The Dynamics of Reproductive Dominance in Dinosaur Ants

Total Page:16

File Type:pdf, Size:1020Kb

The Dynamics of Reproductive Dominance in Dinosaur Ants The Dynamics of Reproductive Dominance in Dinosaur Ants Claire Louise Asher Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Biology September 2013 ii Image © Dian Thompson 2013 The candidate confirms that the work submitted is her own and that appropriate credit has been given within the thesis where reference has been made to the work of others. The contribution of the candidate and the other authors to this work has been explicitly indicated below. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Claire Asher to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2013 The University of Leeds, Claire Asher iii Acknowledgements Professional Acknowledgements I would like to thank the Natural Environment Research Council (NERC) (NE/G012121/1) and the Institute of Zoology, for funding this research. I also thank the Brazilian Government for their help in facilitating the collection and transport of colonies to the UK (transported under permits 10BR004553/DF and 11BR006471/DF from the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais). The work for several chapters of this thesis includes collaborations with Dr Jose O Dantas (JOD), Dr Aline Andrade (AA), Natália Dantas (ND), Luzicleia Sousa (LS), Rafael Figueredo (RF), Benjamin White (BW), Dr Afsaneh Maleki (AfM), Dr Heinz Himmelbaur (HH), Dr Anna Ferrer Salvador (AFS), Dr André Minoche (AnM), Dr Francisco Câmara Ferreira (FCF), Dr Pedro Ferreira (PF) and Dr Anna Vlasova (AV). Their contributions are explicitly detailed below. Chapter Two: JOD assisted in locating and collecting ant colonies in Aracaju. AA, ND, LS and RF assisted in field observations of foraging behaviour, ND also assisted in collection of colonies in Campo Formoso. Chapters Three and Four: JOD assisted in collecting ant colonies in Aracaju. Chapter Five: BW performed some behavioural observations and collected video data. Chapters Six and Seven: HH and AF sequenced DNA and RNA samples, HH, AM and FCF assembled the genome, AM assembled and normalised the transcriptome data. AM and AV performed functional annotation of the transcriptome. My own contributions, fully and explicitly indicated in the thesis, have been as follows. Collecting and transporting ant colonies from Brazil to the UK, as well as set-up and daily care of ant colonies in the UK (all chapters). Nest ecology measurements and behavioural observations of natural foraging in Campo Formoso (chapter two), behavioural observations of aggression (all chapters) and division of labour (chapter three and six) in the laboratory in Aracaju, Leeds and London, as well as statistical iv analyses of these data. All egg policing experiments (chapter five), all RFID set-up and data analysis including developing R code for this task (chapters two and six). Behavourial observations of allogrooming, and statistical analysis of data generated by myself and BW (chapter four). DNA and RNA extractions, including protocol optimisation (chapter six and seven). Statistical analysis of the transcriptome data, BLAST analyses against the Apis mellifera genome, correlational analyses of foraging activity and gene expression (chapter six). Generation and analysis of toolkit list (chapter seven). My supervisors Prof William Hughes and Dr Seirian Sumner have provided feedback on experimental design, data analysis and drafts of all chapters. As a collaborator on this project, Dr Fabio Nascimento provided invaluable assistance during field trips to Brazil. My assessors Dr Lesley Morrell and Dr Keith Hamer gave useful feedback during my 9- month and 2-year vivas. I would like to thank the members of the Hughes and Sumner labs, past and present, for their support, comments and advice throughout my PhD. In no particular order: Rowena Mitchell, Pete Graystock, Dr Crystal Frost, Dr Sophie Evison, Dr Adam Smith, Dr Kat Roberts, Dr Judith Slaa, Dr Paula Chappell, Henry Fergusson-Gow, Thibault Lengronne, Emily Bell, Dr Eli Leadbeater, Dr Inti Pedroso and Dr Ian Warren. In addition, thanks to Dr Kate Cibrowski for her tireless support with optimising laboratory protocols for RNA and DNA extraction. Several informal meetings have also provided feedback on experimental design and data interpretation including the London Social Insect group, and the Behavioural and Population Ecology (BPE) and Evolutionary and Molecular Ecology (EME) theme groups at the Institute of Zoology. Personal Acknowledgements A massive thank you to my family, and particularly my parents, Nick and Jane, for their tireless support, both financial and emotional, throughout my PhD and before. I also owe a huge thank-you to my friends at the Universidade Federal De Sergipe, in particular Fernanda Veira, Hans Kelstrup and Becky Matter and Tiago Santos da Silva, who went out of their way to accommodate me during my fieldwork. I owe a special thanks to Fernanda and her family, who gave me a place to stay and a friend when I v needed one most and who helped me navigate the logistics of fieldwork in Brazil. Likewise, Aline Andrade provided me with a place to stay in Campo Formoso, welcomed me into her home and went way over and above to make sure my trip went well. And Natália Dantas, who stayed with me in a remote field site, dealt with appalling weather and access issues, helped make sure my field work ran as smoothly as possible, and most of all provided companionship during my visit. I also want to thank some of my friends at the University of Leeds and the Institute of Zoology, who I have not already mentioned, for friendship, support and laughter throughout my PhD, in particular Katie Arundel, Clare Duncan, Terri Freemantle, Liz Elliot, Helen Beeston and James Lloyd. I would also like to thank Craig Roscoe, my A-level biology teacher at Newbury College, who inspired me to study biology at university. Finally, some of my oldest friends, for their support and understanding during my fieldwork and PhD as a whole, for skyping with me when I was in the middle of a field, for long chats, and also for putting up with me being a terrible friend during the more stressful parts of this project, thanks to Lynne Shone and Gemma Dodd. You are the best friends anybody could ask for. I would also like to thank Dian Thompson for the front cover image of this thesis. vi Abstract Social insects represent one of the pinnacles of social evolution, and their huge ecological success may be attributable to the sophisticated division of labour and conflict resolution observed in their societies. Eusocial societies exist along a continuum from facultative and primitive (simple) societies in which subordinates retain reproductive totipotency into adulthood, to advanced societies in which the sterile worker caste are committed to their subordinate role. Queenless ponerine ants are unusual, however, exhibiting a simple social structure but having recently diverged from an advanced ancestor. They therefore represent a powerful model system for understanding the roles of evolutionary history, ecology and sociality on behavioural and physiological division of labour. Here, I investigate the influence of reproductive dominance on division of labour and social cohesion in the queenless dinosaur ant, Dinoponera quadriceps. I also present the first description of their natural foraging and nesting ecology. Finally, I investigate the physiological control of division of labour and behavioural plasticity, and explore the relative contribution of conserved and novel genes in the evolution of simple society in this species. Dinosaur ants exhibit remarkable behavioural plasticity despite their advanced ancestry; individual behaviour is strongly influenced by future reproductive prospects and learned aspects of the social environment. They exhibit a discontinuous social hierarchy, in which the reproductive female is transcriptionally distinct from her subordinates, with the largest expressional differences observed in relation to reproductive physiology. Their advanced ancestry is evident both behaviourally and transcriptionally; they exhibit few differences in gene expression within the ancestral worker caste as well as advanced behaviours such as allogrooming, which has been co-opted for a role in social cohesion since their reversion to simple society. Dinosaur ants reveal the relative influences of social behaviour and evolutionary history in shaping the behavioural and physiological characteristics of eusocial societies. vii Table of Contents Acknowledgements ..........................................................................................................iii Abstract............................................................................................................................vi Table of Contents ............................................................................................................vii List of Tables.................................................................................................................... xii List of Figures ................................................................................................................. xiii Chapter 1 Introduction ............................................................................................14 1.1 Overview................................................................................................................14
Recommended publications
  • Kin Recognition in Protists and Other Microbes
    Kin Recognition in Protists and Other Microbes Kin Recognition in Protists and Other Microbes: Genetics, Evolution, Behavior and Health By Guillermo Paz-y-Miño-C and Avelina Espinosa Kin Recognition in Protists and Other Microbes: Genetics, Evolution, Behavior and Health By Guillermo Paz-y-Miño-C, Avelina Espinosa This book first published 2018 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2018 by Guillermo Paz-y-Miño-C, Avelina Espinosa All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-0764-5 ISBN (13): 978-1-5275-0764-7 TABLE OF CONTENTS Acknowledgements ................................................................................... vii Preface ...................................................................................................... viii Chapter One ................................................................................................. 1 Kin Recognition: Synopsis and the Advent of Protists Models Chapter Two .............................................................................................. 14 The Genetics of Kin Recognition: From Many Cells to Single Cells Chapter Three ...........................................................................................
    [Show full text]
  • Workers' Extra-Nest Behavioral Changes During Colony
    Neotrop Entomol (2014) 43:115–121 DOI 10.1007/s13744-013-0193-6 ECOLOGY, BEHAVIOR AND BIONOMICS Workers’ Extra-Nest Behavioral Changes During Colony Fission in Dinoponera quadriceps (Santschi) JMEDEIROS,AARAÚJO Depto de Fisiologia, PPG em Psicobiologia, Lab de Biologia Comportamental, Univ Federal do Rio Grande do Norte, Natal, RN, Brasil Keywords Abstract Dependent colony foundation, Ant colonies can reproduce by two strategies: independent foundation, intraspecific competition, Ponerinae wherein the queen starts a new colony alone, and dependent foundation, Correspondence in which workers assist the queen. In the queenless species Dinoponera A Araújo, Depto de Fisiologia, PPG em quadriceps (Santschi), the colony reproduces obligatorily by fission, a type Psicobiologia, Lab de Biologia Comportamental, Univ Federal do Rio of dependent foundation, but this process is not well understood. This Grande do Norte, Natal, RN, Brasil; study describes a colony fission event of D. quadriceps in the field and [email protected] analyzes the influence of the fission process on workers’ extra-nest be- Edited by Kleber Del Claro – UFU havior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, Received 26 July 2013 and accepted 19 conflict stage, and post-conflict stage. The colony was initially monodomic December 2013 Published online: 18 February 2014 and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. * Sociedade Entomológica do Brasil 2014 After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter’s disappearance. Colony fission affected workers’ extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage.
    [Show full text]
  • List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
    List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Том 16. Вып. 2 Vol. 16. No. 2
    РОССИЙСКАЯ АКАДЕМИЯ НАУК Южный научный центр RUSSIAN ACADEMY OF SCIENCES Southern Scientific Centre CAUCASIAN ENTOMOLOGICAL BULLETIN Том 16. Вып. 2 Vol. 16. No. 2 Ростов-на-Дону 2020 Кавказский энтомологический бюллетень 16(2): 381–389 © Caucasian Entomological Bulletin 2020 Contribution of wet zone coconut plantations and non-agricultural lands to the conservation of ant communities (Hymenoptera: Formicidae) in Sri Lanka © R.K.S. Dias, W.P.S.P. Premadasa Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600 Sri Lanka. E-mails: [email protected], [email protected] Abstract. Agricultural practices are blamed for the reduction of ant diversity on earth. Contribution of four coconut plantations (CP) and four non-agricultural lands (NL) for sustaining diversity and relative abundance of ground-dwelling and ground-foraging ants was investigated by surveying them from May to October, 2018, in a CP and a NL in Minuwangoda, Mirigama, Katana and Veyangoda in Gampaha District that lies in the wet zone, Sri Lanka. Worker ants were surveyed by honey baiting and soil sifting along two transects at three, 50 m2 plots in each type of land. Workers were identified using standard methods and frequency of each ant species observed by each method was recorded. Percentage frequency of occurrence observed by each method, mean percentage frequency of occurrence of each ant species and proportional abundance of each species in each ant community were calculated. Species richness recorded by both methods at each CP was 14–19 whereas that recorded at each NL was 17–23. Shannon-Wiener Diversity Index values (Hʹ, CP: 2.06–2.36; NL: 2.11–2.56) and Shannon- Wiener Equitability Index values (Jʹ, CP: 0.73–0.87; NL: 0.7–0.88) showed a considerable diversity and evenness of ant communities at both types of lands.
    [Show full text]
  • Estudo Comparativo Da Fauna De Comensais Nos Formigueiros De Três
    Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, v. 15, n. 2, p. 377-391, maio-ago. 2020 Estudo comparativo da fauna de comensais nos formigueiros de três espécies de grande tamanho da mirmecofauna brasileira (Hymenoptera: Formicidae) Comparative study of the fauna of commensals in the nests of three large species of Brazilian ants (Hymenoptera: Formicidae) Ivone de Jesus Sena MoreiraI | Charles Darwin Ferreira CruzI | Anny Kelly Cantanhede FernandesI | Jacques Hubert Charles DelabieI, II | Gabriela Castaño-MenesesIII | Cléa dos Santos Ferreira MarianoI IUniversidade Estadual de Santa Cruz. Ilhéus, Bahia, Brasil IICentro de Pesquisas do Cacau. Ilhéus, Bahia, Brasil IIIUniversidad Nacional Autónoma de México. Querétaro, México Resumo: O ambiente interno de um formigueiro mantém condições homeostáticas, permitindo a sobrevivência de outros animais, além de a colônia ser um lugar complexo e com um sistema bem estruturado de defesa. Ninhos de formigas se tornam adequados para a sobrevivência e a reprodução de inúmeros organismos, que podem os utilizar apenas como abrigo ou até mesmo se alimentar dos restos das formigas. Os substratos de formigueiros de Dinoponera lucida, Dinoponera gigantea (Ponerinae) e Paraponera clavata (Paraponerinae) foram coletados nos municípios de Belmonte, Bahia, e Caxias, Maranhão. Foram, assim, amostrados três ninhos de D. lucida, quatro de D. gigantea e um de P. clavata. Os animais de maior tamanho foram coletados diretamente no substrato, colocado, em seguida, em funis de Berlese durante sete dias para extração da mesofauna. Nossos dados mostraram que existe maior diversidade de invertebrados associados ao ninho de P. clavata do que aos de D. lucida e D. gigantea, provavelmente por este possuir volume maior e oferecer diversidade maior de locais para reprodução e nidificação de numerosas pequenas espécies animais.
    [Show full text]
  • Lepeletier) (Anthophila
    Acta Biol. Par., Curitiba, 48 (1-2): 21-31. 2019 21 Additions to morphology and nesting biology of a neotropical cetridine bee, Melacentris dorsata (Lepeletier) (Anthophila) Adições à morfologia e à biologia da nidificação de uma espécie neotropical de Centridini, Melanocentris dorsata (Lepeletier) (Anthophila) SEBASTIÃO LAROCA1 SANDOR CHRISTIANO BUYS2 & PAUL DECELLES3 The name Melacentris was created by MOURE (1995) to accomodate a group of bee previously called as Melanocentris, since this name was a synonymous of Ptilotopus due to the designation by SANDHOUSE (1943) of Centris atra (which is a Ptilotopus) as the type species of Melanocentris. In our paper (LAROCA, REYNAUD DOS SANTOS & SCHWARTZ FILHO, 1993) in which we studied several life history aspects of this species, we used the old name of this species, Melanocentris dorsata. Among several aspects, we postulated that Ptilotopus and Melanocentris together are a monophylectic group, Ptilotopus being a Melacentris-derived group (called by us in that occasion as Melanocentris). Our suspecion was based on morphological similarities amoung the groups and in the fact 1 Professor Sênior do setor de Ciências Biológica da Universidade Federal do Paraná (Curitiba, PR). E- mail: [email protected]. 1 e 2 colaboradores do Laboratório de Biodiversidade Entomológica do Instituto Oswaldo Cruz (RJ), 3 Professor of Biology at Johnson County Community College, Overland Park, Kansas (USA). 22 Acta Biol. Par., Curitiba, 48 (1-2): 21-31. 2019. that besides Ptilotopus only one species — Melacentris thoracica (Lepelitier) — constructs its nest in arboreal nests of termites. Centris is a relatively diversified genus of medium to large bees. In neotropical sites they are quiet common in the Brazilian “cerrado” (a type of savanna) and other open vegetations as well as in forest habitats.
    [Show full text]
  • Sistemática Y Ecología De Las Hormigas Predadoras (Formicidae: Ponerinae) De La Argentina
    UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS PRISCILA ELENA HANISCH Directores de tesis: Dr. Andrew Suarez y Dr. Pablo L. Tubaro Consejero de estudios: Dr. Daniel Roccatagliata Lugar de trabajo: División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires, Marzo 2018 Fecha de defensa: 27 de Marzo de 2018 Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Resumen Las hormigas son uno de los grupos de insectos más abundantes en los ecosistemas terrestres, siendo sus actividades, muy importantes para el ecosistema. En esta tesis se estudiaron de forma integral la sistemática y ecología de una subfamilia de hormigas, las ponerinas. Esta subfamilia predomina en regiones tropicales y neotropicales, estando presente en Argentina desde el norte hasta la provincia de Buenos Aires. Se utilizó un enfoque integrador, combinando análisis genéticos con morfológicos para estudiar su diversidad, en combinación con estudios ecológicos y comportamentales para estudiar la dominancia, estructura de la comunidad y posición trófica de las Ponerinas. Los resultados sugieren que la diversidad es más alta de lo que se creía, tanto por que se encontraron nuevos registros durante la colecta de nuevo material, como porque nuestros análisis sugieren la presencia de especies crípticas. Adicionalmente, demostramos que en el PN Iguazú, dos ponerinas: Dinoponera australis y Pachycondyla striata son componentes dominantes en la comunidad de hormigas. Análisis de isótopos estables revelaron que la mayoría de las Ponerinas ocupan niveles tróficos altos, con excepción de algunas especies arborícolas del género Neoponera que dependerían de néctar u otros recursos vegetales.
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • The Treeness of the Tree of Historical Trees of Life
    RESEARCH ARTICLE The treeness of the tree of historical trees of life 1 2 3 1 Marie Fisler , CeÂdric CreÂmière , Pierre Darlu , Guillaume LecointreID * 1 UMR 7205 CNRS-MNHN-SU-EPHE « Institut de SysteÂmatique, Evolution et Biodiversite », deÂpartement « Origines & E volution », MuseÂum National d'Histoire Naturelle, Paris, France, 2 MuseÂe d'Histoire Naturelle du Havre, Place du vieux marcheÂ, Le Havre, France, 3 UMR 7206 CNRS-MNHN-UPD « Eco-anthropologie et Ethnobiologie », deÂpartement « Hommes, Nature et SocieÂteÂs », MuseÂum National d'Histoire Naturelle, Paris, France a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 This paper compares and categorizes historical ideas about trees showing relationships among biological entities. The hierarchical structure of a tree is used to test the global con- sistency of similarities among these ideas; in other words we assess the ªtreenessº of the OPEN ACCESS tree of historical trees. The collected data are figures and ideas about trees showing rela- Citation: Fisler M, CreÂmière C, Darlu P, Lecointre G tionships among biological entities published or drawn by naturalists from 1555 to 2012. (2020) The treeness of the tree of historical trees of They are coded into a matrix of 235 historical trees and 141 descriptive attributes. From the life. PLoS ONE 15(1): e0226567. https://doi.org/ most parsimonious ªtreeº of historical trees, treeness is measured by consistency index, 10.1371/journal.pone.0226567 retention index and homoplasy excess ratio. This tree is used to create sets or categories of Editor: Marc Robinson-Rechavi, Universite de trees, or to study the circulation of ideas. From an unrooted network of historical trees, tree- Lausanne Faculte de biologie et medecine, ness is measured by the delta-score.
    [Show full text]
  • Diversity and Distribution of Hymenoptera Aculeata in Midwestern Brazilian Dry Forests
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264895151 Diversity and Distribution of Hymenoptera Aculeata in Midwestern Brazilian Dry Forests Chapter · September 2014 CITATIONS READS 2 457 6 authors, including: Rogerio Silvestre Manoel F Demétrio UFGD - Universidade Federal da Grande Dourados UFGD - Universidade Federal da Grande Dourados 41 PUBLICATIONS 539 CITATIONS 8 PUBLICATIONS 27 CITATIONS SEE PROFILE SEE PROFILE Bhrenno Trad Felipe Varussa de Oliveira Lima UFGD - Universidade Federal da Grande Dourados 4 PUBLICATIONS 8 CITATIONS 8 PUBLICATIONS 8 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Phylogeny and Biogeography of genus Eremnophila Menke, 1964 (HYMENOPTERA: Sphecidae) View project Functional diversity, phylogeny, ethology and biogeography of Hymenoptera in the chacoan subregion View project All content following this page was uploaded by Rogerio Silvestre on 28 November 2014. The user has requested enhancement of the downloaded file. 28 R. Silvestre, M. Fernando Demétrio, B. Maykon Trad et al. ENVIRONMENTAL HEALTH - PHYSICAL, CHEMICAL AND BIOLOGICAL FACTORS DRY FORESTS ECOLOGY, SPECIES DIVERSITY AND SUSTAINABLE MANAGEMENT FRANCIS ELIOTT GREER EDITOR Copyright © 2014 by Nova Science Publishers, Inc. Diversity and Distribution of Hymenoptera Aculeata ... 29 In: Dry Forests ISBN: 978-1-63321-291-6 Editor: Francis Eliott Greer © 2014 Nova Science Publishers, Inc. Chapter 2 DIVERSITY AND DISTRIBUTION
    [Show full text]
  • Lipid Content Influences Division of Labour in a Clonal Ant Abel Bernadou*, Elisabeth Hoffacker, Julia Pable and Jürgen Heinze
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb219238. doi:10.1242/jeb.219238 RESEARCH ARTICLE Lipid content influences division of labour in a clonal ant Abel Bernadou*, Elisabeth Hoffacker, Julia Pable and Jürgen Heinze ABSTRACT and quality of food fed to larvae trigger changes in gene expression, The fat body, a major metabolic hub in insects, is involved in many which result in different caste phenotypes (Maleszka, 2008; Smith functions, e.g. energystorage, nutrient sensing and immune response. et al., 2008; Berens et al., 2015). In social insects, fat appears to play an additional role in division of Recent genomic studies suggest that nutrition and fat content also labour between egg layers and workers, which specialize in non- act as key players in task specialization in other social insects, and reproductive tasks inside and outside their nest. For instance, this is supported by measuring fat content in different castes. Nest reproductives are more resistant to starvation, and changes in fat workers are often fatter than foragers and the depletion of fat content content have been associated with the transition from inside to outside in workers correlates with the transition from inside to outside tasks ‘ – ’ work or reproductive activities. However, most studies have been ( lean forager corpulent nest worker ; e.g. Blanchard et al., 2000; correlative and we still need to unravel the causal interrelationships Toth and Robinson, 2005; Toth et al., 2005, 2009; Daugherty et al., between fat content and division of both reproductive and non- 2011; Tibbetts et al., 2011; Smith et al., 2011; Robinson et al., reproductive labour.
    [Show full text]