– by Julia Cipo, Holger Kersten –
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Project Report on ³INVENTORY MANAGEMENT´
A Project Report on ³INVENTORY MANAGEMENT´ SUBMITTED BY: Mujif Rahuman M. 520828621 Operations Management Submitted in fulfillment of the requirement of IVth Semester of MBA course, Sikkim Manipal University 1 Table of Contents INTRODUCTION INVENTORY MANAGEMENT««««««««2 SIEMENS«««««««««««««««««««««.........8 OBJECTIVES AND NEED OF SUPPLY CHAIN MANAGEMENT..16 ACTIVITIES/FUNCTIONS OF SCM IN SIEMENS«««««.20 INVENTORY CONTROL MANAGEMENT««««««««25 WAREHOUSE««««««««««««««««««««..43 TRANSPORTATION««««««««««««««««.«.45 DISTRIBUTION«««««««««««««««««««..48 PACKAGING AND LABELLING««««««««««««.53 CONCLUSION««««««««««««««««««««.59 2 INVENTORY MANAGEMENT 1. INTRODUCTION DEFINATION AND MEANING Inventory is a list of goods and materials, or those goods and materials themselves, held available in stock by a business. Inventory are held in order to manage and hide from the customer the fact that manufacture/supply delay is longer than delivery delay, and also to ease the effect of imperfections in the manufacturing process that lower production efficiencies if production capacity stands idle for lack of materials. The reasons for keeping stock All these stock reasons can apply to any owner or product stage. Buffer stock is held in individual workstations against the possibility that the upstream workstation may be a little delayed in providing the next item for processing. Whilst some processes carry very large buffer stocks, Toyota moved to one (or a few items) and has now moved to eliminate this stock type. Safety stock is held against process or machine failure in the hope/belief that the failure can be repaired before the stock runs out. This type of stock can be eliminated by programmes like Total Productive Maintenance Overproduction is held because the forecast and the actual sales did not match. -
Optical Timeline by Tony Oursler
Optical Timeline by Tony Oursler 1 Iris is thought to be derived from the RED Symyaz leads the fallen angels. Archimedes (c. 287212 b.c.) is said to Greek word for speaker or messenger. According to Enoch, they came to earth have used a large magnifying lens or Seth, the Egyptian god most associated of their own free will at Mount Hermon, burning-glass, which focused the suns Fifth century b.c. Chinese philosopher with evil, is depicted in many guises: descending like stars. This description rays, to set fire to Roman ships off Mo Ti, in the first description of the gives rise to the name Lucifer, “giver of Syracuse. camera obscura, refers to the pinhole as a black pig, a tall, double-headed figure light.” “collection place” and “locked treasure with a snout, and a serpent. Sometimes And now there is no longer any “I have seen Satan fall like lightning room.” he is black, a positive color for the difficulty in understanding the images in from heaven.” (Luke 10:1820) Egyptians, symbolic of the deep tones of mirrors and in all smooth and bright Platos Cave depicts the dilemma of fertile river deposits; at other times he is surfaces. The fires from within and from the uneducated in a graphic tableau of red, a negative color reflected by the without communicate about the smooth light and shadow. The shackled masses parched sands that encroach upon the surface, and from one image which is are kept in shadow, unable to move crops. Jeffrey Burton Russell suggests variously refracted. -
Mister Mary Somerville: Husband and Secretary
Open Research Online The Open University’s repository of research publications and other research outputs Mister Mary Somerville: Husband and Secretary Journal Item How to cite: Stenhouse, Brigitte (2020). Mister Mary Somerville: Husband and Secretary. The Mathematical Intelligencer (Early Access). For guidance on citations see FAQs. c 2020 The Author https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1007/s00283-020-09998-6 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Mister Mary Somerville: Husband and Secretary BRIGITTE STENHOUSE ary Somerville’s life as a mathematician and mathematician). Although no scientific learned society had a savant in nineteenth-century Great Britain was formal statute barring women during Somerville’s lifetime, MM heavily influenced by her gender; as a woman, there was nonetheless a great reluctance even toallow women her access to the ideas and resources developed and into the buildings, never mind to endow them with the rights circulated in universities and scientific societies was highly of members. Except for the visit of the prolific author Margaret restricted. However, her engagement with learned institu- Cavendish in 1667, the Royal Society of London did not invite tions was by no means nonexistent, and although she was women into their hallowed halls until 1876, with the com- 90 before being elected a full member of any society mencement of their second conversazione [15, 163], which (Societa` Geografica Italiana, 1870), Somerville (Figure 1) women were permitted to attend.1 As late as 1886, on the nevertheless benefited from the resources and social nomination of Isis Pogson as a fellow, the Council of the Royal networks cultivated by such institutions from as early as Astronomical Society chose to interpret their constitution as 1812. -
Humphry Davy: Science, Authorship, and the Changing Romantic
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2010-11-29 Humphry Davy: Science, Authorship, and the Changing Romantic Marianne Lind Baker Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the English Language and Literature Commons BYU ScholarsArchive Citation Baker, Marianne Lind, "Humphry Davy: Science, Authorship, and the Changing Romantic" (2010). Theses and Dissertations. 2647. https://scholarsarchive.byu.edu/etd/2647 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Title Page Humphry Davy: Science, Authorship, and the Changing ―Romantic I‖ Marianne Lind Baker A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Arts Nicholas Mason, Chair Leslee Thorne-Murphy Paul Westover Department of English Brigham Young University December 2010 Copyright © 2010 Marianne Baker All Rights Reserved Abstract ABSTRACT Humphry Davy: Science, Authorship, and the Changing ―Romantic I‖ Marianne Lind Baker Department of English Master of Arts In the mid to late 1700s, men of letters became more and more interested in the natural world. From studies in astronomy to biology, chemistry, and medicine, these ―philosophers‖ pioneered what would become our current scientific categories. While the significance of their contributions to these fields has been widely appreciated historically, the interconnection between these men and their literary counterparts has not. A study of the ―Romantic man of science‖ reveals how much that figure has in common with the traditional ―Romantic‖ literary figure embodied by poets like William Wordsworth and Samuel Taylor Coleridge. -
Steel Production Through Electrolysis: Impacts for Electricity Consumption 0, 0, 75
Font Family: Benton Sans 131, 176, 70 Steel production through electrolysis: impacts for electricity consumption 0, 0, 75 204, 102, 51 Adam Rauwerdink 144, 144, 144 VP, Business Development October 18, 2019 Font Family: A 3,000 year old formula Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 >2 144, 144, 144 Gt CO2 per year (8% of global emissions) Iron Age 1000 BC Digital Age 2019 2 Boston Metal | 2019 Font Family: Steel in 2018 Benton Sans 131, 176, 70 Aluminium is #2 at 1,800 64 million tonnes 0, 0, 75 million tonnes 204, 102, 51 70% 30% 144, 144, 144 Integrated Steel Mill Mini Mill (Iron ore new steel units) (Scrap recycled steel units) Source: World Steel Association 3 Boston Metal | 2019 Font Family: Integrated steel mill: material flow Benton Sans 131, 176, 70 0, 0, 75 204, 102, 51 144, 144, 144 4 Boston Metal | 2019 Font Family: Molten oxide electrolysis (MOE) is emissions free Benton Sans Molten Oxide Electrolysis (MOE) 131, 176, 70 Iron Ore Electricity Iron Oxygen 0, 0, 75 - Fe2O3 e Fe O2 204, 102, 51 144, 144, 144 No carbon in the process = No CO2 emitted Electricity decarbonization eliminates/reduces indirect emissions! 5 Boston Metal | 2019 Font Family: Changing the formula from coal to electricity Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 Molten Oxide Electrolysis (MOE) 144, 144, 144 Iron Ore Electricity Iron Oxygen - Fe2O3 e Fe O2 6 Boston Metal | 2019 Font Family: MOE is more energy efficient Benton -
On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics. -
Siemens AG Governance & Markets Investor Relations GM IR 2 Werner-Von-Siemens-Str
Dear Ladies and Gentlemen, We are very thankful for the possibility to introduce our viewpoints in the dialogue you have invited us to participate in. As a German Issuer, we are predominantly speaking for the German market with its highly developed and specific standards regarding share issuance request proposals. From our market perception, there is no particular need to reduce the applicable limit for general share issuances without preemptive rights from 20 percent to 10 percent in Germany, as there are no cases known to us where issuers have abused their authorizations to the disadvantage of their shareholders. As a general rule, issuers in Germany rely on § 186 para. 3 sentence 4 of the German Stock Corporation Act (AktG), where there is a clear legal limit of 10 percent for cash capital increases without preemptive rights. Should the existing, well balanced system be additionally burdened by different rules in the European Policy, there will be mismatches between the 10 percent proposed by ISS and the 10 percent as stated in the law, not least due to the fact that most issuers have various authorizations for different types of Authorized Capital and Conditional Capital (in Germany primarily used for the issuance of convertible and warrant bonds) in place that customarily are not proposed in one AGM but in different AGMs with different authorization periods applicable as a result. One example may highlight this: in 2015 we exchanged bond with warrant units issued in 2012 under an authorization of 2010 in order to substitute warrants relating to Siemens and Osram shares with new warrants exclusively relating to Siemens shares under an authorization of 2015. -
Weberˇs Planetary Model of the Atom
Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S. -
Electrochemistry of Fuel Cell - Kouichi Takizawa
ENERGY CARRIERS AND CONVERSION SYSTEMS – Vol. II - Electrochemistry of Fuel Cell - Kouichi Takizawa ELECTROCHEMISTRY OF FUEL CELL Kouichi Takizawa Tokyo Electric Power Company, Tokyo, Japan Keywords : electrochemistry, fuel cell, electrochemical reaction, chemical energy, anode, cathode, electrolyte, Nernst equation, hydrogen-oxygen fuel cell, electromotive force Contents 1. Introduction 2. Principle of Electricity Generation by Fuel Cells 3. Electricity Generation Characteristics of Fuel Cells 4. Fuel Cell Efficiency Glossary Bibliography Biographical Sketch Summary Fuel cells are devices that utilize electrochemical reactions to generate electric power. They are believed to give a significant impact on the future energy system. In particular, when hydrogen can be generated from renewable energy resources, it is certain that the fuel cell should play a significant role. Even today, some types of fuel cells have been already used in practical applications such as combined heat and power generation applications and space vehicle applications. Though research and development activities are still required, the fuel cell technology is one of the most important technologies that allow us to draw the environment friendly society in the twenty-first century. This section describes the general introduction of fuel cell technology with a brief overview of the principle of fuel cells and their historical background. 1. Introduction A fuel cellUNESCO is a system of electric power – generation,EOLSS which utilizes electrochemical reactions. It can produce electric power by inducing both a reaction to oxidize hydrogen obtained by reforming natural gas or other fuels, and a reaction to reduce oxygen in the air, each occurringSAMPLE at separate electrodes conne CHAPTERScted to an external circuit. -
Teaching H. C. Ørsted's Scientific Work in Danish High School Physics
UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Ida Marie Monberg Hindsholm Teaching H. C. Ørsted's Scientific Work in Danish High School Physics Masterʹs thesis Department of Science Education 19 July 2018 Master's thesis Teaching H. C. Ørsted’s Scientific Work in Danish High School Physics Submitted 19 July 2018 Author Ida Marie Monberg Hindsholm, B.Sc. E-mail [email protected] Departments Niels Bohr Institute, University of Copenhagen Department of Science Education, University of Copenhagen Main supervisor Ricardo Avelar Sotomaior Karam, Associate Professor, Department of Science Education, University of Copenhagen Co-supervisor Steen Harle Hansen, Associate Professor, Niels Bohr Institute, University of Copenhagen 1 Contents 1 Introduction . 1 2 The Material: H. C. Ørsted's Work . 3 2.1 The Life of Hans Christian Ørsted . 3 2.2 Ørsted’s Metaphysical Framework: The Dynamical Sys- tem............................. 6 2.3 Ritter and the failure in Paris . 9 2.4 Ørsted’s work with acoustic and electric figures . 12 2.5 The discovery of electromagnetism . 16 2.6 What I Use for the Teaching Sequence . 19 3 Didactic Theory . 20 3.1 Constructivist teaching . 20 3.2 Inquiry Teaching . 22 3.3 HIPST . 24 4 The Purpose and Design of the Teaching Sequence . 27 4.1 Factual details and lesson plan . 28 5 Analysis of Transcripts and Writings . 40 5.1 Method of Analysis . 40 5.2 Practical Problems . 41 5.3 Reading Original Ørsted's Texts . 42 5.4 Inquiry and Experiments . 43 5.5 "Role play" - Thinking like Ørsted . 48 5.6 The Reflection Corner . 51 5.7 Evaluation: The Learning Objectives . -
Heute Sollen Wieder 2.000 Tonnen Sicher Ankommen
*OIBMU Vorwort . 7 Hinweise . 8 Marktübersicht Europa . 10 VDV-Kooperationsbörse Schienengüterverkehr . 18 Check! Einkaufsführer . 21 Marktstudie: Europäische Bahnen Albanien . 28 Belgien . 32 Bosnien und Herzegovina . 46 Bulgarien . 52 Dänemark . 62 Deutschland . 78 Estland . .552 Finnland . .570 shͲtĂŐĞŶŵĞŝƐƚĞƌ ŚƌŝƐƟĂŶĞĐŬĞƌĨƌĞƵƚƐŝĐŚ ƺďĞƌĚŝĞhŶƚĞƌƐƚƺƚnjƵŶŐ ĚƵƌĐŚĚĂƐZĂŝůtĂƚĐŚͲ Heute sollen wieder 2.000 ^LJƐƚĞŵďĞŝƐĞŝŶĞƌ ƚćŐůŝĐŚĞŶƌďĞŝƚ͘ Tonnen sicher ankommen. Mit System zu mehr Sicherheit. Räder, Bremssohlen, Überladungen u.v.m. detailliert auf Knopfdruck ĞůĞŬƚƌŽŶŝƐĐŚƺďĞƌŵŝƩĞůƚ͘DŝƚƵŶƐĞƌĞŶtĂŐŽŶͲ^ĐĂŶͲ^LJƐƚĞŵĞŶnjƵƌ &ĂŚƌnjĞƵŐĚŝĂŐŶŽƐĞǀŽŶ'ƺƚĞƌǁĂŐĞŶŬĞŝŶĞsŝƐŝŽŶ͕ƐŽŶĚĞƌŶZĞĂůŝƚćƚ͘ DŝƚĚŝĞƐĞƌŝŶŶŽǀĂƟǀĞŶ>ƂƐƵŶŐ ŚĂďĞŶǁŝƌĞŝŶƵŐĞĂƵĨĚŝĞ ^ŝĐŚĞƌŚĞŝƚŝŵ'ƺƚĞƌǀĞƌŬĞŚƌ͘ WIR HABEN EIN AUGE DARAUF www.rail-watch.com &VSPQÊJTDIF#BIOFOhh *OIBMU Frankreich . 576 Griechenland . 612 Irland . 620 Italien . 626 Kroatien . 684 Lettland . 692 Litauen . 706 Luxemburg . 728 Mazedonien. 736 Montenegro. 742 Niederlande. 748 Norwegen . 780 Österreich . 790 Polen . 844 Portugal . 952 Rumänien . 958 &VSPQÊJTDIF#BIOFOhh *OIBMU Schweden . .990 Schweiz . .1026 Serbien . .1082 Slowakei . .1092 Slowenien . .1116 Spanien . .1122 Tschechien. .1150 Türkei. .1202 Ungarn . .1208 Vereinigtes Königreich . .1236 Anhang Firmenindex. .1282 Personenindex . .1303 Abkürzungen . .1350 5$,/&21=(37 /ŚƌWĂƌƚŶĞƌŝŵŝƐĞŶďĂŚŶďĞƚƌŝĞď ŝůĚƵŶŐƐƚƌćŐĞƌ͘ƌďĞŝƚƐƐĐŚƵƚnj͘ĞƌĂƚƵŶŐ ǁǁǁ͘ƌĂŝůĐŽŶnjĞƉƚ͘ĚĞ͘ϬϱϬϯϭͬϵϲϬϭϳϭϯ͘ŝŶĨŽΛƌĂŝůĐŽŶnjĞƉƚ͘ĚĞ &VSPQÊJTDIF#BIOFOhh 7PSXPSU Liebe Leser, Sie halten die mittlerweile zehnte Ausgabe des -
Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b.