Formicidae, Ponerinae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Newly Discovered Sister Lineage Sheds Light on Early Ant Evolution
Newly discovered sister lineage sheds light on early ant evolution Christian Rabeling†‡§, Jeremy M. Brown†¶, and Manfred Verhaagh‡ †Section of Integrative Biology, and ¶Center for Computational Biology and Bioinformatics, University of Texas, 1 University Station C0930, Austin, TX 78712; and ‡Staatliches Museum fu¨r Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany Edited by Bert Ho¨lldobler, Arizona State University, Tempe, AZ, and approved August 4, 2008 (received for review June 27, 2008) Ants are the world’s most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have trou- bled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morpho- logical and phylogenetic evidence we suggest that these special- EVOLUTION ized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environ- ments like tropical soils over great spans of time. -
The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance. -
James K. Wetterer
James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Hymenoptera: Formicidae)
FORAGING AND RECRUITMENT IN PONERINE ANTS: SOLITARY HUNTING IN THE QUEENLESS OPHTHALMOPONE BERTHOUDI (HYMENOPTERA: FORMICIDAE) BY CHRISTIAN PEETERS* AND ROBIN CREWE Department of Zoology, University of the Witwatersrand, Johannesburg 2001, South Africa. INTRODUCTION Recent studies have indicated that, in ponerine ants, a eusocial organization is viable without the presence of a queen caste. In Rhytidoponera (Haskins and Whelden, 1965; Ward, 1983; Pamilo et aL, 1985) and Ophthalmopone berthoudi (Peeters and Crewe, 1985), some of the workers (= gamergates; Peeters and Crewe, 1984) engage in sexual reproduction. Although there is still reproductive division of labor within the colonies, the loss of the queen caste represents a retrogression since the replacement egg-layers lack spe- cialized ovaries. It is of interest to discover whether other aspects of the colonial organization of permanently queenless ponerines have changed with this modification in the reproductive structure. One consequence of this change is that queenless colonies have low levels of relatedness among nest inhabitants (there are many mated laying workers), and Ward (1981, 1983) has suggested that this leads to lower levels of altruistic behavior. Thus Ward would expect colony defence and foraging efficiency to be less well-developed in these species. The natural history of more species of queenless ponerines needs to be documented in order to test the validity of this opinion. The genus Ophthalmopone belongs to the tribe Ponerini (sub- tribe Poneriti), and is derived from Pachycondyla (W. L. Brown, pers. comm.). O. berthoudi Forel occurs in Angola, Zambia, Zim- babwe, Mozambique, and the eastern part of South Africa (Prinz, 1978). The workers are monomorphic, and it is exclusively termito- phagous. -
Fossil Ants (Hymenoptera: Formicidae): Ancient Diversity and the Rise of Modern Lineages
Myrmecological News 24 1-30 Vienna, March 2017 Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages Phillip BARDEN Abstract The ant fossil record is summarized with special reference to the earliest ants, first occurrences of modern lineages, and the utility of paleontological data in reconstructing evolutionary history. During the Cretaceous, from approximately 100 to 78 million years ago, only two species are definitively assignable to extant subfamilies – all putative crown group ants from this period are discussed. Among the earliest ants known are unexpectedly diverse and highly social stem- group lineages, however these stem ants do not persist into the Cenozoic. Following the Cretaceous-Paleogene boun- dary, all well preserved ants are assignable to crown Formicidae; the appearance of crown ants in the fossil record is summarized at the subfamilial and generic level. Generally, the taxonomic composition of Cenozoic ant fossil communi- ties mirrors Recent ecosystems with the "big four" subfamilies Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae comprising most faunal abundance. As reviewed by other authors, ants increase in abundance dramatically from the Eocene through the Miocene. Proximate drivers relating to the "rise of the ants" are discussed, as the majority of this increase is due to a handful of highly dominant species. In addition, instances of congruence and conflict with molecular- based divergence estimates are noted, and distinct "ghost" lineages are interpreted. The ant fossil record is a valuable resource comparable to other groups with extensive fossil species: There are approximately as many described fossil ant species as there are fossil dinosaurs. The incorporation of paleontological data into neontological inquiries can only seek to improve the accuracy and scale of generated hypotheses. -
Hymenoptera: Formicidae: Ponerinae)
Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) Item Type text; Electronic Dissertation Authors Schmidt, Chris Alan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 23:29:52 Link to Item http://hdl.handle.net/10150/194663 1 MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF PONERINE ANTS (HYMENOPTERA: FORMICIDAE: PONERINAE) by Chris A. Schmidt _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Chris A. Schmidt entitled Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/3/09 David Maddison _______________________________________________________________________ Date: 4/3/09 Judie Bronstein -
Behavioral Ecology of the Neotropical Termite-Hunting Ant Pachycondyla (: Termitopone) Marginata: Colony Founding, Group-Raiding and Migratory Patterns
Behav Ecol Sociobiol (1995) 37 : 373 383 © Springer-Verlag 1995 Inara R. Lcal • Paulo S. Oliveira Behavioral ecology of the neotropical termite-hunting ant Pachycondyla (: Termitopone) marginata: colony founding, group-raiding and migratory patterns Received: 19 November 1994 / Accepted after revision: 7 May 1995 Abstract This study provides the first detailed field Key words Colony founding" Termite-hunting • account of colony founding, group-raiding and migra- Group raiding" Migration - Ponerine ants tory habits in the neotropical termite-hunting ant Pachycondyla marginata, in a semi-deciduous forest in south-east Brazil. New colonies can originate by hap- Introduction lometrosis, pleometrosis, or colony fission. Incipient colonies with multiple foundresses persisted longer in Ants (Formicidae) exhibit almost all degrees of prey the field, and most excavated nests contained more than one dealated female. A total of 202 group raids by P specialization; some species may include in their diets many different types of arthropods while others may marginata were registered, and in all cases the raided prey on a relatively restricted taxonomic group termite species was Neocapritermes opacus. Nearly 20 % of the workers within a colony engage with raiding (Wheeler 1910). Members of the subfamily Ponerinae normally feed on soil arthropods such as collembolans, activity. Colonies of P marginata hunt for termites approximately every 2-3 weeks, and group-raids may centipedes, millipedes, other ants, and termites (H611dobler and Wilson 1990). Many of these prey last for more than 24 h. Target termite nests are up to 38 m from the ant colony, and occasionally two nests organisms possess very sophisticated defense mecha- are simultaneously raided by one ant colony. -
Newly Discovered Sister Lineage Sheds Light on Early Ant Evolution
Newly discovered sister lineage sheds light on early ant evolution Christian Rabeling†‡§, Jeremy M. Brown†¶, and Manfred Verhaagh‡ †Section of Integrative Biology, and ¶Center for Computational Biology and Bioinformatics, University of Texas, 1 University Station C0930, Austin, TX 78712; and ‡Staatliches Museum fu¨r Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany Edited by Bert Ho¨lldobler, Arizona State University, Tempe, AZ, and approved August 4, 2008 (received for review June 27, 2008) Ants are the world’s most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have trou- bled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morpho- logical and phylogenetic evidence we suggest that these special- EVOLUTION ized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environ- ments like tropical soils over great spans of time. -
Use of Ground-Dwelling Arthropods As Bioindicators of Ecological Condition in Grassland and Forest Vegetation at Ethekwini Municipality in Kwazulu- Natal
Use of ground-dwelling arthropods as bioindicators of ecological condition in grassland and forest vegetation at eThekwini Municipality in KwaZulu- Natal by ZABENTUNGWA T. HLONGWANE 211521338 Thesis submitted in fulfilment of the academic requirements for the degree of Master of Science in the Discipline of Ecological science, School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg South Africa 2018 i Contents List of tables ........................................................................................................................................... iii List of figures ......................................................................................................................................... iv List of appendices ................................................................................................................................... vi Preface ................................................................................................................................................... vii Declaration 1: Plagiarism ..................................................................................................................... viii Acknowledgements ................................................................................................................................ ix Abstract ................................................................................................................................................... x -
Hymenoptera, Formicidae: Amblyoponinae, Ectatomminae, Ponerinae) of Grube Messel, Germany: High Biodiversity in the Eocene G
Journal of Systematic Palaeontology, Vol. 10, Issue 4, December 2012, 725–753 The poneromorph ants (Hymenoptera, Formicidae: Amblyoponinae, Ectatomminae, Ponerinae) of Grube Messel, Germany: high biodiversity in the Eocene G. M. Dlusskya∗ and S. Wedmannb aDepartment of Evolution, Biological Faculty, M.V.Lomonosov Moscow State University, Vorobjovy gory, 119992, Moscow, Russia; bForschungsstation Grube Messel, Senckenberg Forschungsinstitut und Naturmuseum, Markstraße 35, D-64409, Messel, Germany (Received 17 September 2010; accepted 27 March 2011; printed 5 December 2012) Ants are a very successful group among insects, but the course of evolution of their biodiversity is still unclear. This study sheds light on ant diversification during the Eocene. Analysis of the ant taphocoenosis of the fossil site Grube Messel, Germany (47 Ma) yielded three poneromorph subfamilies and 22 new species in six genera, four of which are new: Pseudectatomma gen. nov., Cephalopone gen. nov., Cyrtopone gen. nov. and Messelepone gen. nov. Only one extant genus, Pachycondyla, is present in the taphocoenosis from Messel. The high diversity of poneromorph ants from Messel is very striking in comparison with middle to late Eocene European ambers. A significantly lower proportion of species in ambers can be assigned to poneromorph ants, and fewer poneromorph species are known from European ambers than from Messel. A possible gradual decline of the diversity of poneromorphs from the Eocene to the Miocene seems to be detectable worldwide. These insights are discussed in the context of the morphology and ecology of Poneromorpha and Formicomorpha. The proportion of ant castes in amber seems to indicate that already during the Eocene poneromorphs inhabited preferably litter and soil, whereas formicomorphs preferred the arboreal realm. -
The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior
Zootaxa 3817 (1): 001–242 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3817.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A3C10B34-7698-4C4D-94E5-DCF70B475603 ZOOTAXA 3817 The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior C.A. SCHMIDT1 & S.O. SHATTUCK2 1Graduate Interdisciplinary Program in Entomology and Insect Science, Gould-Simpson 1005, University of Arizona, Tucson, AZ 85721-0077. Current address: Native Seeds/SEARCH, 3584 E. River Rd., Tucson, AZ 85718. E-mail: [email protected] 2CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. Current address: Research School of Biology, Australian National University, Canberra, ACT, 0200 Magnolia Press Auckland, New Zealand Accepted by J. Longino: 21 Mar. 2014; published: 18 Jun. 2014 C.A. SCHMIDT & S.O. SHATTUCK The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior (Zootaxa 3817) 242 pp.; 30 cm. 18 Jun. 2014 ISBN 978-1-77557-419-4 (paperback) ISBN 978-1-77557-420-0 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.