Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada Benjamin D. Barsta,†, Jason M.E. Ahadb*, Neil L. Rosec, Josué J. Jautzyd, Paul E. Drevnicke, Paul Gammonf, Hamed Saneig, and Martine M. Savardb aINRS-ETE, Université du Québec, 490 de la Couronne, Québec, QC, G1K 9A9, Canada bGeological Survey of Canada, Natural Resources Canada, 490 de la Couronne, Québec, QC, G1K 9A9, Canada cEnvironmental Change Research Centre, Department of Geography, University College London, Gower Street, London WC1E 6BT, UK dUniversity of Ottawa, Department of Earth and Environmental Sciences, 25 Templeton St., Ottawa, ON, K1N 6N5, Canada. eEnvironmental Monitoring and Science Division, Alberta Environment and Parks, Calgary, AB T2E 7L7, Canada fGeological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, ON, K1A 0E8, Canada gGeological Survey of Canada, Natural Resources Canada, 3303-33rd Street N.W., Calgary, AB, T2L 2A7, Canada †Current address: Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada *Corresponding author:
[email protected] 1 1 We report a historical record of atmospheric deposition in dated sediment cores from Hasse 2 Lake, ideally located near both currently and previously operational coal-fired power plants in 3 Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an 4 unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment 5 record (pre-1955) compared well with historical emissions from one of North America’s earliest 6 coal-fired power plants (Rossdale) located ~43 km to the east in the city of Edmonton.