Capítulo 4 Castas Peeters April2018.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics
bioRxiv preprint doi: https://doi.org/10.1101/134064; this version posted May 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Convergent evolution of the army ant syndrome and congruence in big-data phylogenetics Marek L. Borowiec Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, California, 95616, USA Current address: School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, Arizona, 85287, USA E-mail: [email protected] Abstract The evolution of the suite of morphological and behavioral adaptations underlying the eco- logical success of army ants has been the subject of considerable debate. This ”army ant syn- drome” has been argued to have arisen once or multiple times within the ant subfamily Do- rylinae. To address this question I generated data from 2,166 loci and a comprehensive taxon sampling for a phylogenetic investigation. Most analyses show strong support for convergent evolution of the army ant syndrome in the Old and New World but certain relationships are sensitive to analytics. I examine the signal present in this data set and find that conflict is di- minished when only loci less likely to violate common phylogenetic model assumptions are considered. I also provide a temporal and spatial context for doryline evolution with time- calibrated, biogeographic, and diversification rate shift analyses. This study underscores the need for cautious analysis of phylogenomic data and calls for more efficient algorithms em- ploying better-fitting models of molecular evolution. -
Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics
Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology Syst. Biol. 68(4):642–656, 2019 © The Author(s) 2019. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: [email protected] DOI:10.1093/sysbio/syy088 Advance Access publication January 3, 2019 Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics , , ,∗ MAREK L. BOROWIEC1 2 3 1Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, University of Idaho, Moscow, ID 83844, USA; 2School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ 85287, USA; and 3Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA ∗ Correspondence to be sent to: Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, University of Idaho, Moscow, ID 83844, USA; Downloaded from https://academic.oup.com/sysbio/article-abstract/68/4/642/5272507 by Arizona State University West 2 user on 24 July 2019 E-mail: [email protected]. Received 24 May 2018; reviews returned 9 November 2018; accepted 15 December 2018 Associate Editor: Brian Wiegmann Abstract.—Army ants are a charismatic group of organisms characterized by a suite of morphological and behavioral adaptations that includes obligate collective foraging, frequent colony relocation, and highly specialized wingless queens. This army ant syndrome underlies the ecological success of army ants and its evolution has been the subject of considerable debate. It has been argued to have arisen once or multiple times within the ant subfamily Dorylinae. To address this question in a phylogenetic framework I generated data from 2166 loci and a comprehensive taxon sampling representing all 27 genera and 155 or approximately 22% of doryline species. -
Mechanisms for the Evolution of Superorganismality in Ants
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2021 Mechanisms for the Evolution of Superorganismality in Ants Vikram Chandra Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons MECHANISMS FOR THE EVOLUTION OF SUPERORGANISMALITY IN ANTS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Vikram Chandra June 2021 © Copyright by Vikram Chandra 2021 MECHANISMS FOR THE EVOLUTION OF SUPERORGANISMALITY IN ANTS Vikram Chandra, Ph.D. The Rockefeller University 2021 Ant colonies appear to behave as superorganisms; they exhibit very high levels of within-colony cooperation, and very low levels of within-colony conflict. The evolution of such superorganismality has occurred multiple times across the animal phylogeny, and indeed, origins of multicellularity represent the same evolutionary process. Understanding the origin and elaboration of superorganismality is a major focus of research in evolutionary biology. Although much is known about the ultimate factors that permit the evolution and persistence of superorganisms, we know relatively little about how they evolve. One limiting factor to the study of superorganismality is the difficulty of conducting manipulative experiments in social insect colonies. Recent work on establishing the clonal raider ant, Ooceraea biroi, as a tractable laboratory model, has helped alleviate this difficulty. In this dissertation, I study the proximate evolution of superorganismality in ants. Using focussed mechanistic experiments in O. biroi, in combination with comparative work from other ant species, I study three major aspects of ant social behaviour that provide insight into the origin, maintenance, and elaboration of superorganismality. -
Hymenoptera: Formicidae: Ponerinae)
Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) Item Type text; Electronic Dissertation Authors Schmidt, Chris Alan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 23:29:52 Link to Item http://hdl.handle.net/10150/194663 1 MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF PONERINE ANTS (HYMENOPTERA: FORMICIDAE: PONERINAE) by Chris A. Schmidt _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Chris A. Schmidt entitled Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/3/09 David Maddison _______________________________________________________________________ Date: 4/3/09 Judie Bronstein -
The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior
Zootaxa 3817 (1): 001–242 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3817.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A3C10B34-7698-4C4D-94E5-DCF70B475603 ZOOTAXA 3817 The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior C.A. SCHMIDT1 & S.O. SHATTUCK2 1Graduate Interdisciplinary Program in Entomology and Insect Science, Gould-Simpson 1005, University of Arizona, Tucson, AZ 85721-0077. Current address: Native Seeds/SEARCH, 3584 E. River Rd., Tucson, AZ 85718. E-mail: [email protected] 2CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. Current address: Research School of Biology, Australian National University, Canberra, ACT, 0200 Magnolia Press Auckland, New Zealand Accepted by J. Longino: 21 Mar. 2014; published: 18 Jun. 2014 C.A. SCHMIDT & S.O. SHATTUCK The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior (Zootaxa 3817) 242 pp.; 30 cm. 18 Jun. 2014 ISBN 978-1-77557-419-4 (paperback) ISBN 978-1-77557-420-0 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. -
Blanchard, B. D. & Moreau, C. S., Evolution
ORIGINAL ARTICLE doi:10.1111/evo.13117 Defensive traits exhibit an evolutionary trade-off and drive diversification in ants Benjamin D. Blanchard1,2,3 and Corrie S. Moreau2 1Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637 2Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, Illinois 60605 3E-mail: bblanchard@fieldmuseum.org Received July 9, 2016 Accepted November 1, 2016 Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade- off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. KEY WORDS: Ancestral state reconstruction, defense, evolutionary trade-off, Formicidae, trait-based diversification. All species experience constraints arising from developmental, Trait trade-offs influence various evolutionary processes, in- functional, and energetic limitations. These limitations have fea- cluding patterns of morphological divergence (DeWitt et al. -
(Insecta: Hymenoptera), Part II—Cerapachyinae, Aenictinae, Dorylinae, Leptanillinae, Amblyoponinae, Ponerinae, Ectatomminae and Proceratiinae
Zootaxa 3860 (1): 001–046 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3860.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:FDFD1014-8DDA-4EED-A385-95FA4F964CFC Generic Synopsis of the Formicidae of Vietnam (Insecta: Hymenoptera), Part II—Cerapachyinae, Aenictinae, Dorylinae, Leptanillinae, Amblyoponinae, Ponerinae, Ectatomminae and Proceratiinae KATSUYUKI EGUCHI1,4, BUI TUAN VIET2 & SEIKI YAMANE3 1Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan 2Vietnam National Museum of Nature, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam 3Haruyama-cho 1054-1, Kagoshima-shi, 899-2704, Japan 4Corresponding author. E-mail: [email protected] / [email protected] Abstract Of the subfamilies and genera known from Vietnam, the following taxa are treated in this second part of the series entitled “Generic Synopsis of the Formicidae of Vietnam”: CERAPACHYINAE: Cerapachys, Simopone; AENICTINAE: Aenic- tus; DORYLINAE: Dorylus; LEPTANILLINAE: Leptanilla, Protanilla; AMBLYOPONINAE: Myopopone, Mystrium, Opamyrma, Prionopelta, Stigmatomma; PONERINAE: Anochetus, Brachyponera, Buniapone, Centromyrmex, Crypto- pone, Diacamma, Ectomomyrmex, Euponera, Harpegnathos, Hypoponera, Leptogenys, Mesoponera, Odontomachus, Odontoponera, Parvaponera, Platythyrea, Ponera, Pseudoneoponera; ECTATOMMINAE: Gnamptogenys; PROCER- ATIINAE: Discothyrea, Probolomyrmex, Proceratium. For each of these subfamilies we provide keys to genera (when there is more than one genus) known from Vietnam. For each genus we provide a synopsis and a list of Vietnamese species. Key words: dorylomorph, leptanillomorph, poneromorph, Indo-China, key Introduction This is the second part of the series entitled “Generic Synopsis of the Formicidae of Vietnam”. The first part covers Myrmicinae and Pseudomyrmicinae (Eguchi et al. -
Download PDF File (32KB)
Myrmecological News 21 Digital supplementary material Digital supplementary material to PEETERS , C. & ITO , F. 2015: Wingless and dwarf workers underlie the ecological suc- cess of ants (Hymenoptera: Formicidae) . – Myrmecological News 21: 117-130. Appendix S1. List of 286 ant genera in which head width of workers was measured (maximum width of head capsule excluding eyes, in full-face view), as well as 21 eusocial bees and 25 eusocial wasps for which data were obtained in the literature. Species for which results are not indicated have worker heads wider than 1 mm, i.e., there are no "dwarf" workers. All data are summarized in Fig. 2. * measured from photographs available on www.antweb.org FORMICIDAE Aenictus sp. < 0.5 mm (see BOLTON 2015) Asphinctanilloides amazona* < 0.5 mm Cerapachys sp. < 0.5 mm Agroecomyrmecinae Cylindromyrmex brevitarsus* < 1 mm Ankylomyrma coronacantha* Dorylus laevigatus < 1 mm Tatuidris tatusia* Eciton sp. Labidus spininodis* < 1 mm Amblyoponinae Leptanilloides biconstricta* < 0.5 mm Adetomyrma caputleae* < 1 mm Neivamyrmex sp. cr01 * < 0.5 mm Amblyopone australis < 1 mm Nomamyrmex esenbeckii* < 1 mm Apomyrma stygia* < 0.5 mm Simopone occulta* < 1 mm Bannapone scrobiceps* < 1 mm Sphinctomyrmex cribratus* < 0.5 mm Concoctio concenta* < 0.5 mm Tanipone aversa* < 1 mm Myopopone castanea Vicinopone conciliatrix* < 0.5 mm Mystrium camillae < 0.5 mm Onychomyrmex hedleyi < 0.5 mm Ectatomminae Opamyrma hungvuong* < 0.5 mm Ectatomma sp. Prionopelta kraepelini < 0.5 mm Gnamptogenys cribrata < 1 mm Stigmatomma besucheti* < 0.5 mm Rhytidoponera sp. < 1 mm Xymmer sp. mg03 * < 0.5 mm Typhlomyrmex pusillus* < 0.5 mm Aneuretinae Formicinae Aneuretus simoni* < 0.5 mm Acanthomyops sp. -
Chapter 16. the Importance of Field Inventories And
Chapter 16. The importance of field inventories and associated studies to understand biodiversity patterns: The case of the Beanka Forest, Melaky Region, western Madagascar Steven M. Goodman1 & Laurent Gautier2 Key words: biological inventories, species new to 1Field Museum of Natural History, 1400 South Lake science, new distributional data, evolutionary history, Shore Drive, Chicago, Illinois 60605, USA and conservation priorities, public attention Association Vahatra, BP 3972, Antananarivo 101, Madagascar E-mail: [email protected] Résumé détaillé 2Conservatoire et Jardin botaniques de la Ville de L’île de Madagascar est connue pour présenter une Genève et Laboratoire de systématique et biodiversité variété climatique et géologique exceptionnelle, qui de l’Université de Genève, Case Postale 60, 1292 se traduit par une remarquable hétérogénéité biotique Chambésy, Switzerland engendrant une diversité des biomes et des types de E-mail: [email protected] végétation. Les inventaires de flore et de faune qui y ont été menés dans les dernières dizaines d’années ont permis la découverte de centaines d’espèces Abstract nouvelles pour la science. Contrairement à ce à quoi on aurait pu s’attendre au vu de l’intensité du travail In a country such as Madagascar, with its d’inventaire mené sur l’île, le taux de découvertes, extraordinary variation in climate and geology, d’un niveau sans précédent, se maintient. Dans ce associated vegetational variation, distinct biomes, chapitre basé sur les travaux récemment menés and notable biotic heterogeneity, floristic and dans la forêt sèche décidue sur karst de Beanka faunistic inventories over the past few decades (jusqu’alors à peine connue), nous discutons de have disclosed many hundreds of new species to l’importance de tels inventaires pour la découverte de science. -
Mukherjee, A., Roy, U.S. 2021. Role of Physicochemical
Munis Entomology & Zoology Mun. Ent. Zool. 366 https://www.munisentzool.org/ (January, 2021) ISSN 1306-3022 © MRG ___________________________________________________________ ROLE OF PHYSICOCHEMICAL PARAMETERS ON DIVERSITY AND ABUNDANCE OF GROUND–DWELLING, DIURNAL ANT SPECIES OF DURGAPUR GOVERNMENT COLLEGE CAMPUS, WEST BENGAL, INDIA Anneswa Mukherjee* and Utpal Singha Roy** * Post Graduate Department of Conservation Biology, Durgapur Government College, J. N. Avenue, Durgapur – 713214, Paschim Bardhaman, West Bengal, INDIA. ORCID ID: 0000- 0002-8737-8385 ** Department of Zoology, P. R. Thakur Government College, Thakurnagar – 743287, North 24 Parganas, West Bengal, INDIA. E-mail: [email protected], ORCID ID: 0000-0001- 8683-1056 [Mukherjee, A. & Roy, U. S. 2021. Role of physicochemical parameters on diversity and abundance of ground–dwelling, diurnal ant species of Durgapur Government College Campus, West Bengal, India. Munis Entomology & Zoology, 16 (1): 366-380] ABSTRACT: The present study was conducted to enlist diurnal, ground dwelling ant species from Durgapur Government College Campus, West Bengal, India. Seven different physicochemical parameters were analyzed to comment on the possible influence of these parameters on the occurrence pattern, abundance and niche breadth of ant species. Pitfall method was applied to collect 31 ant species under 18 genera and 5 subfamilies within a study span of three months (April – June). The most diverse ant subfamily recorded in the present study was Myrmicinae (47% species) followed by Formicinae (28% species) while the most diverse genus was Camponotus (6 species) followed by genera Crematogaster (4 species) and Monomorium (3 species). Camponotus compressus (Fabricius) was recorded as the most abundant ant species followed by Monomorium pharaonis (Linnaeus). Positive correlations were found between ant diversity and ambient relative humidity, soil moisture, soil conductivity and soil organic carbon whereas negative correlations were noted between ant diversity and ambient temperature, solar irradiance and pH. -
Hymenoptera: Formicidae: Ponerinae) from the African Continent Abdulmeneem Joma University of Texas at El Paso, [email protected]
University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2014-01-01 Revision of the Ant Genus Bothroponera (Hymenoptera: Formicidae: Ponerinae) From the African Continent Abdulmeneem Joma University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Joma, Abdulmeneem, "Revision of the Ant Genus Bothroponera (Hymenoptera: Formicidae: Ponerinae) From the African Continent" (2014). Open Access Theses & Dissertations. 1267. https://digitalcommons.utep.edu/open_etd/1267 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. REVISION OF THE ANT GENUS BOTHROPONERA (HYMENOPTERA: FORMICIDAE: PONERINAE) FROM THE AFRICAN CONTINENT Abdulmeneem M. Alnour Joma Department of Biological Sciences APPROVED: William P. Mackay, Ph.D., Chair Carl S. Lieb, Ph.D. Eli Greenbaum, Ph.D. Michael Moody, Ph.D. Richard Langford, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Abdulmeneem M. Alnour Joma 2014 Dedication I dedicate this dissertation to my family, to my parents Mohamed Alnour and Khadija Mohamed Ali, who raised me and encouraged me thoroughout my life to be able to achieve the highest level of education. To my wife Hawa Algatroni and children Rawan and Mustafa, who always supported me wherever my study took me, filling my life with love and patience. To my brothers: Abdalrahman, Mahmoud, Abdalnour, Ali, Ibrahim and my sisters: Aisha, Fatima, Zainab, Zohra, Imbarka, Mouna, who did not neglect any opportunity to encourage me to continue my scientific journey at all times. -
Formicidae, Ponerinae)
Insect. Soc. 51 (2004) 123–130 0020-1812/04/020123-08 Insectes Sociaux DOI 10.1007/s00040-003-0711-3 © Birkhäuser Verlag, Basel, 2004 Research article Patterns in foraging and nesting ecology in the neotropical ant, Gnamptogenys moelleri (Formicidae, Ponerinae) R. Cogni1, 2 and P. S. Oliveira 2,* 1 Department of Ecology and Evolutionary Biology, University of Michigan, Natural Science Building, Rm. 2060, Ann Arbor, MI 48109-1048, USA, e-mail: [email protected] 2 Departamento de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, CP6109, Campinas-SP, 13083-970, Brazil, e-mail: [email protected] Received 30 May 2003; revised 22 September 2003; accepted 3 October 2003. Summary. This study provides quantitative field data on the one must determine both the individual and social compo- natural history and foraging behaviour of the Neotropical nents of the foraging behaviour, and the ecological setting in bromeliad-nesting ant Gnamptogenys moelleri (Ponerinae) which the colony occurs (Traniello, 1989). Therefore, the in a sandy plain forest in Southeast Brazil. The ant nested on development of models and hypotheses about ant foraging different bromeliad species and the nests were more fre- strategies is constrained by the small amount of quantitative quently found in bigger bromeliads. The species used a wide data on foraging behaviour in different species (Duncan and array of invertebrates in its diet, hunting for live prey and Crewe, 1994). In the Neotropics, where ant abundance and scavenging the majority of the items from dead animals. The number of species are remarkable, data on basic ecological food items varied greatly in size (1 to 26 mm).