Oil Analysis Handbook Third Edition Copyright © 2017 Spectro Scientific

Total Page:16

File Type:pdf, Size:1020Kb

Oil Analysis Handbook Third Edition Copyright © 2017 Spectro Scientific Predictive Equipment Maintenance Oil Analysis Handbook Third Edition Copyright © 2017 Spectro Scientific. All rights reserved. FluidScan® and LaserNet Fines® are registered trademarks of Spectro Scientific Inc. While every effort is made to assure the information in this document ois accurate, Spectro Scientific does not accept liability for any errors or mistakes that may arise. Specifications are subject to change without notice. | 3 Preface Welcome to the third edition of the In-service Oil Analysis Handbook. It has been a few years since the publication of the first edition of Spectro Scientific’s In-Service Oil Analysis Handbook. Our original goal was to compile a comprehensive reference book of common in-service oil analysis techniques to help readers understand and choose the right technique and instrumentation for their needs. We had to limit the scope in the first two editions because of the amount of effort needed to cover all the topics. In-service oil analysis for condition based maintenance covers a wide array of topics. I am pleased to say that in this third edition, we are much closer to our goal. We reorganized the structure of the content for better clarity and we added articles to cover more topics and instruments associated with oil analysis. Also, we rewrote several articles including the latest developments on the market. As we learned more from our customers about their successes using on site oil analysis, we developed case studies that you can find in this edition. This work is not possible without the time and effort from the contributing authors: Patrick Henning, Daniel Walsh, Robert Yurko, Ken Caldwell, Thomas Barraclough, Maria Bartus, Randi Price, John Morgan, Aifeng Shi and Yuegang Zhao from Spectro Scientific and Ray Garvey from Emerson Process Management. Special thanks to Pat Henning, Chief Technology Officer of Spectro Scientific for updating the entire technology section and to Sandra Schiller for managing the project. In-service oil analysis technologies have advanced in the past few years. Innovations in new products have brought on-site oil analysis into the hands of reliability professionals and mechanics. Simple analytical tools enable engineers to make maintenance decisions quicker and with more confidence. We are so pleased to share the recent developments in this field and look forward to more progress down the road. Yuegang Zhao 4 | Oil Analysis Handbook for Predictive Equipment Maintenance Contents Preface ............................................................................3 Section 1: Introduction Chapter 1: In-service Oil Analysis for Condition Based Maintenance .................7 Chapter 2: Oil Sampling Best Practices.............................................14 Section 2: Technologies Chapter 3: Elemental Analysis......................................................23 3.1: Rotating Disc Electrode OES (RDE-OES) .........................................24 3.2: Elemental Analysis: FPQ-XRF for Large Particles...................................31 Chapter 4: Particle Analysis........................................................37 4.1: Dynamic Equilibrium – Large Wear Particles in Oil Lubricated Systems.................37 4.2: Ferrography – Particle Size and Morphology Analysis ..............................39 4.3: Particle Count . .41 4.4: Ferrous Particle Analysis ....................................................43 4.5: LaserNet Fines® – Particle Count, Particle Shape Analysis and Ferrous Particle Analysis ...44 Chapter 5: Infrared Spectroscopy ..................................................52 5.1: Direct Infrared Spectroscopy Based on Grating Optics ..............................53 5.1.1: FluidScan Introduction ..................................................53 5.1.2: TAN-TBN Measurement Using Infrared Technique.............................57 5.1.3: Water Measurement Using the Infrared Technique . 64 5.1.3.1: Dissolved Water Measurement.....................................64 5.1.3.2: Free Water and Total Water Measurement............................66 5.2: Filter Based Infrared Techniques ..............................................70 Chapter 6: Viscosity ...............................................................72 6.1: Laboratory Kinematic Viscometers .............................................72 6.2: Solvent-free Portable Viscometer ..............................................74 Chapter 7: Fuel Dilution in Engine Oil ...............................................79 | 5 Section 3: Oil Analysis Practices and Success Stories Chapter 8: Lubricant Mix Up – How to Catch it with Oil Analysis.....................85 Chapter 9: Route-Based Oil Analysis ...............................................88 Chapter 10: Oil Analysis for Mining Equipment Maintenance ........................92 Chapter 11: Oil Analysis for Servicing On-the-Road Transporation Vehicles..........94 Chapter 12: Oil Analysis for Offshore Drilling Reliability Service .....................96 Chapter 13: Oil Analysis for Municipal Water Treatment Maintenance...............98 Chapter 14: Oil Analysis for Industrial Plant Reliability Management ...............100 Chapter 15: Oil Analysis for Reliability Service .....................................105 Chapter 16: Oil Analysis for Engine Generator Maintenance........................108 Chapter 17: Oil Analysis for Shipboard Maintenance ..............................111 Chapter 1: In-Service Oil Analysis for Condition Based Maintenance | 7 Section 1: Introduction Chapter 1: In-service Oil Analysis for Condition Based Maintenance The practice of in-service oil analysis or used oil analysis and the presence of large ferrous particles. Over the years started over a century ago on locomotive engines. Now different techniques and instruments have been deployed in it is one of the most important components of condition the field or in commercial laboratories but essentially they based maintenance (CBM), a practice of assessing a all provide the information mentioned above. Even though all machine’s condition by periodically gathering data on wear particle analysis techniques can be applied to different key machine health indicators to determine maintenance types of assets, specific issues are different for industrial schedules. Billions of dollars are spent every year rotating machines than from rotating engines. Reciprocal replacing machinery components that have worn out due engines tend to generate fine wear particles and engine to insufficient lubricant performance. Knowing how to oils can be dark due to soot (nano-sized carbon particles interpret changing lubricant properties can increase both as combustion byproduct). Elemental analysis is primary the uptime and the life of mission critical assets. The or sometimes the only analysis performed in a commercial existence or amount of debris and particles from wearing oil lab that assesses engine wear conditions because parts, erosion and contamination provide insights about concentrations of different wear metal elements indicate the issues affecting performance and reliability. wear severity of moving parts in an engine. Slower moving rotating machines, such as gearboxes, tend to generate Lubricants, fuels and other key fluids analyses provide larger wear particles. As most of them are made of steel, critical early warning information indicative of machine large ferrous particle analysis is fairly common and easy to failure. By analyzing and trending data, one can schedule perform on oils from these assets. maintenance before a critical failure occurs. The results are higher equipment availability and productivity, lower Contaminants in oil can be in solid or liquid form. Solid maintenance costs, lower total cost of ownership (TCO), contaminants such as sand and dirt are commonly fewer outages, optimal equipment performance and a monitored by particle counting and sizing techniques. greener operation. Liquid contaminant for industrial rotating machines is mostly water. For diesel or gas engines, however, it can be What is In-service Oil Analysis? water, coolant or fuel. A fairly common fluid contaminant across all asset types is the accidental or purposeful Lubricating oil is the life blood of oil wetted machinery. use of an incorrect lubricant when topping off old oil. All In-service oil analysis can provide information about machine contaminants can significantly reduce the useful life of the wear condition, lubricant contamination as well as lubricant oil and increase machine wear. They need to be prevented condition (Figure 1). Reliability engineers and maintenance proactively with proper seals and filtration systems and they professionals can make maintenance decisions based on need to be monitored regularly. diagnoses of oil analysis results. Monitoring lubricant degradation helps one decide if the oil Machine wear analysis is is no long fit for use and if it needs to be changed. One key essentially the analysis oil property is viscosity. The viscosity is typically measured of particles in the oil. at 40C for rotating machines and at 100C for engines. For oil Machine wear can be in rotating machines, oxidation and acidity of the oil (Total classified into adhesive Acid Number or TAN) are monitored to determine if the oil (sliding) wear, abrasive is still fit for use and to prevent corrosion. For engine oils, (cutting) wear, fatigue oxidation, nitration, sulfation and total alkaline additive wear, and corrosive wear. reserve in oil (Total Base Number or TBN) are monitored. For A full
Recommended publications
  • Synthetic Lubricant Base Stocks Formulations Guide Table of Contents
    Synthetic lubricant base stocks formulations guide Table of contents 1.0 Introduction — Using this guide ����������������������������������������������������������������� 1 7�3 Turbine oils ��������������������������������������������������������������������������������������������62 2.0 Lubricant formulators FAQs ������������������������������������������������������������������������ 3 7�4 Industrial gear oils ��������������������������������������������������������������������������������67 7�5 Paper machine oils �������������������������������������������������������������������������������72 3.0 Synthetic base stock grade slate summary ���������������������������������������������� 7 7�6 Lubricants for use with food machinery 4.0 Industry trends ����������������������������������������������������������������������������������������������� 9 (incidental food contact) ������������������������������������������������������������������������������������74 4�1 Energy outlook ��������������������������������������������������������������������������������������� 9 7�7 Miscellaneous lubricants ���������������������������������������������������������������������79 4�2 Lubricant industry trends ��������������������������������������������������������������������10 7�7�1 Heat transfer oils �����������������������������������������������������������������������79 4�3 Automotive trends �������������������������������������������������������������������������������10 7�7�2 Chain lubricants �������������������������������������������������������������������������81
    [Show full text]
  • OWNER's OPERATION and MAINTENANCE MANUAL
    OWNER’S OPERATION and MAINTENANCE MANUAL A Division of This Page Was Intentionally Left Blank Thank you for your selection of Pleasurecraft (PCM) Marine Power for your boating needs. We welcome you to Team PCM, which puts you in the company of tens of thousands of boaters who have relied on Pleasurecraft inboards as their power of choice for over 30 years. When you chose PCM, you selected the utmost in premium power for your boating application. Pleasurecraft is the world’s largest manufacturer of gasoline marine inboards, and the clear-cut leader in cutting edge technology. Over the years, we have introduced many breakthrough innovations that quickly became industry standards. The pyramidal exhaust system, light-weight transmission, computerized engine control and the Fuel Control Cell (FCC) are all PCM innovations. No matter which PCM model you purchased, you can be sure it is equipped with the latest in modern technology for added performance and durability. READ THIS MANUAL THOROUGHLY Before starting your engine(s), READ THIS MANUAL CAREFULLY AND COMPLETELY. If you do not understand any portion of the manual, contact your Dealer for clarification or assistance. Ask your Dealer for a demonstration of actual starting and operating procedures. The descriptions and specifications contained in this manual were in effect at the time of printing. PCM Engines’ policy of continued improvement reserves the right to change specifications or design without notice and without obligation. This manual will cover the following year of manufacture PCM engines: Year Model 2013 EX343 MPI *2013 Catanium™ CES HO303 *2013 Catanium™ CES EX343 *2013 Catanium™ CES 6.0L ZR409 *2013 Catanium™ CES 6.0L ZR450 2013 6.2L XS550 MPI 2013 6.2L XR550 MPI * PCM’s Catanium™ Clean Emission System is available to reduce emissions without diminishing performance.
    [Show full text]
  • Gas Generator Bottle Introduction SCIENTIFIC This Gas Generator Setup Provides an Easy Way to Generate and Collect Gas
    Gas Generator Bottle Introduction SCIENTIFIC This gas generator setup provides an easy way to generate and collect gas. Specific instructions are provided for the generation of hydrogen gas using zinc and acid. Concepts • Generation of gases • Water displacement Materials Hydrochloric acid solution, HCl, 3 M Glass plates or Sulfuric acid solution, H2SO4, 3 M Glass tubing Mossy zinc, Zn, 6 g Pneumatic trough Water, tap Rubber tubing Bent glass tubing* Silicone grease packet* Gas collecting bottles or tubes, 3 or 4 Thistle tube* Gas generator bottle* Two-hole rubber stopper* *Materials included. Safety Precautions Hydrochloric acid solution is toxic by ingestion and inhalation and is severely corrosive to skin, eyes and other tissues, as is sulfuric acid solu- tion. Hydrogen gas is a highly flammable gas and a severe fire hazard. Exercise extreme caution when testing the gas and keep the gas generator away from flames. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. This activity requires the use of hazardous components and/or has the potential for hazardous reactions. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Procedure 1. Set up the apparatus as shown in the figure to the right. Lubricate the glass tubing and thistle tube with silicone grease before inserting into the stopper. Make sure Thistle tube the water level is above the platform. Prepare bottles for collecting gas by water Two-hole rubber stopper displacement. To do this, fill each gas collecting bottle (or tube) over the brim with tap water, and then cover each with a flat glass plate.
    [Show full text]
  • Mabanol Engine Oil Additive Motor Oil Additive
    Mabanol Engine Oil Additive Motor Oil Additive Application Properties Mabanol Engine Oil Additive is filled into the Mabanol Engine Oil Additive is a nano tech- engine along with the motor oil. It is miscible nology-based oil additive designed to reduce with all types of motor oil. friction on mechanical parts, optimize engine It can be used in all petrol and diesel engines, performance and protect it in a durable way. including those equipped with catalytic con- Mabanol Engine Oil Additive produces a ro- verters, turbochargers and/or particulate filters bust lubricating film on the friction surfaces in both in passenger cars as well as in trucks. the engine which reduces friction losses and Not suitable for use in ATFs and motorcycles wear. This extends the life of the engine, im- with wet clutch. proves smoothness and optimizes efficiency. Mabanol Engine Oil Additive is also recom- mended for improving the performance of oil EAN Code in pumps, gearboxes and compressors. 300 ml can: 4260214890989 A can of 300 ml can be used for up to 4.5 liters of engine oil. The maximum dosage in the engine oil/additive blend is 20 volume percent. Please ensure that the correct oil level is maintained. Please shake well before use. Data Test method Unit Value Density at 20°C DIN 51 757 g/cm³ 0,874 Kin. Viscosity at 40°C DIN EN ISO 3104 mm²/s 316 Flash point ISO 3679 °C > 100 Lower explosion limit – Vol-% 0,6 Upper explosion limit – Vol-% 6,5 Updated in March 2019 The above values may vary within the commercial limits.
    [Show full text]
  • The Truth About Synthetic
    File No. RSA-003 revision. 0 -2/26/03 TheThe TruthTruth AboutAbout SyntheticSynthetic OilOil Auto and Oil Industries Best Kept Secret - Finally Revealed (What every Filipino Car Owner Should Know !) Maintenance Excellence Rolly Angeles Table of Contents : Open Letter …………………………………………………………………………… 2 I. What you need to know about petroleum oil ……………………………………. 3 II. Synthetic Lubricant Market In Asia ……………………………………………… 3 III. What is Synthetic Oil ?......………………………………………………………... 4 IV. History Of Synthetic Oil …..………………………………………………………... 4 V. Advantages Of Synthetic Oil Over Petroleum Oil ………………………………… 5 VI. Procedures On How To Switch To Synthetic Oil ………………………………… 6 VII. When Not To Use Synthetic Oil …………………………………………………… 6 VIII. Frequently Asked Questions on Synthetic Oil …………………………………… 7 Maintenance Excellence Rolly Angeles 1 Dear Friend, With the unending increase in petroleum products and fuel in our country today, it is not uncommon for an average Filipino worker who owns a vehicle not to bring their car everyday to work to save money on gas. In view of this I would like to share some knowledge onhow we can save cost in maintaining our vehicle, and I believe that this relevant information must be known by every Filipino specially those who own a vehicle. One of the regular maintenance we perform on our vehicle is changing oil, and many of us are unaware of synthetic lubricants. In fact it is estimated that only a handful of Filipinos knows the value of synthetic oil in their vehicle since most of us use the conventional petroleum or mineral oil that is available in our local gasoline stations . It is my intention that every Filipino must be educated on the benefits and advantages of using synthetic oil in their vehicle.
    [Show full text]
  • Si-18-1997 R5
    AIRCRAFT ENGINES SERVICE INSTRUCTION SELECTION OF MOTOR OIL AND GENERAL OPERATING TIPS FOR ROTAX® ENGINES TYPE 912 AND 914 (SERIES) SI-18-1997 R5 Repeating symbols: Please, pay attention to the following symbols throughout this document emphasizing particular information. ▲ WARNING: Identifies an instruction, which if not followed, may cause serious injury or even death. ■ CAUTION: Denotes an instruction which if not followed, may severely damage the engine or could lead to suspension of warranty. ◆ NOTE: Information useful for better handling. 1) Planning information 1.1) Engines affected All versions of the engine type: - 912 (Series) - 914 (Series) 1.2) Concurrent ASB/SB/SI and SL none 1.3) Reason - Due to field experience the recommended engine oil list (section 3.2 and section 3.3) was updated. - Field experience has shown that additional information about the choice of suitable motor oils and oil change and maintenance intervals for the ROTAX engines Type 912 and 914 is necessary. Regardless of which brand of fuel is used, foreign particles are suspended in the motor oil. Heavy accumulation of particles on high temperature zones such as on piston rings, exhaust valve guides, may result in stuck piston rings and valves due to burning and coking of the oil. On turbocharged engine, failing to ensure an adequate cool-down period prior to shut-off may lead to particle deposits on the turbocharger wheels. This could result in an unbalance of the turbo wheel and consequently to a complete destruction of the turbocharger. Particle deposits or cooking may become loose in the engine and may block the lubrication system causing damage to the engine due to lack of oil.
    [Show full text]
  • The Role of Nanoparticles in Lubricants; Performing Lubricated and Dry Friction Tests
    FELLOWSHIP RESEARCH The Role of Nanoparticles in Lubricants; Performing Lubricated and Dry Friction Tests Hamed Ghaednia* and Dr. Robert L. Jackson (Advisor) Auburn University, Department of Mechanical Engineering, Auburn, Ala. *Ford Motor Co., Powertrain Research and Advanced Engineering Group, Dearborn, Mich. Editor’s Note: This month TLT profiles the 2014 recipient of The E. Elmer Klaus Fellowship, Hamed Ghaednia (Auburn University). The Klaus Fellowship, along with The E. Richard Booser Scholarship, are awarded annually to graduate and undergraduate students, respectively, who have an interest in pursuing a career in tribology. As a requirement for receiving an STLE scholarship, students are given the opportunity to participate in a tribology research project and to submit a report summarizing their research. Hamed Ghaednia graduated with a bachelor’s of science degree in mechanical and chemical INTRODUCTION engineering and a master’s of science degree Nanoparticles when suspended in in mechanical engineering from the Tehran a lubricant can infiltrate small gaps Polytechnic. He recently received his between rough surfaces in contact doctorate in mechanical engineering, with and alter the contact’s tribological an emphasis in tribology, from Auburn performance. Hence, nanoparticles University’s Samuel Ginn College of offer an alternative approach to Engineering’s tribology and lubrication lubrication by introducing third body science minor program. He is currently entities directly into the contact. The working as a tribology research engineer ability of nano-sized particles to pass at the Ford Motor Co. in the Powertrain through conventional filters, penetrate Research and Advanced Engineering Group. into contacts that larger particles You can reach him at [email protected].
    [Show full text]
  • Owners Manual
    Owners Manual S&S® KN, P, and SH-Series Engines DISCLAIMER: • Consult an appropriate service manual for your motorcycle for correct S&S parts are designed for high performance, closed course, racing applications disassembly and reassembly procedures for any parts that need to be removed and are intended for the very experienced rider only. The installation of S&S parts to facilitate installation. may void or adversely effect your factory warranty. In addition such installation and • Use good judgment when performing installation and operating motorcycle. use may violate certain federal, state, and local laws, rules and ordinances as well Good judgment begins with a clear head. Don’t let alcohol, drugs or fatigue as other laws when used on motor vehicles used on public highways, especially in impair your judgment. Start installation when you are fresh. states where pollution laws may apply. Always check federal, state, and local laws before modifying your motorcycle. It is the sole and exclusive responsibility of the • Be sure all federal, state and local laws are obeyed with the installation. user to determine the suitability of the product for his or her use, and the user shall • For optimum performance and safety and to minimize potential damage to assume all legal, personal injury risk and liability and all other obligations, duties, carb or other components, use all mounting hardware that is provided and and risks associated therewith. follow all installation instructions. The words Harley®, Harley-Davidson®, H-D®, Sportster®, Evolution®, and all H-D Motorcycle exhaust fumes are toxic and poisonous and must not be breathed.
    [Show full text]
  • K–12 Science Safety Manual
    K–12 Science Safety Manual Developed by the Innovative Teaching and Learning Unit Instructional Design and Professional Learning Division K–12 Science Department TABLE OF CONTENTS Importance of Safety 2 General Information 7 Prohibited Practices 9 Emergency Information 10 Safety on Field Trips 15 General Laboratory Safety 20 Elementary Science Safety 22 Biological Science Safety 24 Earth and Space Science Safety 28 Chemistry Science Safety 31 Physics Science Safety 35 Appendix A: Technical Safety Assistance Numbers 49 Appendix B: Safety Survey 50 Appendix C: Lab Inspection Checklist 51 Appendix D: Chemical Storage 55 Appendix E: Waste Disposal 63 Appendix F: Prohibited Chemicals 68 Appendix G: Restricted Chemicals 75 Appendix H: Animals in the Classroom 79 Appendix I: Safety Contracts and Exams 85 Appendix J: Safety Resource Websites 86 Restricted Chemical Request Form 87 Secondary Science Teacher Safety Manual Acknowledgement Form 88 IDPL-SCI-M002, Rev. B September 2009, Rev. C April 2015 0 SPECIAL ACKNOWLEDGMENTS The Clark County School District K–12 Science Safety Manual is a coordinated effort by a team of teachers, administrators, with input from the Southern Nevada Health District. Andy Cheney Environmental Health Supervisor, Southern Nevada Health District Ellen Dunne K–5 Science Project Facilitator, CCSD Instructional Design and Professional Learning Division Eileen Gilligan Elementary Science Coordinator, CCSD Instructional Design and Professional Learning Division Kim Krumland Risk and Environmental Services Department Director,
    [Show full text]
  • Lubricating Oil Composition and Additive Therefor Having Improved Wear Properties
    (19) TZZ ¥_T (11) EP 2 949 738 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.12.2015 Bulletin 2015/49 C10M 141/10 (2006.01) (21) Application number: 15170007.7 (22) Date of filing: 31.05.2015 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Lagona, Jason A. GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Richmond, VA 23225 (US) PL PT RO RS SE SI SK SM TR • Loper, John T. Designated Extension States: Richmond, VA 23233 (US) BA ME Designated Validation States: (74) Representative: Dunleavy, Kevin James MA Mendelsohn, Drucker & Dunleavy, P.C. p/o De Vries & Metman (30) Priority: 30.05.2014 US 201462005135 P Overschiestraat 180 01.05.2015 US 201514701899 1062 XK Amsterdam (NL) (71) Applicant: Afton Chemical Corporation Richmond, Virginia 23219 (US) (54) LUBRICATING OIL COMPOSITION AND ADDITIVE THEREFOR HAVING IMPROVED WEAR PROPERTIES (57) A compression-ignited engine lubricant and a compound or anhydride thereof, and optionally, (iv) a method for reducing engine wear. The lubricant includ- nonaromatic dicarboxylic acid or anhydride, wherein the ing, (a) a base oil; (b) oleamide; (c) zinc dihydrocarbyl hydrocarbyl group of the hydrocarbyl-dicarboxylic acid dithiophosphate; and (d) a functionalized dispersant. The or anhydride has a number average molecular weight of functionalized dispersant is made by reacting together greater than 1800 Daltons as determined by gel perme- (i) a hydrocarbyl-dicarboxylic acid or anhydride, (ii) a ation chromatography. polyamine, (iii) a dicarboxylcontaining fused aromatic EP 2 949 738 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 949 738 A1 Description RELATED APPLICATION 5 [0001] This application claims priority to provisional application Serial No.
    [Show full text]
  • Chemistry 1009 Lab Manual University of Louisiana at Monroe
    Chemistry 1009 Lab Manual University of Louisiana at Monroe Department of Chemistry 2010 Version 2.0 Contents Lab Session 1: Laboratory Safety Rules and Check In .................................................. 1 Fire, Injury, Spills and Cleanliness .............................................................................. 2 Desk Assignment Sheet (Chemistry 1009) .................................................................. 4 Commonly Used Equipment (not in the desk drawer)................................................. 5 Lab Session 2, Experiment 1: Introductory Exercises ................................................... 10 Report Form 1 .............................................................................................................. 17 Lab Session 3, Experiment 2: Oxygen ........................................................................... 18 Report Form 2 .............................................................................................................. 21 Lab Session 4, Experiment 3: Preparation of Sodium Chloride .................................... 22 Report Form 3 .............................................................................................................. 25 Lab Session 5, Experiment 4: Law of Definite Proportions .......................................... 26 Report Form 4 ........................................................................................................... 30 Lab Session 6, Experiment 5: Hydrogen and the Activity Series of Metals .................
    [Show full text]
  • OIL and Your Engine
    OIL and your engine Foreword Bearing failure, piston ring sticking, and excessive oil consumption are classic symptoms of oil-related engine failure. How do you avoid them? There are numerous ways, three of the most important being Scheduled Oil Sampling (S·O·S SM), regular maintenance of the lubrication system, and the use of correct lubricants. Following these recommendations can mean the difference between experiencing repeated oil related engine failure and benefiting from a productive and satisfactory engine life. This booklet attempts to tell the story of oil: what it is composed of and what its functions are, how to identify its contamination and degradation, typical consequences, and some preventive measures to help you protect your engine against the devastating effects of oil related engine failure. Understanding Oil Function Engine oil performs several basic functions in order to provide adequate lubrication. It works to keep the engine clean and free from rust and corrosion. It acts as a coolant and sealant; and it provides an oil film cushion that keeps metal-to- metal contact to a minimum, thereby reducing friction and wear. But these are only the basic functions of oil. It is the particular demands of a given application and the special conditions under which an oil is used that largely determine the numerous additional functions oil must perform. These additional functions make choosing the correct oil for the job vital. The selection of a suitable lubricating oil should be based on the engine performance requirements as specified by the manufacturer, as well as the application and the quality of the available fuel.
    [Show full text]