Polypodiaceae (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Polypodiaceae (PDF) This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Zhang, X. C., S. G. Lu, Y. X. Lin, X. P. Qi, S. Moore, F. W. Xing, F. G. Wang, P. H. Hovenkamp, M. G. Gilbert, H. P. Nooteboom, B. S. Parris, C. Haufler, M. Kato & A. R. Smith. 2013. Polypodiaceae. Pp. 758–850 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. POLYPODIACEAE 水龙骨科 shui long gu ke Zhang Xianchun (张宪春)1, Lu Shugang (陆树刚)2, Lin Youxing (林尤兴)3, Qi Xinping (齐新萍)4, Shannjye Moore (牟善杰)5, Xing Fuwu (邢福武)6, Wang Faguo (王发国)6; Peter H. Hovenkamp7, Michael G. Gilbert8, Hans P. Nooteboom7, Barbara S. Parris9, Christopher Haufler10, Masahiro Kato11, Alan R. Smith12 Plants mostly epiphytic and epilithic, a few terrestrial. Rhizomes shortly to long creeping, dictyostelic, bearing scales. Fronds monomorphic or dimorphic, mostly simple to pinnatifid or 1-pinnate (uncommonly more divided); stipes cleanly abscising near their bases or not (most grammitids), leaving short phyllopodia; veins often anastomosing or reticulate, sometimes with included veinlets, or veins free (most grammitids); indument various, of scales, hairs, or glands. Sori abaxial (rarely marginal), orbicular to oblong or elliptic, occasionally elongate, or sporangia acrostichoid, sometimes deeply embedded, sori exindusiate, sometimes covered by cadu- cous scales (soral paraphyses) when young; sporangia with 1–3-rowed, usually long stalks, frequently with paraphyses on sporangia or on receptacle; spores hyaline to yellowish, reniform, and monolete (non-grammitids), or greenish and globose-tetrahedral, trilete (most grammitids); perine various, usually thin, not strongly winged or cristate. Mostly x = 35, 36, 37. More than 50 genera and ca. 1,200 species: pantropical, a few temperate; 39 genera and 267 species (82 endemic) in China. The Polypodiaceae s.s., as often recognized is paraphyletic, because it excludes the grammitids. Generic boundaries need clarification. Poly- podiaceae contains large wholly neotropical and wholly paleotropical clades. Molecular data show that several families recognized in FRPS, i.e., Drynariaceae, Grammitidaceae, Gymnogrammitidaceae, Loxogrammaceae, Platyceriaceae, and Pleurosoriopsidaceae, all nest within the Polypodiaceae. Five lineages are defined that can be treated as subfamilies (see Christen- husz et al., Phytotaxa 19: 18–19. 2011) as follows: Loxogrammoideae (Loxogrammaceae): genus no. 1; Drynarioideae (Crypsinoideae, Drynariaceae, Gymnogrammitidaceae): genera nos. 2–8; Platycerioideae (Platyceriaceae, Pyrrosioideae): genera nos. 9–10; Microsoroideae (incl. Crypsinoideae, Lepisorioideae): genera nos. 11–25; Polypodioideae (incl. Grammitidaceae, Pleurosoriopsidaceae): genera nos. 26–39. The status of several genera in the Microsoroideae is controversial (Kreier et al., Molec. Phylogen. Evol. 48: 1155–1167. 2008). Microsorum is still polyphyletic, and some new genera are to be established. Ching Ren-chang, Fu Shu-hsia, Wang Chu-hao & Shing Gung-hsia. 1959. Gymnogrammitis. In: Ching Ren-chang, ed., Fl. Reipubl. Popularis Sin. 2: 284–285; Wu Shiew-hung. 1999. Pleurosoriopsidaceae. In: Wu Shiew-hung, ed., Fl. Reipubl. Popularis Sin. 4(2): 154–156; Lin Youxing, Lu Shugang & Shi Lei. 2000. Polypodiaceae. In: Lin Youxing, ed., Fl. Reipubl. Popularis Sin. 6(2): 7–266, 346–349; Zhang Xianchun. 2000. Drynari- acae, Platyceriaceae, Grammitidaceae, and Loxogrammaceae. In: Lin Youxing, ed., Fl. Reipubl. Popularis Sin. 6(2): 267–335. 1a. Fronds with stellate hairs, often stellate-tomentose at least when young. 2a. Fronds monomorphic or weakly dimorphic, fronds not with base adpressed to substrate, fertile fronds similar in form to sterile fronds differing only in relative width, usually simple, rarely hastate or pedately divided .............. 9. Pyrrosia 2b. Fronds strongly dimorphic, basal fronds with basal part tightly adpressed to substrate, foliage/fertile fronds dichotomously lobed .................................................................................................................................... 10. Platycerium 1b. Fronds with scales, unbranched hairs, glandular hairs, and/or forked hairs, or glabrous. 3a. Specialized humus-collecting fronds or widened frond bases present. 4a. Fronds usually strongly dimorphic with specialized short brown sessile humus-collecting fronds and longer pinnatisect fertile fronds ............................................................................................................................................. 4. Drynaria 4b. Fronds monomorphic, fronds with broad humus-collecting base and distal deeply pinnatisect fertile portion ............................................................................................................................................................................... 2. Aglaomorpha 3b. Specialized humus-collecting fronds or lamina bases absent. 5a. Nectaries present along costa. 6a. Fronds pinnatisect, stipe winged to base; segments uniformly 10–15(–20) mm wide; sporangia in discrete, orbicular sori (Drynaria parishii) ........................................................................................................................... 4. Drynaria 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, People’s Republic of China. 2 Herbarium, College of Life Science, Yunnan University, 2 Cuihu North, Kunming, Yunnan 650091, People’s Republic of China. 3 Herbarium, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, People’s Republic of China. 4 Chenshan Botanical Garden, 3888 Chenhua Road, Songjiang District, Shanghai 201602, People’s Republic of China. 5 Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Road, Sec. 4, Taibei 116. (Shannjye Moore died on 24 November 2010.) 6 South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, People’s Republic of China. 7 Naturalis Biodiversity Center, Section NHN, Leiden University, P.O. Box 9514, 2300 RA Leiden, Netherlands. 8 Missouri Botanical Garden, c/o Herbarium, Library, Art and Archives, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom. 9 Fern Research Foundation, 21 James Kemp Place, Kerikeri 0230, Bay of Islands, New Zealand. 10 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, U.S.A. 11 Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba 305-0005, Japan. 12 University Herbarium, University of California, 1001 Valley Life Sciences Building #2465, Berkeley, California 94720-2465, U.S.A. 758 POLYPODIACEAE 759 6b. Fronds pinnate, stipe and rachis terete; segments dimorphic, sterile segments 3.5–10 cm wide, fertile segments distal, 0.4–0.7 cm wide; sporangia acrostichoid, covering most of pinnule surface ....................... 3. Photinopteris 5b. Nectaries absent. 7a. Fronds 2-pinnatifid to 4-pinnate. 8a. Fronds finely 3- or 4-pinnate, sparsely scaly .......................................................................................... 8. Gymnogrammitis 8b. Fronds 2-pinnatifid, hairy. 9a. Lamina 1.5–8 × 0.5–1.5 cm; sori linear-oblong, along veins .............................................................. 27. Pleurosoriopsis 9b. Lamina 5–25 × 2–4 cm; sori orbicular, 1 at base of pinnule (Themelium tenuisectum) ............................ 37. Themelium 7b. Fronds entire, pinnately divided, or 1-pinnate, rarely palmately to pedately divided. 10a. Sporangia acrostichoid, covering most of lamina surface. 11a. Sporangia restricted to a distinctly narrowed apical extension of lamina (Belvisia) ................................. 19. Lepisorus 11b. Sporangia covering whole of fertile lamina. 12a. Lamina deeply 3-lobed or pinnatilobate ............................................................................................... 6. Christopteris 12b. Lamina entire ........................................................................................................................................ 25. Leptochilus 10b. Sporangia in discrete sori or coenosori, not covering lamina surface. 13a. Lamina hastate or palmately to pedately lobed. 14a. Scales opaque; paraphyses absent .............................................................................................................. 7. Selliguea 14b. Scales entirely or partly clathrate; paraphyses present. 15a. Lamina palmately 3–10-lobed, 12–30 cm; sori elongated ........................................................ 16. Neocheiropteris 15b. Lamina hastate to pedately 3–5-lobed, 4–7 cm; sori suborbicular (Lepisorus waltonii) .................... 19. Lepisorus 13b. Lamina entire, pinnately lobed, or pinnate. 16a. Stipe and/or lamina margins stiffly hirsute, lamina surface often with forked or glandular hairs; spores green. 17a. Lamina simple. 18a. Sori linear, sunken in 2 grooves, parallel to midrib ................................................................... 28. Scleroglossum 18b. Sori orbicular to narrowly oblong, oblique to midrib, usually superficial or slightly sunken in lamina, rarely deeply sunken. 19a. Rhizomes dorsiventral ..........................................................................................................
Recommended publications
  • ^ a Critical Examination of the Vittarieae with a View To
    / P u n -t/p '& . J9. ^ _ ^ 2 (tO. A CRITICAL EXAMINATION OF THE VITTARIEAE WITH A VIEW TO THEIR SYSTEMATIC COMPARISON. 1. Introduction. 2. Vittaria. 3. Monogramma, 4. Antrophyum. ProQuest Number: 13916247 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13916247 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 INTRODUCTION. The Vittarieae, as described by Christensen (1), comprises five genera, viz. Vjfrfrftrja, Monogramma,. Antronhvum. Hecistopterist and Anetium. all of whicij are epiphytic forms growing in the damp forests of the Old and New;World Tropics. All of them possess creeping rhizomes on which the frortds are arranged more or less definitely in two rows on the dorsal surface. The fronds are simple in outline with the exception of those of Heoistonteris which are dichotomously branched. The venation of the fronds is reticulate except in Heoistonteris where there is an open, dichotomous system of veins^An interesting feature, which has proved to be valuable as a diagnostic character, is the presence of "spicule cells" in the epidermis.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • One for All - Artemisia Absinthium (Afsanteen) “A Potent Unani Drug”
    Review article One for All - Artemisia absinthium (Afsanteen) “A Potent Unani Drug” Ayshah Hashimi1, Mantasha Binth Siraj2, Yasmeen Ahmed3, Md. Akhtar Siddiqui4, Umar Jahangir5* 1,2,3 M.D. Scholar, 4 Professor, 5 Assistant Professor Department of Moalajat, School of Unani Medical Education and Research Jamia Hamdard, New Delhi, India ABSTRACT The therapeutic use of the wormwood plant Artemisia absinthium L. dates back to at least Roman times. There are more than 200 plants in the genus Artemisia- including southern wormwood, petite wormwood and Grande wormwood and encompasses about 500 species. The best-known species of wormwood is Artemisia absinthium, native to temperate Eurasia and North Africa and is branded for its extreme bitterness. It is a magical greens booze used as carminative to support healthy appetite, balances healthy flora, cleanse the digestive tract of parasite and toxins. It possesses anti-inflammatory, immunomodulatory, hepatoprotective, anti-helminthic and anti-depressant activity. Thujone excites nervous system when taken in small amount. Due to contrary history of wormwood, its application in individuals should be preceded by a thorough and cautious risk-benefit analysis. In this appraisal an attempt is done to validate scientifically, mentioned therapeutic potential of Artemisia absinthium in classical Unani literature using PubMed, Science Direct researches. Keywords Afsanteen, Wormwood, Thujone, Unani, Hepatoprotective INTRODUCTION largest and highly advanced family with approximately 1528 (Mukherjee, 2006), (TYROCITY, 2018) or 1620 (Petruzzello, Healing with medicinal plants is as old as mankind itself. 2018), (Panero, et al., 2012) genera and 22750 or 23600 Since prehistoric times, in quest for rescue for their disease, the species of herbs, shrubs and trees.
    [Show full text]
  • The First Megafossil Record of Goniophlebium (Polypodiaceae
    Available online at www.sciencedirect.com ScienceDirect Palaeoworld 26 (2017) 543–552 The first megafossil record of Goniophlebium (Polypodiaceae) from the Middle Miocene of Asia and its paleoecological implications a,e a,e a c a,d a,b,∗ Cong-Li Xu , Jian Huang , Tao Su , Xian-Chun Zhang , Shu-Feng Li , Zhe-Kun Zhou a Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China b Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China c State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China d State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China e University of the Chinese Academy of Sciences, Beijing 100049, China Received 30 August 2016; accepted 19 January 2017 Available online 17 April 2017 Abstract The first megafossil record of Goniophlebium macrosorum Xu et Zhou n. sp., is described from the Middle Miocene Climate Optimum (MMCO) (15.2–16.5 Ma) sediments in Wenshan, southeastern Yunnan, China. The fossils are with well-preserved leaf pinnae and in situ spores, and are represented by pinnatifid fronds and crenate pinna margins, with oval sori almost covering 3/5 area of areolae on each side of the main costa. In situ spores have verrucate outer ornamentation, and are elliptical in polar view and bean-shaped in equatorial view. The venation is characterized by anastomosing veins with simple included veinlets forming 2–3 order pentagonal areolae.
    [Show full text]
  • Conservation of Greater Sage-Grouse
    #714 CHAPTER TWENTY-FOUR Conservation of Greater Sage-Grouse A SYNTHESIS OF CURRENT TRENDS AND FUTURE MANAGEMENT J. W. Connelly, S. T. Knick, C. E. Braun, W. L. Baker, E. A. Beever, T. Christiansen, K. E. Doherty, E. O. Garton, S. E. Hanser, D. H. Johnson, M. Leu, R. F. Miller, D. E. Naugle, S. J. Oyler-McCance, D. A. Pyke, K. P. Reese, M. A. Schroeder, S. J. Stiver, B. L. Walker, and M. J. Wisdom Abstract. Recent analyses of Greater Sage-Grouse very low densities in some areas, coupled with (Centrocercus urophasianus) populations indicate large areas of important sagebrush habitat that are substantial declines in many areas but relatively relatively unaffected by the human footprint, sug- stable populations in other portions of the species’ gest that Greater Sage-Grouse populations may be range. Sagebrush (Artemisia spp.) habitats neces- able to persist into the future. We summarize the sary to support sage-grouse are being burned by status of sage-grouse populations and habitats, large wildfires, invaded by nonnative plants, and provide a synthesis of major threats and chal- developed for energy resources (gas, oil, and lenges to conservation of sage-grouse, and suggest wind). Management on public lands, which con- a roadmap to attaining conservation goals. tain 70% of sagebrush habitats, has changed over the last 30 years from large sagebrush control Key Words: Centrocercus urophasianus, Greater projects directed at enhancing livestock grazing to Sage-Grouse, habitats, management, populations, a greater emphasis on projects that often attempt restoration, sagebrush. to improve or restore ecological integrity. Never- theless, the mandate to manage public lands to Conservación del Greater Sage-Grouse: provide traditional consumptive uses as well as Una Síntesis de las Tendencias Actuales y del recreation and wilderness values is not likely to Manejo Futuro change in the near future.
    [Show full text]
  • Fern Gazette
    FERN GAZETTE I INDEX! VOLUME 12 FERN GAZETTE - INDEX VOLUME 12 Aconiopteris 342 Arthromeris wallichiana 87 Acrophorus 315, 317, 318 Aspidium 247 Acropterygium 213 goeringianum 246 Acrostichum 185 sagenioides 315, 316 aureum 98 trifoliatum 318 speciosum 98 Asplenium 50,74, 80, 102, Actinostachys digitate 366 106, 115, 188,189, Acystopteris 304, 313 246, 286,287, 290, Adenophorus 340 304,308,327,331 Adiantopsis 327 adiantum-nigrum 5-8,16,17, 22, 24, radiate 323 78,80, 103-106, Adiantum 31, 36, 78, 215, 115, 116,136, 137' 221, 355, 365 143,144, 149, 152, capillus-veneris 11 ' 12, 1 5, 1 6, 252,255,259,306,363 23-25, 78, 81, aethiopicum 50 84, 151' 195, 263, x alternifolium 309 264, 309, 355, 359 anceps 157, 158 caudatum 50 bil/etii 214 edgeworthii 84 billotii 17, 116, 264, 331, incisum 85 332 latifo/ium 98 bourgaei 271-274 lunulatum 85 breynii 309 malesianum 211 bulbiferum 33 peruvianum 355-359 calcico/a 214 pseudotinctum 323, 326-328 ceterach 18, 19, 23;-25, raddianum 195 133, 136, 144, reniforme 156 152, 252, 255, stenochlamys 360 259, 302, 306, tetraphyllum 323 363 venustum 85 claussenii 324, 327, 328 Africa, Macrothe/ypteris new to, 117 coenobiale 214 Aglaomorpha 225-228 x confluens 252, 259, 301' ·pi/osa 227 302, 362, 363 Aleuritopteris 85 cunelfolium 5-8, 1 03-106 Alsophila 287 dalhousiae 87 bryophila 287 ensiforme 87 dregei 195 exiguum 87 dryopteroides 287 fissum 81 Amauropelta 160 fontanum 81, 271, 331 Ampe/opteris prolifera 87 foreziense 331 Amphineuron opulentum 98 fuscipes 214 Ant1mia 327,328 gemmiferum 193 dregeana 193 g/andulosum
    [Show full text]
  • Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2021 Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris Sylvia P. Kinosian Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Kinosian, Sylvia P., "Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris" (2021). All Graduate Theses and Dissertations. 8159. https://digitalcommons.usu.edu/etd/8159 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INSIGHTS ON RETICULATE EVOLUTION IN FERNS, WITH SPECIAL EMPHASIS ON THE GENUS CERATOPTERIS by Sylvia P. Kinosian A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: Zachariah Gompert, Ph.D. Paul G. Wolf, Ph.D. Major Professor Committee Member William D. Pearse, Ph.D. Karen Mock, Ph.D Committee Member Committee Member Karen Kaphiem, Ph.D Michael Sundue, Ph.D. Committee Member Committee Member D. Richard Cutler, Ph.D. Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2021 ii Copyright © Sylvia P. Kinosian 2021 All Rights Reserved iii ABSTRACT Insights on reticulate evolution in ferns, with special emphasis on the genus Ceratopteris by Sylvia P. Kinosian, Doctor of Philosophy Utah State University, 2021 Major Professor: Zachariah Gompert, Ph.D.
    [Show full text]
  • Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
    Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation.
    [Show full text]
  • Plant Species and Functional Diversity Along Altitudinal Gradients, Southwest Ethiopian Highlands
    Plant Species and Functional Diversity along Altitudinal Gradients, Southwest Ethiopian Highlands Dissertation Zur Erlangung des akademischen Grades Dr. rer. nat. Vorgelegt der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth von Herrn Desalegn Wana Dalacho geb. am 08. 08. 1973, Äthiopien Bayreuth, den 27. October 2009 Die vorliegende Arbeit wurde in dem Zeitraum von April 2006 bis October 2009 an der Universität Bayreuth unter der Leitung von Professor Dr. Carl Beierkuhnlein erstellt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Prüfungsausschuss 1. Prof. Dr. Carl Beierkuhnlein (1. Gutachter) 2. Prof. Dr. Sigrid Liede-Schumann (2. Gutachter) 3. PD. Dr. Gregor Aas (Vorsitz) 4. Prof. Dr. Ludwig Zöller 5. Prof. Dr. Björn Reineking Datum der Einreichung der Dissertation: 27. 10. 2009 Datum des wissenschaftlichen Kolloquiums: 21. 12. 2009 Contents Summary 1 Zusammenfassung 3 Introduction 5 Drivers of Diversity Patterns 5 Deconstruction of Diversity Patterns 9 Threats of Biodiversity Loss in the Ttropics 10 Objectives, Research Questions and Hypotheses 12 Synopsis 15 Thesis Outline 15 Synthesis and Conclusions 17 References 21 Acknowledgments 27 List of Manuscripts and Specification of Own Contribution 30 Manuscript 1 Plant Species and Growth Form Richness along Altitudinal Gradients in the Southwest Ethiopian Highlands 32 Manuscript 2 The Relative Abundance of Plant Functional Types along Environmental Gradients in the Southwest Ethiopian highlands 54 Manuscript 3 Land Use/Land Cover Change in the Southwestern Ethiopian Highlands 84 Manuscript 4 Climate Warming and Tropical Plant Species – Consequences of a Potential Upslope Shift of Isotherms in Southern Ethiopia 102 List of Publications 135 Declaration/Erklärung 136 Summary Summary Understanding how biodiversity is organized across space and time has long been a central focus of ecologists and biogeographers.
    [Show full text]
  • Epiphytes and the National Wetland Plant List
    Lichvar, R.W. and W. Fertig. 2011. Epiphytes and the National Wetland Plant List. Phytoneuron 2011-16: 1–31. EPIPHYTES AND THE NATIONAL WETLAND PLANT LIST ROBERT W. LICHVAR U.S. Army Engineer Research and Development Center Cold Regions Research and Engineering Laboratory 72 Lyme Road Hanover, NH 03755-1290 WALTER FERTIG Moenave Botanical Consulting 1117 West Grand Canyon Drive Kanab, UT 84741 ABSTRACT The National Wetland Plant List (NWPL) is a list of species that occur in wetlands in the United States. It is a product of a collaborative effort of four Federal agencies: the U.S. Army Corps of Engineers, the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service, and the Natural Resources Conservation Service. The NWPL has many uses, but it is specifically designed for use in wetland delineation for establishing the extent of Federal jurisdictional of wetland boundaries. To be listed in the NWPL, a plant must be rooted in soil, so there is a direct relationship between a plant’s occurrence and its preference for hydric soils. This relationship, coupled with the plant’s frequency of occurrence in wetlands, is used to place it in one of five categories representing the probability that the plant occurs in a wetland. Many species are considered to be epiphytes, but they represent various life forms, ranging from purely epiphytic to frequently occurring on the ground. Based on a literature review of 192 species across the United States and its territories, we determined which species fell into four categories of epiphytic life forms or are terrestrial and should not be considered epiphytes.
    [Show full text]
  • Flora of New Zealand Ferns and Lycophytes Davalliaceae Pj
    FLORA OF NEW ZEALAND FERNS AND LYCOPHYTES DAVALLIACEAE P.J. BROWNSEY & L.R. PERRIE Fascicle 22 – OCTOBER 2018 © Landcare Research New Zealand Limited 2018. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: “Source: Manaaki Whenua – Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Manaaki Whenua – Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Brownsey, P. J. (Patrick John), 1948– Flora of New Zealand : ferns and lycophytes. Fascicle 22, Davalliaceae / P.J. Brownsey and L.R. Perrie. -- Lincoln, N.Z.: Manaaki Whenua Press, 2018. 1 online resource ISBN 978-0-9 47525-44-6 (pdf) ISBN 978-0-478-34761-6 (set) 1.Ferns -- New Zealand – Identification. I. Perrie, L. R. (Leon Richard). II. Title. III. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.394.742(931) DC 587.30993 DOI: 10.7931/B15W42 This work should be cited as: Brownsey, P.J. & Perrie, L.R. 2018: Davalliaceae. In: Breitwieser, I.; Wilton, A.D. Flora of New Zealand – Ferns and Lycophytes. Fascicle 22. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B15W42 Cover image: Davallia griffithiana. Habit of plant, spreading by means of long-creeping rhizomes. Contents Introduction..............................................................................................................................................1
    [Show full text]
  • Microsorum 3 Tohieaense (Polypodiaceae)
    Systematic Botany (2018), 43(2): pp. 397–413 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X697166 Date of publication June 21, 2018 Microsorum 3 tohieaense (Polypodiaceae), a New Hybrid Fern from French Polynesia, with Implications for the Taxonomy of Microsorum Joel H. Nitta,1,2,3 Saad Amer,1 and Charles C. Davis1 1Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, Massachusetts 02138, USA 2Current address: Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Japan, 305-0005 3Author for correspondence ([email protected]) Communicating Editor: Alejandra Vasco Abstract—A new hybrid microsoroid fern, Microsorum 3 tohieaense (Microsorum commutatum 3 Microsorum membranifolium) from Moorea, French Polynesia is described based on morphology and molecular phylogenetic analysis. Microsorum 3 tohieaense can be distinguished from other French Polynesian Microsorum by the combination of sori that are distributed more or less in a single line between the costae and margins, apical pinna wider than lateral pinnae, and round rhizome scales with entire margins. Genetic evidence is also presented for the first time supporting the hybrid origin of Microsorum 3 maximum (Microsorum grossum 3 Microsorum punctatum), and possibly indicating a hybrid origin for the Hawaiian endemic Microsorum spectrum. The implications of hybridization for the taxonomy of microsoroid ferns are discussed, and a key to the microsoroid ferns of the Society Islands is provided. Keywords—gapCp, Moorea, rbcL, Society Islands, Tahiti, trnL–F. Hybridization, or interbreeding between species, plays an et al. 2008). However, many species formerly placed in the important role in evolutionary diversification (Anderson 1949; genus Microsorum on the basis of morphology (Bosman 1991; Stebbins 1959).
    [Show full text]