2019 | Revised: 12 February 2020 | Accepted: 17 February 2020 DOI: 10.1002/jez.b.22941 REVIEW Selective factors in the evolution of multicellularity in choanoflagellates M. A. R. Koehl Department of Integrative Biology, University of California, Berkeley, California Abstract Correspondence Choanoflagellates, unicellular eukaryotes that can form multicellular colonies by cell M. A. R. Koehl, Department of Integrative division and that share a common ancestor with animals, are used as a model system Biology, University of California, Berkeley, CA 94720‐3140. to study functional consequences of being unicellular versus colonial. This review Email: [email protected] examines performance differences between unicellular and multicellular choano- Funding information flagellates in swimming, feeding, and avoiding predation, to provide insights about National Science Foundation, possible selective advantages of being multicellular for the protozoan ancestors of Grant/Award Numbers: IOS‐1147215, IOS‐1655318 animals. Each choanoflagellate cell propels water by beating a single flagellum and captures bacterial prey on a collar of microvilli around the flagellum. Formation of The peer review history for this article is available at https://publons.com/publon/10. multicellular colonies does not improve the swimming performance, but the flux of 1002/jez.b.22941 prey‐bearing water to the collars of some of the cells in colonies of certain config- urations can be greater than for single cells. Colony geometry appears to affect whether cells in colonies catch more prey per cell per time than do unicellular choanoflagellates. Although multicellular choanoflagellates show chemokinetic be- havior in response to oxygen, only the unicellular dispersal stage (fast swimmers without collars) use pH signals to aggregate in locations where bacterial prey might be abundant. -
Choanoflagellate Models — Monosiga Brevicollis and Salpingoeca Rosetta
Available online at www.sciencedirect.com ScienceDirect Choanoflagellate models — Monosiga brevicollis and Salpingoeca rosetta 1,2 1 Tarja T Hoffmeyer and Pawel Burkhardt Choanoflagellates are the closest single-celled relatives of choanoflagellate cells are highly polarized [1 ,6]. Choano- animals and provide fascinating insights into developmental flagellates possess a single posterior flagellum that is processes in animals. Two species, the choanoflagellates enclosed by a collar composed of microvilli (Figure 1b). Monosiga brevicollis and Salpingoeca rosetta are emerging The movement of the flagellum serves two main functions: as promising model organisms to reveal the evolutionary origin to allow motile cells to swim and to create water currents of key animal innovations. In this review, we highlight how which trap bacteria to the collar to allow phagocytosis [7,8]. choanoflagellates are used to study the origin of multicellularity Phagocytosed bacteria are digested in anterior localized in animals. The newly available genomic resources and food vacuoles (Figure 1b). The Golgi apparatus with many functional techniques provide important insights into the associated vesicles is positioned posterior to the prominent function of choanoflagellate pre- and postsynaptic proteins, nucleus. Moreover, many choanoflagellates possess anteri- cell–cell adhesion and signaling molecules and the evolution or filopodia (Figure 1b), which allow for substratum attach- of animal filopodia and thus underscore the relevance of ment of the cells [1 ,9]. choanoflagellate models for evolutionary biology, neurobiology and cell biology research. In this review, we highlight recent advances in choano- Addresses flagellate phylogeny and critically discuss the latest pro- 1 Marine Biological Association, The Laboratory, Citadel Hill, Plymouth gresses made on the establishment of choanoflagellates as PL1 2PB, UK 2 model organisms to understand the origin of multicellulari- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK ty in animals. -
The Silicon Isotopic Composition of Choanoflagellates
https://doi.org/10.5194/bg-2019-181 Preprint. Discussion started: 12 June 2019 c Author(s) 2019. CC BY 4.0 License. The silicon isotopic composition of choanoflagellates: implications for a mechanistic understanding of isotopic fractionation during biosilicification Alan Marron1, Lucie Cassarino2, Jade Hatton2, Paul Curnow3, and Katharine R. Hendry2 1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK 2University of Bristol, School of Earth Sciences, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ, UK 3School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK Correspondence: Katharine Hendry ([email protected]) Abstract. The marine silicon cycle is intrinsically linked with carbon cycling in the oceans via biological production of silica by a wide range of organisms. The stable silicon isotopic composition (denoted by δ30Si) of siliceous microfossils extracted from sediment cores can be used as an archive of past oceanic silicon cycling. However, the silicon isotopic composition of 5 biogenic silica has only been measured in diatoms, sponges and radiolarians, and isotopic fractionation relative to seawater is entirely unknown for many other silicifiers. Furthermore, the biochemical pathways and mechanisms that determine isotopic fractionation during biosilicification remain poorly understood. Here, we present the first measurements of the silicon isotopic fractionation during biosilicification by loricate choanoflagellates, a group of protists closely related to animals. We cultured two species of choanoflagellates, Diaphanoeca grandis and Stephanoeca diplocostata, which showed consistently greater 10 isotopic fractionation (approximately -5 to -7 ‰) than cultured diatoms (-0.5 to -2 ‰). -
7Th International Choanoflagellates & Friends Meeting 24Th-27Th May 2019
7th International Choanoflagellates & Friends Meeting 24th-27th May 2019 ~ Barcelona Organizing Committee Omaya Dudin Andrej Ondacka Postdoctoral Researcher Postdoctoral Researcher [email protected] [email protected] Daniel J. Richter Núria Ros i Rocher Postdoctoral Researcher Postdoctoral Researcher [email protected] [email protected] Acknowledgements for organizational support Administration & Communication Services - Institute of Evolutionary Biology (CSIC-UPF) The King Lab – UC Berkeley Sponsors Book of Abstracts 7th International Choanoflagellates & Friends Meeting 24th-27th May 2019 ~ Barcelona Book of Abstracts Friday, 24th May 2019 The evolutionary origin of animal cell differentiation and synaptic signalling machinery Pawel Burkhardt Sars International Centre for Marine Molecular Biology, University of Bergen, Norway Choanoflagellates, the closest unicellular relatives of animals, express many genes previously thought to be animal specific. Strikingly, these tiny protists can alternate between unicellular and multicellular states, making choanoflagellates powerful models to investigate the origin of animal multicellularity, the mechanisms underlying cell differentiation and the ancestry of synaptic protein machinery. We used electron microscopy to reconstruct in three dimensions the total subcellular composition of unicellular and multicellular choanoflagellates as well as the collar cells from a marine sponge. We found differences between single and multicellular choanoflagellates in structures associated with cellular energetics, membrane trafficking and cell morphology and identified a putative novel cell type within rosette colonies. These findings are an important step forward in reconstructing the biology of last common ancestor of the animals and suggests that both, temporal and spatial cell type differentiation was present in the stem lineage leading to animals. In the second part of my talk, I will present our recent discoveries on synaptic protein homologs found in choanoflagellates. -
Thibaut Brunet and Nicole King
bioRxiv preprint doi: https://doi.org/10.1101/161695; this version posted July 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The origin of animal multicellularity and cell differentiation Thibaut Brunet and Nicole King Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA Lead Contact: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/161695; this version posted July 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 How animals evolved from their single-celled ancestors over 600 million years ago is 3 poorly understood. Comparisons of genomes from animals and their closest relatives – 4 choanoflagellates, filastereans and ichthyosporeans – have recently revealed the genomic 5 landscape of animal origins. However, the cell and developmental biology of the first animals have 6 been less well examined. Using principles from evolutionary cell biology, we reason that the last 7 common ancestor of animals and choanoflagellates (the ‘Urchoanozoan’) used a collar complex - 8 a flagellum surrounded by a microvillar collar – to capture bacterial prey. The origin of animal 9 multicellularity likely occurred through the modification of pre-existing mechanisms for 10 extracellular matrix synthesis and regulation of cytokinesis.