William Siemens Was a Member of the Founding Generation of the Siemens Company
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EJ Air Pollution
www.spireresearch.com Air Pollution China’s public health danger © 2007 Spire Research and Consulting Pte Ltd Air Pollution – China’s public health danger The rapid pace of economic growth in the Asia Pacific region has been accompanied by resource depletion and environmental degradation. Air is the first element to get tainted by industrialization, with air quality becoming an increasingly important public health issue. China in particular has grappled with air pollution and frequent bouts of “haze” in recent years. Chinese smog has been recorded not only in Hong Kong but as far afield as America and Europe. Spire takes a look at how this impacts government, business and society. Air raid The Great Smog of London in December 1952 caused over 4,000 deaths, a result of rapid industrialization and urbanization. Dr Robert Waller, who worked at St Bartholomew's Hospital in the early 1950s, believed that a shortage of coffins and high sales of flowers were the first indications that many people were being killed. "The number of deaths per day during and just after that smog was three to four times the normal level," he said. Figure 1: Death rate with concentrations of The smog, which lasted for five days, smoke was so bad that it infiltrated hospital wards. The death toll was not disputed by the authorities, but exactly how many people perished as a direct result of the fog is unknown. Many who died already suffered from chronic respiratory or cardiovascular complaints. Without the fog, though, they might not have died so early. Mortality from bronchitis and pneumonia increased more than seven-fold as a result of the fog (see Figure 1). -
A Project Report on ³INVENTORY MANAGEMENT´
A Project Report on ³INVENTORY MANAGEMENT´ SUBMITTED BY: Mujif Rahuman M. 520828621 Operations Management Submitted in fulfillment of the requirement of IVth Semester of MBA course, Sikkim Manipal University 1 Table of Contents INTRODUCTION INVENTORY MANAGEMENT««««««««2 SIEMENS«««««««««««««««««««««.........8 OBJECTIVES AND NEED OF SUPPLY CHAIN MANAGEMENT..16 ACTIVITIES/FUNCTIONS OF SCM IN SIEMENS«««««.20 INVENTORY CONTROL MANAGEMENT««««««««25 WAREHOUSE««««««««««««««««««««..43 TRANSPORTATION««««««««««««««««.«.45 DISTRIBUTION«««««««««««««««««««..48 PACKAGING AND LABELLING««««««««««««.53 CONCLUSION««««««««««««««««««««.59 2 INVENTORY MANAGEMENT 1. INTRODUCTION DEFINATION AND MEANING Inventory is a list of goods and materials, or those goods and materials themselves, held available in stock by a business. Inventory are held in order to manage and hide from the customer the fact that manufacture/supply delay is longer than delivery delay, and also to ease the effect of imperfections in the manufacturing process that lower production efficiencies if production capacity stands idle for lack of materials. The reasons for keeping stock All these stock reasons can apply to any owner or product stage. Buffer stock is held in individual workstations against the possibility that the upstream workstation may be a little delayed in providing the next item for processing. Whilst some processes carry very large buffer stocks, Toyota moved to one (or a few items) and has now moved to eliminate this stock type. Safety stock is held against process or machine failure in the hope/belief that the failure can be repaired before the stock runs out. This type of stock can be eliminated by programmes like Total Productive Maintenance Overproduction is held because the forecast and the actual sales did not match. -
Technical Details of the Elliott 152 and 153
Appendix 1 Technical Details of the Elliott 152 and 153 Introduction The Elliott 152 computer was part of the Admiralty’s MRS5 (medium range system 5) naval gunnery project, described in Chap. 2. The Elliott 153 computer, also known as the D/F (direction-finding) computer, was built for GCHQ and the Admiralty as described in Chap. 3. The information in this appendix is intended to supplement the overall descriptions of the machines as given in Chaps. 2 and 3. A1.1 The Elliott 152 Work on the MRS5 contract at Borehamwood began in October 1946 and was essen- tially finished in 1950. Novel target-tracking radar was at the heart of the project, the radar being synchronized to the computer’s clock. In his enthusiasm for perfecting the radar technology, John Coales seems to have spent little time on what we would now call an overall systems design. When Harry Carpenter joined the staff of the Computing Division at Borehamwood on 1 January 1949, he recalls that nobody had yet defined the way in which the control program, running on the 152 computer, would interface with guns and radar. Furthermore, nobody yet appeared to be working on the computational algorithms necessary for three-dimensional trajectory predic- tion. As for the guns that the MRS5 system was intended to control, not even the basic ballistics parameters seemed to be known with any accuracy at Borehamwood [1, 2]. A1.1.1 Communication and Data-Rate The physical separation, between radar in the Borehamwood car park and digital computer in the laboratory, necessitated an interconnecting cable of about 150 m in length. -
Sir William Thomson, Baron Kelvin of Largs and the Institution of Engineering and Technology
Chapter 6 Sir William Thomson, Baron Kelvin of Largs and the Institution of Engineering and Technology S. Hale Institution of Engineering and Technology, United Kingdom. Abstract Sir William Thomson, Baron Kelvin of Largs, was a member of the Society of Telegraph Engineers and the Institution of Electrical Engineers (the precursors of the current Institu- tion of Engineering and Technology) for 36 years. Elected as the President three times, Lord Kelvin’s involvement with the institution has had a lasting effect on the Institution of Engineering and Technology (IET). His bust (Fig. 1) is displayed at the IET’s London head- quarters at Savoy Place and his portrait hangs in the lecture theatre alongside those of other engineering luminaries such as Alessandro Volta and Michael Faraday. Every year, the IET also hosts a lecture in memory of Kelvin. This chapter will explore the background to the IET, the history of Kelvin’s relationship with the Institution and the impact that he had upon the Institution as a whole. 1 Introduction The history of the IET dates back to the late nineteenth century. It was founded on 17 May 1871 as the Society of Telegraph Engineers (STE), in response to the rapid development of a new communications technology, electrical telegraphy. 1.1 Early days of telegraphy Before the advent of electrical telegraphy, transmitting communications over long distances without the use of written correspondence relied on visual aids such as fire beacons, smoke signals and flags, and later, mechanised systems such as the semaphore system created by Claude Chappé in 1793 [1]. The idea of using electricity to send messages was first proposed in the 1750s [2] but it was not until the beginning of the nineteenth century that experiments began in earnest. -
SSA-434534: Memory Protection Bypass Vulnerability in SIMATIC S7-1200 and S7-1500 CPU Families
Siemens Security Advisory by Siemens ProductCERT SSA-434534: Memory Protection Bypass Vulnerability in SIMATIC S7-1200 and S7-1500 CPU Families Publication Date: 2021-05-28 Last Update: 2021-09-14 Current Version: V1.1 CVSS v3.1 Base Score: 8.1 SUMMARY SIMATIC S7-1200 and S7-1500 CPU products contain a memory protection bypass vulnerability that could allow an attacker to write arbitrary data and code to protected memory areas or read sensitive data to launch further attacks. Siemens has released updates for several affected products and strongly recommends to update to the latest versions. Siemens recommends specific countermeasures for products where updates are not, or not yet available. AFFECTED PRODUCTS AND SOLUTION Affected Product and Versions Remediation SIMATIC Drive Controller family: Update to V2.9.2 or later version All versions < V2.9.2 https://support.industry.siemens.com/cs/ww/en/ view/109773914/ SIMATIC ET 200SP Open Controller CPU Update to V21.9 or later version 1515SP PC2 (incl. SIPLUS variants): https://support.industry.siemens.com/cs/ww/en/ All versions < V21.9 view/109759122/ SIMATIC ET 200SP Open Controller CPU See recommendations from section Workarounds 1515SP PC (incl. SIPLUS variants): and Mitigations All versions SIMATIC S7-1200 CPU family (incl. SIPLUS vari- Update to V4.5.0 or later version ants): https://support.industry.siemens.com/cs/ww/en/ All versions < V4.5.0 view/109793280/ SIMATIC S7-1500 CPU family (incl. related ET200 Update to V2.9.2 or later version CPUs and SIPLUS variants): https://support.industry.siemens.com/cs/ww/en/ -
Qualitative and Quantitative Analysis of Siemens Ag
QUALITATIVE AND QUANTITATIVE ANALYSIS OF SIEMENS AG Authors (Universitat de Barcelona): Patrícia Amor Agut Clara Valls Moreno Gemma Casserras EDITOR: Jordi Marti Pidelaserra (Dpt. Comptabilitat, Universitat Barcelona) 1 Patrícia Amor 14961785 Clara Valls 14959906 Gemma Casserras 14965090 Alessandra Cortegiani (Bloc 3) 14991480 2 BLOC 1: SIEMENS AG BLOC 2: Risk Analysis BLOC 3: Profitability Analysis 3 BLOC 1 SIEMENS AG BASIC INFORMATION 4 Index 1. Introduction 2. Company History 3. Vision, Mission and Strategy 3.1. Vision 3.2. Mission 3.3. Strategy 4. Company Structure 4.1. Board of directors 4.2. Management by sector 5. Company Sectors 5.1. Energy Sector 5.2. Industry Sector 5.3. Healthcare Sector 5.4. Infrastructure and cities Sector 5.5. Financial Services 5.6. Other activities 5.7. Revenues importance 6. Shareholders 7. Stakeholders 8. Competitors 5 1. Introduction: Siemens AG is a German multinational engineering and electronics conglomerate company headquartered in Munich, Germany. It is the largest based in Europe. Founded to manufacture and install telegraphic systems, Germany-based Siemens AG has prospered and grown over 165 years to become a multifaceted electronics and electrical engineering enterprise, and one of the most international corporations in the world. Founded to manufacture and install telegraphic systems, Germany-based Siemens AG has prospered and grown over 165 years to become a multifaceted electronics and electrical engineering enterprise, and one of the most international corporations in the world. The Siemens name has been synonymous with cutting-edge technologies and continuous growth in profitability. With their wide array of products, systems and services, they are world leaders in information and communications, automation and control, power, medical solutions, transportation and lighting. -
Joint Spin-Off Report
This report is a non-binding convenience translation of the German-language original report, which is the legally relevant document under German law. Joint Spin-off Report of the Managing Boards of Siemens Aktiengesellschaft, Berlin and Munich, and OSRAM Licht AG, Munich, on the Spin-off of a Majority Participation in OSRAM pursuant to Section 127 sentence 1 German Transformation Act (Umwandlungsgesetz) I. Introduction ................................................................................................................ 11 II. Starting situation – The legal entities involved in the Spin-off and the Siemens Group prior to the Spin-off ....................................................................................... 14 1. Overview of the Siemens Group ................................................................................ 14 2. Siemens AG as the transferring entity...................................................................... 16 a) Registered office and fiscal year .................................................................... 16 b) Capital stock and shares ................................................................................ 16 c) Warrant bonds ................................................................................................ 16 d) Stock-based compensation programs and employee participation programs – authorization to purchase treasury shares .............................. 17 e) Shareholder structure and trading on the stock exchange ......................... 18 f) Managing -
1 Fighting Smog in Los Angeles the Air Pollution Was So Thick You Could
Fighting Smog in Los Angeles The air pollution was so thick you could cut it with a knife. I remember looking at the outside window and saying, “Oh my, there’s the smog.” Here we are. You should be able to see the mountains, you should be able to see our beautiful city, but you can’t see anything. And it’s destroying not only our health. But our economy. From 50 to 70 percent of the junk that’s in the air comes from our own cars. Mine and yours. Alexis: Hi, I’m Alexis Pedrick. Lisa: And I’m Lisa Berry Drago, and this is Distillations, coming to you from the Science History Institute. Alexis: Each episode of Distillations takes a deep dive into a moment of science-related history in order to shed some light on the present. Today we’re talking about smog in Los Angeles, in the final installment of a three-part series about environmental success stories. Lisa: Our last two episodes, “Whatever Happened to the Ozone Hole?” and “Whatever Happened to Acid Rain?” are available on our website: Distillations DOT ORG, through Apple Podcasts, or wherever else you get your podcasts! Alexis: If you live in Los Angeles, or even if you’ve just visited, you know all about smog. But what you might not know is that half a century ago smog in Los Angeles was already completely unbearable even though they had far fewer cars. As of June 2018, the United States has one of the strictest car emission standards in the world. -
UNIVERSITY of CALIFORNIA Santa Barbara Bourgeois Like Me
UNIVERSITY OF CALIFORNIA Santa Barbara Bourgeois Like Me: Architecture, Literature, and the Making of the Middle Class in Post- War London A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in English by Elizabeth Marly Floyd Committee in charge: Professor Maurizia Boscagli, Chair Professor Enda Duffy Professor Glyn Salton-Cox June 2019 The dissertation of Elizabeth Floyd is approved. _____________________________________________ Enda Duffy _____________________________________________ Glyn Salton-Cox _____________________________________________ Maurizia Boscagli, Committee Chair June 2019 Bourgeois Like Me: Architecture, Literature, and the Making of the Middle Class in Post- War Britain Copyright © 2019 by Elizabeth Floyd iii ACKNOWLEDGEMENTS This project would not have been possible without the incredible and unwavering support I have received from my colleagues, friends, and family during my time at UC Santa Barbara. First and foremost, I would like to thank my committee for their guidance and seeing this project through its many stages. My ever-engaging chair, Maurizia Boscagli, has been a constant source of intellectual inspiration. She has encouraged me to be a true interdisciplinary scholar and her rigor and high intellectual standards have served as an incredible example. I cannot thank her enough for seeing potential in my work, challenging my perspective, and making me a better scholar. Without her support and guidance, I could not have embarked on this project, let alone finish it. She has been an incredible mentor in teaching and advising, and I hope to one day follow her example and inspire as many students as she does with her engaging, thoughtful, and rigorous seminars. -
Sir William Siemens (1823–1883)
Sir William Siemens (1823–1883) Wilhelm Siemens (1823–1883), who changed his first name to William after moving to England, was born on April 4, 1823, in Lenthe near Hanover, Germany. He accompanied his older brother Werner von Siemens, who was then serving in the Prussian army, to Magdeburg, where he attended trade school. After dropping out of a practical engineering program in Magdeburg and abandoning the study of natural sciences at the University of Göttingen, William spent the spring and summer of 1843 in England. Here he succeeded in patenting the silver and gold-plating technique developed by Werner and selling the rights to the English company of Elkington for £1,600 or roughly 30,000 marks. This success not only helped the brothers out of major financial difficulties; it also encouraged William to consider moving to England. Werner supported the idea, and William traveled to England again in January 1844. However, the quick success of the previous year could not be immediately repeated. Only gradually did the situation improve. From 1849, William held a permanent position as an engineer in Birmingham. At the same time, he also worked on his own inventions, among them a water meter that later proved very successful. In 1850, William took over the management of the newly established agency of Siemens & Halske in London, although its beginnings were somewhat inauspicious. The manufacture and laying of submarine telegraph cables opened up new business opportunities. William’s good contacts with engineering circles and government authorities facilitated the otherwise difficult entry into the highly developed English telegraph market, where private operating companies were in competition with one another. -
Siemens AG Governance & Markets Investor Relations GM IR 2 Werner-Von-Siemens-Str
Dear Ladies and Gentlemen, We are very thankful for the possibility to introduce our viewpoints in the dialogue you have invited us to participate in. As a German Issuer, we are predominantly speaking for the German market with its highly developed and specific standards regarding share issuance request proposals. From our market perception, there is no particular need to reduce the applicable limit for general share issuances without preemptive rights from 20 percent to 10 percent in Germany, as there are no cases known to us where issuers have abused their authorizations to the disadvantage of their shareholders. As a general rule, issuers in Germany rely on § 186 para. 3 sentence 4 of the German Stock Corporation Act (AktG), where there is a clear legal limit of 10 percent for cash capital increases without preemptive rights. Should the existing, well balanced system be additionally burdened by different rules in the European Policy, there will be mismatches between the 10 percent proposed by ISS and the 10 percent as stated in the law, not least due to the fact that most issuers have various authorizations for different types of Authorized Capital and Conditional Capital (in Germany primarily used for the issuance of convertible and warrant bonds) in place that customarily are not proposed in one AGM but in different AGMs with different authorization periods applicable as a result. One example may highlight this: in 2015 we exchanged bond with warrant units issued in 2012 under an authorization of 2010 in order to substitute warrants relating to Siemens and Osram shares with new warrants exclusively relating to Siemens shares under an authorization of 2015. -
Sitraffic SST5
siemens.com/mobility Sitraffic SST5 Outstation for the control of motorway traffic management systems Managing traffic with Sitraffic SST5 outstations Enhanced safety and improved traffic flows Tried and tested: on freeways and motorways Siemens technology in action Traffic management systems on motorways can be Building on many years of experience in designing used to warn drivers of congestion, black ice or fog on outstations, Siemens has launched Sitraffic SST5, the the section ahead, thus helping reduce accident numbers. newest generation of outstations for the control of traffic The speed limits set by the system make traffic flow management systems. The SST5 complies fully with the more smoothly and evenly, which increases throughput current TLS 2012 standard (Technische Lieferbedingungen at critically high traffic loads and minimizes the risk für Streckenstationen), which stipulates the technical of congestion and accidents. The outstations also serve delivery conditions for outstations. As the relevant to record traffic and environmental data and control standard for outstations in Germany, Austria and Slovenia, the variable message signs on major interurban roads. the TLS is also the relevant technical standard in many other countries around the world. Our Sitraffic SST5 is also in full conformity with the CE standards currently in force in Europe. 2 The heart of the traffic management system: The Sitraffic SST5 outstation The Sitraffic SST5 outstation works as the central field-level controller of traffic management systems. The numerous interfaces of the control system allow the link-up of a wide variety of data terminals, such as detectors, environmental sensors, display panel as well as other operational components.