The Nervous System the Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

The Nervous System the Nervous System Essentials of Anatomy & Physiology, 4th Edition Martini / Bartholomew The Nervous System PowerPoint® Lecture Outlines prepared by Alan Magid, Duke University Slides 1 to 145 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings The Nervous System Two Organ Systems Control All the Other Organ Systems • Nervous system characteristics • Rapid response • Brief duration • Endocrine system characteristics • Slower response • Long duration Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings The Nervous System Two Anatomical Divisions • Central nervous system (CNS) •Brain • Spinal cord • Peripheral nervous system (PNS) • All the neural tissue outside CNS • Afferent division (sensory input) • Efferent division (motor output) • Somatic nervous system • Autonomic nervous system Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings CENTRAL NERVOUS SYSTEM Information Processing PERIPHERAL Sensory information Motor commands NERVOUS SYSTEM within within afferent division efferent division includes Somatic Autonomic nervous nervous system system Parasympathetic Sympathetic division division Receptors Effectors Smooth muscle Somatic sensory Visceral sensory Skeletal Cardiac receptors (monitor receptors (monitor muscle the outside world internal conditions muscle and our position and the status Glands in it) of other organ systems) Adipose tissue Figure 8-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 1 of 7 PERIPHERAL NERVOUS SYSTEM Receptors Somatic sensory Visceral sensory receptors (monitor receptors (monitor the outside world internal conditions and our position and the status in it) of other organ systems) Figure 8-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 2 of 7 PERIPHERAL Sensory information NERVOUS SYSTEM within afferent division Receptors Somatic sensory Visceral sensory receptors (monitor receptors (monitor the outside world internal conditions and our position and the status in it) of other organ systems) Figure 8-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 3 of 7 CENTRAL NERVOUS SYSTEM Information Processing PERIPHERAL Sensory information NERVOUS SYSTEM within afferent division Receptors Somatic sensory Visceral sensory receptors (monitor receptors (monitor the outside world internal conditions and our position and the status in it) of other organ systems) Figure 8-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 4 of 7 CENTRAL NERVOUS SYSTEM Information Processing PERIPHERAL Sensory information Motor commands NERVOUS SYSTEM within within afferent division efferent division Receptors Somatic sensory Visceral sensory receptors (monitor receptors (monitor the outside world internal conditions and our position and the status in it) of other organ systems) Figure 8-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 5 of 7 CENTRAL NERVOUS SYSTEM Information Processing PERIPHERAL Sensory information Motor commands NERVOUS SYSTEM within within afferent division efferent division includes Somatic nervous system Receptors Effectors Somatic sensory Visceral sensory Skeletal receptors (monitor receptors (monitor muscle the outside world internal conditions and our position and the status in it) of other organ systems) Figure 8-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 6 of 7 CENTRAL NERVOUS SYSTEM Information Processing PERIPHERAL Sensory information Motor commands NERVOUS SYSTEM within within afferent division efferent division includes Somatic Autonomic nervous nervous system system Parasympathetic Sympathetic division division Receptors Effectors Smooth muscle Somatic sensory Visceral sensory Skeletal Cardiac receptors (monitor receptors (monitor muscle the outside world internal conditions muscle and our position and the status Glands in it) of other organ systems) Adipose tissue Figure 8-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 7 of 7 Neural Tissue Organization Two Classes of Neural Cells • Neurons • For information transfer, processing, and storage • Neuroglia • Supporting framework for neurons • Phagocytes Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neural Tissue Organization Three Classes of Neurons • Sensory neurons • Deliver information to CNS • Motor neurons • Stimulate or inhibit peripheral tissues • Interneurons (association neurons) • Located between sensory and motor neurons • Analyze inputs, coordinate outputs Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neural Tissue Organization Neuron Anatomy • Cell body • Nucleus • Mitochondria, RER, other organelles • Dendrites • Several branches • Signal reception (inward) • Axon • Signal propagation (outward) Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neural Tissue Organization The Anatomy of a Representative Neuron Figure 8-2 Neural Tissue Organization Structural Classes of Neurons • Unipolar • Dendrite, axon continuous • Afferent neurons • Multipolar • Many dendrites, one axon • Most common class of neuron • Bipolar • One dendrite, one axon • Very rare Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neuron Function A Structural Classification of Neurons Figure 8-3 Neural Tissue Organization Key Note Neurons perform all of the communication, information processing, and control functions of the nervous system. Neuroglia outnumber neurons and have functions essential to preserving the physical and biochemical structure of neural tissue and the survival of neurons. Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neural Tissue Organization Anatomic Organization of CNS Neurons • Center—Collection of neurons with a shared function • Nucleus—A center with a discrete anatomical boundary • Neural cortex—Gray matter covering of brain portions • White matter—Bundles of axons (tracts) that share origins, destinations, and functions Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neural Tissue Organization Anatomic Organization of PNS Neurons • Ganglia—Groupings of neuron cell bodies • Nerve—Bundle of axons supported by connective tissue • Spinal nerves • To/from spinal cord • Cranial nerves • To/from brain Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neural Tissue Organization The Anatomical Organization of the Nervous System Figure 8-6 Neural Tissue Organization Pathways in the CNS • Ascending pathways Carry information from sensory receptors to processing centers in the brain • Descending pathways Carry commands from specialized CNS centers to skeletal muscles Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neuron Function The Membrane Potential • Resting potential • Excess negative charge inside the neuron • Created and maintained by Na-K ion pump • Negative voltage (potential) inside • -70 mV (0.07 Volts) Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neuron Function The Cell Membrane at the Resting Potential Figure 8-7 Neuron Function Changes in Membrane Potential • Result from changes in ion movement • Ions move in transmembrane channels • Membrane channels can open or close • If Na+ channels open positive charges enter cell membrane potential moves positive (depolarization) • If K+ channels open positive charges leave cell membrane potential moves negative (hyperpolarization) Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neuron Function Key Note A membrane potential exists across the cell membrane because (1) the cytosol and the extracellular fluid differ in their ionic composition, and (2) the cell membrane is selectively permeable to these ions. The membrane potential can quickly change, as the ionic permeability of the cell membrane changes, in response to chemical or physical stimuli. Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Neuron Function Generation of Action Potential • Depolarization of membrane to threshold • Rapid opening of voltage-gated Na+ channels • Na+ entry causes rapid depolarization • Voltage-gated K+ channels open • K+ exit causes rapid repolarization • Refractory period ends as membrane recovers the resting state Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Activation of voltage- Depolarization to threshold regulated sodium channels and rapid depolarization Sodium ions Local current Potassium ions Inactivation of sodium channels and activation of voltage-regulated potassium channels +30 DEPOLARIZATION REPOLARIZATION 3 0 2 The return to normal Threshold _60 permeability and resting state _70 1 4 Transmembrane(mV) potential Resting potential REFRACTORY PERIOD 0123 Time (msec) Figure 8-8 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 1 of 5 Depolarization to threshold Sodium ions Local current +30 DEPOLARIZATION 0 Threshold _60 _70 1 Transmembrane(mV) potential Resting potential 0123 Time (msec) Figure 8-8 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 2 of 5 Activation of voltage- Depolarization to threshold regulated sodium channels and rapid depolarization Sodium ions Local current Potassium ions +30 DEPOLARIZATION 0 2 Threshold _60 _70 1 Transmembrane(mV) potential Resting potential 0123 Time (msec) Figure 8-8 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 3 of 5 Activation
Recommended publications
  • Chapter 2 Test Review
    Unit III, Modules 9-13 Test Review • See also the Unit III notes and pages 76-122 • About 45 m.c., plus two essays; one on brain functioning, the other review concepts from previous units. • Some practice questions are embedded in this presentation • Other practice questions are available at the textbook website and in the textbook after each module. Neuron Order of a transmission: dendrite, cell body, axon, synapse (see arrow below) Neural Communication Neurons, 80 Neural Communication • (a)Dendrite – the bushy, branching extensions of a neuron that receive messages and conduct impulses toward the (b)cell body • (c)Axon – the extension of a neuron, ending in branching terminal fibers, through which messages are sent to other neurons or to muscles or glands • Myelin [MY-uh-lin] Sheath – a layer of fatty cells segmentally encasing the fibers of many neurons – makes possible vastly greater transmission speed of neutral impulses, – Damage to can lead to Multiple sclerosis Neural Communication • Action Potential – a neural impulse; a brief electrical charge that travels down an axon; DEPOLARIZED – generated by the movement of positively charges atoms in and out of channels in the axon’s membrane • Threshold – the level of stimulation required to trigger a neural impulse Action Potential A neural impulse. A brief electrical charge that travels down an axon and is generated by the movement of positively charged atoms in and out of channels in the axon’s membrane. Practice question • Multiple sclerosis is a disease that is most directly associated with the degeneration of: a. the myelin sheath. b. the pituitary gland.
    [Show full text]
  • Signaling by Sensory Receptors
    Signaling by Sensory Receptors David Julius1 and Jeremy Nathans2 1Department of Physiology, University of California School of Medicine, San Francisco, California 94158 2Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland 21205 Correspondence: [email protected] and [email protected] SUMMARY Sensory systems detect small molecules, mechanical perturbations, or radiation via the activa- tion of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled recep- tors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR- based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illus- trate the integration of diverse modulatory signals at the receptor, as seen in the thermosen- sory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous exam- ples in which gene duplication and sequence divergence have created novel sensory specific- ities. This is the evolutionary basis for the observed diversity in temperature- and ligand- dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche.
    [Show full text]
  • 1.6 Organization Within the Human Body ___/202 Points
    Name _______________________________________________________________ Date ______________ Lab _____ Pd _____ Unit 1 Chapter Levels of Organization within the Human Body ____/202 points organization 1.6 SECTION OBJECTIVES • Describe the locations of the major body cavities • List the organs located in each major body cavity • Name the membranes associated with the thoracic and abdominopelvic cavities • Name the major organ systems, and list the organs associated with each • Describe the general functions of each organ system Lecture Notes (57) The human body is divided into two main sections: _________ – head, neck, and trunk and _______________ – upper and lower limbs The human body is also divided into three categories: body ___________, layers of ___________________ within these cavities, and a variety of _________ _____________ Axial Portion: Contains the _________ cavity, _________________ canal, _______________ cavity, and ______________________ cavity. The thoracic and abdominopelvic cavities separated by the _______________. The organs within the cavity are called _______. ______________ cavity: _________________: stomach, intestines, liver, spleen, and kidneys. ______________: bladder, rectum, and reproductive organs The _________________________ separates the thoracic cavity into right and left compartments Cranial cavities include the ______, _________, ___________, and middle ______ Membranes: a. _________________ –membranes attached to the wall or lines the cavity (pariet = wall) b. _______________ - membrane that covers organ
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Primary Processes in Sensory Cells: Current Advances
    J Comp Physiol A (2009) 195:1–19 DOI 10.1007/s00359-008-0389-0 REVIEW Primary processes in sensory cells: current advances Stephan Frings Received: 14 September 2008 / Revised: 25 October 2008 / Accepted: 25 October 2008 / Published online: 15 November 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com Abstract In the course of evolution, the strong and unre- INAD Inactivation no after-potential D mitting selective pressure on sensory performance has MEC Mechanosensitive channel-related protein driven the acuity of sensory organs to its physical limits. As OHC Outer hair cell a consequence, the study of primary sensory processes ORN Olfactory receptor neuron illustrates impressively how far a physiological function PDE Phosphodiesterase can be improved if the survival of a species depends on it. PDZ Domain postsynaptic density/discs-large/zonula Sensory cells that detect single-photons, single molecules, occludens domain mechanical motions on a nanometer scale, or incredibly TRP Channel transient receptor potential channel small Xuctuations of electromagnetic Welds have fascinated VNO Vomeronasal organ physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent develop- Introduction ments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfac- Sensory cells provide the central nervous system with vital tion, as well as the analysis of light polarization and the ori- information about the body and its environment. Each sen- entation in the Earth’s magnetic Weld. The data are screened sory cell detects speciWc stimuli using highly specialized for common transduction strategies and common transduc- structures which operate as sensors for adequate stimuli.
    [Show full text]
  • The Digestive System
    69 chapter four THE DIGESTIVE SYSTEM THE DIGESTIVE SYSTEM The digestive system is structurally divided into two main parts: a long, winding tube that carries food through its length, and a series of supportive organs outside of the tube. The long tube is called the gastrointestinal (GI) tract. The GI tract extends from the mouth to the anus, and consists of the mouth, or oral cavity, the pharynx, the esophagus, the stomach, the small intestine, and the large intes- tine. It is here that the functions of mechanical digestion, chemical digestion, absorption of nutrients and water, and release of solid waste material take place. The supportive organs that lie outside the GI tract are known as accessory organs, and include the teeth, salivary glands, liver, gallbladder, and pancreas. Because most organs of the digestive system lie within body cavities, you will perform a dissection procedure that exposes the cavities before you begin identifying individual organs. You will also observe the cavities and their associated membranes before proceeding with your study of the digestive system. EXPOSING THE BODY CAVITIES should feel like the wall of a stretched balloon. With your skinned cat on its dorsal side, examine the cutting lines shown in Figure 4.1 and plan 2. Extend the cut laterally in both direc- out your dissection. Note that the numbers tions, roughly 4 inches, still working with indicate the sequence of the cutting procedure. your scissors. Cut in a curved pattern as Palpate the long, bony sternum and the softer, shown in Figure 4.1, which follows the cartilaginous xiphoid process to find the ventral contour of the diaphragm.
    [Show full text]
  • Specialized Cilia in Mammalian Sensory Systems
    Cells 2015, 4, 500-519; doi:10.3390/cells4030500 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Specialized Cilia in Mammalian Sensory Systems Nathalie Falk, Marlene Lösl, Nadja Schröder and Andreas Gießl * Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; E-Mails: [email protected] (N.F.); [email protected] (M.L.); [email protected] (A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-9131-85-28055; Fax: +49-9131-85-28060. Academic Editors: Gang Dong and William Tsang Received: 18 May 2015 / Accepted: 9 September 2015 / Published: 11 September 2015 Abstract: Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS
    Chapter 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS Figure 36.1 This shark uses its senses of sight, vibration (lateral-line system), and smell to hunt, but it also relies on its ability to sense the electric fields of prey, a sense not present in most land animals. (credit: modification of work by Hermanus Backpackers Hostel, South Africa) Chapter Outline 36.1: Sensory Processes 36.2: Somatosensation 36.3: Taste and Smell 36.4: Hearing and Vestibular Sensation 36.5: Vision Introduction In more advanced animals, the senses are constantly at work, making the animal aware of stimuli—such as light, or sound, or the presence of a chemical substance in the external environment—and monitoring information about the organism’s internal environment. All bilaterally symmetric animals have a sensory system, and the development of any species’ sensory system has been driven by natural selection; thus, sensory systems differ among species according to the demands of their environments. The shark, unlike most fish predators, is electrosensitive—that is, sensitive to electrical fields produced by other animals in its environment. While it is helpful to this underwater predator, electrosensitivity is a sense not found in most land animals. 36.1 | Sensory Processes By the end of this section, you will be able to do the following: • Identify the general and special senses in humans • Describe three important steps in sensory perception • Explain the concept of just-noticeable difference in sensory perception Senses provide information about the body and its environment. Humans have five special senses: olfaction (smell), gustation (taste), equilibrium (balance and body position), vision, and hearing.
    [Show full text]
  • Fundamentals of Nervous System and Nervous Tissue
    Fundamentals of Nervous System and Nervous Tissue Chapter 12 Nervous System The nervous system is the main system to communicate and coordinate body activities by sending electrical impulses. Nervous system forms a communication network in whole body. Endocrine system communicates through chemical messengers – hormones. 12 pairs of Cranial nerves arise from brain Brain (Part of PNS) Central NS 31 pairs of spinal nerves arise from spinal Spinal nerve cord nerve cord (Part of PNS) Somatic sensory Afferent Division Visceral sensory Peripheral NS Somatic NS Efferent Division Sympathetic Autonomic NS Parasympathetic Neuron A neuron has a cell body. Many smaller branched appendages are called Dendrites. Dendrites bring in information (nerve impulse) to the cell body. A single longer appendage is called Axon. It takes information away from cell body. It branches at the end into terminal knobs. A terminal knob secretes a chemical called Neurotransmitter in the gap to the next neuron or muscle membrane. 3-types of neurons (on basis of function) Specialized nerve cells are called Neurons. Sensory neurons bring information from sense organs like eyes to CNS. Sensory = Affrent. Somatic Sensory = coming from body wall - skin, muscles and joints; Visceral Sensroy = coming from internal organs - viscera Motor neurons take information from CNS to effectors like muscles or glands. Motor = Effrent. Somatic Motor – going to skeletal muscles and Visceral Motor – going to smooth or cardiac muscles. Inter-neurons receive information from sensory neurons and
    [Show full text]
  • ABDOMINOPELVIC CAVITY and PERITONEUM Dr
    ABDOMINOPELVIC CAVITY AND PERITONEUM Dr. Milton M. Sholley SUGGESTED READING: Essential Clinical Anatomy 3 rd ed. (ECA): pp. 118 and 135­141 Grant's Atlas Figures listed at the end of this syllabus. OBJECTIVES:Today's lectures are designed to explain the orientation of the abdominopelvic viscera, the peritoneal cavity, and the mesenteries. LECTURE OUTLINE ­ PART 1 I. The abdominopelvic cavity contains the organs of the digestive system, except for the oral cavity, salivary glands, pharynx, and thoracic portion of the esophagus. It also contains major systemic blood vessels (aorta and inferior vena cava), parts of the urinary system, and parts of the reproductive system. A. The space within the abdominopelvic cavity is divided into two contiguous portions: 1. Abdominal portion ­ that portion between the thoracic diaphragm and the pelvic brim a. The lower part of the abdominal portion is also known as the false pelvis, which is the part of the pelvis between the two iliac wings and above the pelvic brim. Sagittal section drawing Frontal section drawing 2. Pelvic portion ­ that portion between the pelvic brim and the pelvic diaphragm a. The pelvic portion of the abdominopelvic cavity is also known as the true pelvis. B. Walls of the abdominopelvic cavity include: 1. The thoracic diaphragm (or just “diaphragm”) ­ located superiorly and posterosuperiorly (recall the dome­shape of the diaphragm) 2. The lower ribs ­ located anterolaterally and posterolaterally 3. The posterior abdominal wall ­ located posteriorly below the ribs and above the false pelvis and formed by the lumbar vertebrae along the posterior midline and by the quadratus lumborum and psoas major muscles on either side 4.
    [Show full text]
  • Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury
    cells Review Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury Håkan Aldskogius * and Elena N. Kozlova Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial Citation: Aldskogius, H.; Kozlova, neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response E.N.
    [Show full text]