Division of Labor in Anti-Parasite Defense Strategies in Ant Colonies Claudia Missoh

Total Page:16

File Type:pdf, Size:1020Kb

Division of Labor in Anti-Parasite Defense Strategies in Ant Colonies Claudia Missoh Division of labor in anti-parasite defense strategies in ant colonies Claudia Missoh To cite this version: Claudia Missoh. Division of labor in anti-parasite defense strategies in ant colonies. Ecology, envi- ronment. Université Pierre et Marie Curie - Paris VI; Universität Regensburg, 2014. English. NNT : 2014PA066450. tel-01127578 HAL Id: tel-01127578 https://tel.archives-ouvertes.fr/tel-01127578 Submitted on 7 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Graduate school: ED227 Sciences de la Nature et de l’Homme : évolution et écologie Research unit: Institut d'Écologie et des Sciences de l'Environnement Research team: Interactions Sociales dans l’Évolution Division of labor in anti-parasite defense strategies in ant colonies. Claudia Westhus PhD thesis in Ecology and Evolutionary Biology Directed by Claudie Doums (Directeur d’études EPHE) and Sylvia Cremer (Assistant Professor) Publicly presented and defended 17.12.2014 Jury members: BOULAY, Raphaёl Professor, Université François-Rabelais, Tours, France rapporteur BROWN, Mark JF Professor, Royal Holloway University of London, Egham, United examinator Kingdom CREMER, Sylvia Assistant Professor, Institute of Science and Technology Austria, thesis supervisor Kosterneuburg, Austria DOUMS, Claudie Directeur d’études EPHE, Muséum national d'Histoire naturelle, thesis supervisor Paris, France MAIBECHE-COISNÉ, Professor, Université Pierre et Marie Curie, Paris, France president of the Martine jury MORET, Yannick Chargé de Recherche CNRS (HDR), Université de Bourgogne, rapporteur Dijon, France TABLE OF CONTENTS 1. ABSTRACT 3 2. RÉSUMÉ 5 3. INTRODUCTION 7 3.1 Disease resistance in social insects 7 3.1.1 Individual physiological immune defenses 8 3.1.2 Collective immune defenses 9 3.2 Division of labor in social insect colonies 11 3.3 Division of labor in disease resistance and causes of interindividual variability in the workforce 12 3.3.1 Genetic variability 14 3.3.2 Phenotypic variability 16 3.4 Aims of the thesis 20 3.5 The study systems 21 3.5.1 Platythyrea punctata 21 3.5.2 Cataglyphis velox 22 3.5.3 Metarhizium robertsii 24 4. CHAPTER 1: Increased grooming after repeated brood care provides sanitary benefits in a clonal ant. 26 5. CHAPTER 2: Necrophoresis is not everything: cadaver groomings and intranidal transports in the ant Cataglyphis velox. 37 1 6. CHAPTER 3: Are worker size and phenoloxidase activity of Cataglyphis velox workers genetically determined? 62 7. CONCLUSIONS AND PERSPECTIVES 85 7.1 What are the benefits of interindividual variation in immune investment? 85 7.1.1 Behavioral performance of sanitary tasks 85 3.1.2 Physiological immune investment 87 7.2 Potential costs of interindividual variation 88 7.3 The modulation of sanitary division of labor and the costs and benefits of helping 89 7.4 Who is expected to invest more heavily into immune defense? 91 7.5 Nature versus nurture: phenotypic plasticity in immune defense mechanisms 92 7.6 When is experience-modulated behavioral plasticity expected to occur? 94 7.7 Empirical difficulties to analyze proximate mechanisms contributing to interindividual variation in immune defense 97 8. REFERENCES 100 9. ACKNOWLEDGMENTS 138 10. AFFIDAVIT 140 2 1. ABSTRACT Division of labor is a key characteristic of social insects and contributes to their ecological success. Especially in disease defense, the intra-colony partitioning of sanitary work can reduce disease transmission, keep nestmates available for other tasks and reduce costs associated with sanitary task performance (i.e. at the behavioral and physiological level). Factors internal and external to the individual affecting sanitary task allocation are not well known and most studies investigated genetic differences between workers performing behavioral sanitary work. In the first two studies I addressed whether individual experience (through repeated exposure to a sanitary hazard or performance of the task) can generate interindividual differences in the performance of behavioral sanitary tasks. Repeated parasite exposure is a common threat in colonies of social insects, posing selection pressures on colony members to respond with improved disease-defense performance. In the clonal ant Platythyrea punctata, I tested whether experience gained by repeated tending of low-level fungus-exposed (Metarhizium robertsii) larvae alters the performance of sanitary brood care. I found that ants trained both with sham- and fungus-treated larvae groomed the brood longer than naive ants. Increased grooming of fungus-treated larvae resulted in more effective fungal removal, thus making trained ants better caretakers under parasite attack of the colony. Decomposing cadavers pose a sanitary risk to social insect colonies, necessitating cadaver management. In the second study I investigated whether cadaver management (i.e. cadaver grooming and transports) is divided among workers and task allocation affected by recent individual experience or worker size in the polymorphic and polygynous ant Cataglyphis velox. Many individuals performed cadaver management infrequently and few individuals dominated task performance. Our results suggested low division of labor for cadaver grooming and transport and a reduced modulation of these behaviors by recurrent exposure to nestmate cadavers. Polyandry increases the diversity of group members and thereby favours division of labor within the colony. Colonies with increased genetic diversity can also be more resistant towards disease, but the mechanisms underlying increased disease resistance are not well understood. I analyzed in C. velox whether patriline differences among workers could affect their investment into the immune enzyme phenoloxidase. I did neither find heritability for this trait, nor for worker size. Environmental determination of variation in worker size could be advantageous with respect to division of labor, by permitting colonies to adapt worker size ratios to changing conditions if worker size predicts task performance. Environmental determination of the level of phenoloxidase might confer increased disease defense only to individuals performing the riskiest tasks within the colony and thereby limiting costs of immune investment at the colony level. My work suggests that individual experience may influence the performance of sanitary tasks and that tasks may vary in their degree of plasticity. It further demonstrates the importance of future research effort to understand the 3 underlying mechanisms of interindividual variability and the benefits and costs associated with increased nestmate diversity. Key words: ecological immunology, division of labor, phenotypic plasticity, experience, brood care, parasite exposure, cadaver management, phenoloxidase, polyandry, heritability, Platythyrea punctata, Metarhizium robertsii, Cataglyphis velox 4 2. RÉSUMÉ La division du travail est une caractéristique clé chez les insectes sociaux et contribue à leur succès écologique. En ce qui concerne les tâches sanitaires, la division du travail au sein d’une colonie peut permettre de réduire la transmission des maladies, de libérer certaines ouvrières pour d’autres tâches, permettant de diminuer les couts associés à l’exécution des tâches sanitaires (sur le plan comportementale et physiologique). Les facteurs externes et internes aux individus déterminant leur participation aux tâches sanitaires ne sont pas bien connus. La plupart des études portent sur l’importance des différences génétiques entre ouvrières. Dans les deux premières études, j’ai examiné le rôle de l’expérience des individus (par exposition répétée à des déchets sanitaires ou à l’exécution d’une tâche) sur la mise en place de différences interindividuelles dans l’exécution d’une tâche sanitaire comportementale. L’exposition à un parasite est une menace fréquente au sein de colonies d’insectes sociaux. En utilisant la fourmi clonale Platythyrea punctata, j’ai voulu savoir si une exposition répétée des individus à des larves portant une faible quantité de conidiospores du champignon Metarhizium robertsii affectait la performance des soins sanitaires portés au couvain. J’ai trouvé que la durée de nettoyage des larves était plus élevée chez des fourmis entrainées, aux larves exposées ou non exposées au champignon, que chez des fourmis inexpérimentées. Un temps de nettoyage plus élevé améliorait l’élimination des conidiospores. Ainsi les fourmis entrainées pourraient être plus efficaces pour éliminer les conidiospores lors d’une attaque parasitaire de la colonie. La décomposition des cadavres représente un risque sanitaire dans les colonies d’insectes sociaux, nécessitant une gestion de cadavres. Dans la deuxième étude, j’ai étudié la possibilité d’une division du travail dans la gestion des cadavres (c'est-à-dire le nettoyage et le transport) chez les ouvrières de la fourmi polygyne et polymorphe Cataglyphis velox. J’ai plus spécifiquement testé si la propensité d’accomplir ces tâches était en rapport avec une récente expérience individuelle ou
Recommended publications
  • Munday & Brown Final Anim Behav
    1 2 Bring out your dead: quantifying corpse removal in 3 Bombus terrestris, an annual eusocial insect 4 5 Zoe Munday and Mark J. F. Brown* 6 School of Biological Sciences, Royal Holloway University of London, Egham, UK 7 8 *Corresponding author 9 10 11 12 Word count: 5433 13 14 Correspondence: Mark J F Brown, School of Biological Sciences, Royal Holloway, University of 15 London, Egham, Surrey, TW20 0EX, +44 7914021356. (Email: [email protected]). 1 16 Corpse removal is a hygienic behaviour involved in reducing the spread of parasites and 17 disease. It is found in social insects such as honey bees, wasps, ants and termites, insect 18 societies which experience high populations and dense living conditions that are ideal for the 19 spread of contagion. Previous studies on corpse removal have focused on perennial species 20 that produce thousands of workers, a life-history which may incur a greater need for hygienic 21 behaviours. However, whether and how corpse removal occurs in annual species of social 22 insect, which may experience different selection pressures for this behaviour, remains 23 largely unknown. Here the corpse removal behaviour of the bumblebee Bombus terrestris 24 was investigated by artificially adding larval and adult corpses into colonies. Larvae were 25 removed more rapidly than adults, with adult corpses eliciting significantly more antennating 26 and biting behaviours. Workers who removed larval corpses were significantly more 27 specialised than the worker population at large, but this was not the case for workers who 28 removed adult corpses. Workers who were previously observed spending more time inactive 29 were slightly, but significantly less likely to perform corpse removal.
    [Show full text]
  • Behavioural Repertoire of Termites in Corpse Management A
    Behavioural Processes 157 (2018) 431–437 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc Behavioural repertoire of termites in corpse management: A comparison between one-piece and multiple-pieces nesting termite species T ⁎ Luiza Helena Bueno da Silva, Ana Maria Costa-Leonardo Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, UNESP – Univ Estadual Paulista, Av. 24A, 1515, CEP: 13506-900 Rio Claro, SP, Brazil ARTICLE INFO ABSTRACT Keywords: Corpse disposal is an essential adaptation to social life. This behaviour promotes nest hygiene and prevents the Cannibalism spread of pathogens in the colony of social insects. The current study verified the corpse management in two Cornitermes cumulans termite families towards cadavers of different origins. We carried out bioassays with subcolonies of Cryptotermes Corpse-burying behaviour brevis and colonies of Cornitermes cumulans, in which corpses of termite workers from the same colony, from Cryptotermes brevis another colony and from another species were introduced. The results showed that C. brevis consumed the Isoptera corpses regardless of their origin, but they avoided the chitinous parts of the head. In this species, consumption Undertaking behaviour of dead individuals, besides performing a hygienic function, seems to be a strategy for nitrogen and water acquisition. In the C. cumulans species, interspecific and intercolonial corpses were covered with soil and faeces after being groomed. Nestmate corpses were entombed, transported to the nest or ignored after being submitted to grooming. Our findings indicate that a one-piece nesting termite, as C. brevis, exhibited a simplified corpse management repertoire in relation to that performed by C.
    [Show full text]
  • Corpse Management in Social Insects
    Int. J. Biol. Sci. 2013, Vol. 9 313 Ivyspring International Publisher International Journal of Biological Sciences 2013; 9(3):313-321. doi: 10.7150/ijbs.5781 Review Corpse Management in Social Insects Qian Sun and Xuguo Zhou Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA. Corresponding author: Dr. Xuguo "Joe" Zhou, Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091. Phone: 859-257-3125 Fax: 859-323-1120 Email: [email protected]. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2012.12.29; Accepted: 2013.02.21; Published: 2013.03.22 Abstract Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral re- sponses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed.
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • Lipid Content Influences Division of Labour in a Clonal Ant Abel Bernadou*, Elisabeth Hoffacker, Julia Pable and Jürgen Heinze
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb219238. doi:10.1242/jeb.219238 RESEARCH ARTICLE Lipid content influences division of labour in a clonal ant Abel Bernadou*, Elisabeth Hoffacker, Julia Pable and Jürgen Heinze ABSTRACT and quality of food fed to larvae trigger changes in gene expression, The fat body, a major metabolic hub in insects, is involved in many which result in different caste phenotypes (Maleszka, 2008; Smith functions, e.g. energystorage, nutrient sensing and immune response. et al., 2008; Berens et al., 2015). In social insects, fat appears to play an additional role in division of Recent genomic studies suggest that nutrition and fat content also labour between egg layers and workers, which specialize in non- act as key players in task specialization in other social insects, and reproductive tasks inside and outside their nest. For instance, this is supported by measuring fat content in different castes. Nest reproductives are more resistant to starvation, and changes in fat workers are often fatter than foragers and the depletion of fat content content have been associated with the transition from inside to outside in workers correlates with the transition from inside to outside tasks ‘ – ’ work or reproductive activities. However, most studies have been ( lean forager corpulent nest worker ; e.g. Blanchard et al., 2000; correlative and we still need to unravel the causal interrelationships Toth and Robinson, 2005; Toth et al., 2005, 2009; Daugherty et al., between fat content and division of both reproductive and non- 2011; Tibbetts et al., 2011; Smith et al., 2011; Robinson et al., reproductive labour.
    [Show full text]
  • Description of a New Genus of Primitive Ants from Canadian Amber
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-11-2017 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Borysenko, Leonid H., "Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae)" (2017). Insecta Mundi. 1067. http://digitalcommons.unl.edu/insectamundi/1067 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0570 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes AAFC, K.W. Neatby Building 960 Carling Ave., Ottawa, K1A 0C6, Canada Date of Issue: August 11, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Leonid H. Borysenko Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Insecta Mundi 0570: 1–57 ZooBank Registered: urn:lsid:zoobank.org:pub:C6CCDDD5-9D09-4E8B-B056-A8095AA1367D Published in 2017 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Hymenoptera: Formicidae: Ponerinae)
    Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) Item Type text; Electronic Dissertation Authors Schmidt, Chris Alan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 23:29:52 Link to Item http://hdl.handle.net/10150/194663 1 MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF PONERINE ANTS (HYMENOPTERA: FORMICIDAE: PONERINAE) by Chris A. Schmidt _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Chris A. Schmidt entitled Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/3/09 David Maddison _______________________________________________________________________ Date: 4/3/09 Judie Bronstein
    [Show full text]
  • Co-Founding Ant Queens Prevent Disease by Performing Prophylactic Undertaking Behaviour Christopher D
    Pull and Cremer BMC Evolutionary Biology (2017) 17:219 DOI 10.1186/s12862-017-1062-4 RESEARCHARTICLE Open Access Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour Christopher D. Pull1,2* and Sylvia Cremer1 Abstract Background: Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Results: Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. Conclusions: We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.
    [Show full text]
  • Arthropods Associated with Above-Ground Portions of the Invasive Tree, Melaleuca Quinquenervia, in South Florida, Usa
    300 Florida Entomologist 86(3) September 2003 ARTHROPODS ASSOCIATED WITH ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, MELALEUCA QUINQUENERVIA, IN SOUTH FLORIDA, USA SHERYL L. COSTELLO, PAUL D. PRATT, MIN B. RAYAMAJHI AND TED D. CENTER USDA-ARS, Invasive Plant Research Laboratory, 3205 College Ave., Ft. Lauderdale, FL 33314 ABSTRACT Melaleuca quinquenervia (Cav.) S. T. Blake, the broad-leaved paperbark tree, has invaded ca. 202,000 ha in Florida, including portions of the Everglades National Park. We performed prerelease surveys in south Florida to determine if native or accidentally introduced arthro- pods exploit this invasive plant species and assess the potential for higher trophic levels to interfere with the establishment and success of future biological control agents. Herein we quantify the abundance of arthropods present on the above-ground portions of saplings and small M. quinquenervia trees at four sites. Only eight of the 328 arthropods collected were observed feeding on M. quinquenervia. Among the arthropods collected in the plants adven- tive range, 19 species are agricultural or horticultural pests. The high percentage of rare species (72.0%), presumed to be transient or merely resting on the foliage, and the paucity of species observed feeding on the weed, suggests that future biological control agents will face little if any competition from pre-existing plant-feeding arthropods. Key Words: Paperbark tree, arthropod abundance, Oxyops vitiosa, weed biological control RESUMEN Melaleuca quinquenervia (Cav.) S. T. Blake ha invadido ca. 202,000 ha en la Florida, inclu- yendo unas porciones del Parque Nacional de los Everglades. Nosotros realizamos sondeos preliminares en el sur de la Florida para determinar si los artópodos nativos o accidental- mente introducidos explotan esta especie de planta invasora y evaluar el potencial de los ni- veles tróficos superiores para interferir con el establecimento y éxito de futuros agentes de control biológico.
    [Show full text]
  • The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior
    Zootaxa 3817 (1): 001–242 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3817.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A3C10B34-7698-4C4D-94E5-DCF70B475603 ZOOTAXA 3817 The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior C.A. SCHMIDT1 & S.O. SHATTUCK2 1Graduate Interdisciplinary Program in Entomology and Insect Science, Gould-Simpson 1005, University of Arizona, Tucson, AZ 85721-0077. Current address: Native Seeds/SEARCH, 3584 E. River Rd., Tucson, AZ 85718. E-mail: [email protected] 2CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. Current address: Research School of Biology, Australian National University, Canberra, ACT, 0200 Magnolia Press Auckland, New Zealand Accepted by J. Longino: 21 Mar. 2014; published: 18 Jun. 2014 C.A. SCHMIDT & S.O. SHATTUCK The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior (Zootaxa 3817) 242 pp.; 30 cm. 18 Jun. 2014 ISBN 978-1-77557-419-4 (paperback) ISBN 978-1-77557-420-0 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • Loss of Attraction for Social Cues Leads to Fungal-Infected Myrmica Rubra Ants Withdrawing from the Nest
    Animal Behaviour 129 (2017) 133e141 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Loss of attraction for social cues leads to fungal-infected Myrmica rubra ants withdrawing from the nest * Jean-Baptiste Leclerc , Claire Detrain Unit of Social Ecology, Universite Libre de Bruxelles, Belgium article info In social insects, individuals infected by pathogens withdraw from the nest, preventing the spread of ‘ ’ Article history: diseases among genetically related nestmates and thereby contributing to the social immunity of the Received 7 October 2016 colony. Here we investigated the extent to which the isolation of sick ants correlates with changes in Initial acceptance 30 November 2016 their behavioural responses to environmental stimuli that serve as nest-related cues, including light, Final acceptance 6 April 2017 colony odour and physical presence of nestmates. Myrmica rubra ant workers infected by Metarhizium Available online 14 June 2017 brunneum fungus showed a weak but constant attraction to light. By contrast, the progressive withdrawal MS. number: 16-00880R of moribund workers from the nest appeared to be concomitant with a decline in their attraction to- wards nestmates or colony odour, which started on the third day after infection. We hypothesized that Keywords: the fungus impaired the olfactory system of infected ants, preventing them from adequately reacting to Metarhizium brunneum chemical blends involved in colony marking and nestmate recognition. Instead of being an active Myrmica rubra behaviour, the social seclusion of sick ants appears to be the simple outcome of their increasing difficulty social cues social immunity in orienting themselves towards nest-related cues.
    [Show full text]
  • Applied Ecology and Control of Imported Fire Ants and Argentine
    APPLIED ECOLOGY AND CONTROL OF IMPORTED FIRE ANTS AND ARGENTINE ANTS (HYMENOPTERA: FORMICIDAE) by BEVERLY ANNE WILTZ (Under the Direction of Daniel R. Suiter) ABSTRACT The red imported fire ant, Solenopsis invicta Buren, and Argentine ant, Linepithema humile (Mayr), are invasive species that are major pests in urban, natural, and agricultural habitats. The goal of this dissertation was to study aspects the chemical sensitivity, behavior, and ecology of each species to enhance control options. In these studies, I: 1) provide recommendations for the optimal usage of various insecticides against each species, 2) evaluate deterrent and toxic effects of natural products, 3) develop a delivery system for ant toxicants that uses a pheromonal attractant to facilitate toxicant transfer by contact, and 4) determine which habitats within blackland prairies are most susceptible to invasion by imported fire ants. Bifenthrin had properties best suited for use as barrier or mound treatments against both species. In laboratory assays, it was the fastest acting of the chemicals tested and was the only chemical that acted as a barrier to ant movement. Fipronil exhibited high horizontal toxicity and delayed topical toxicity, properties that are desirable in a broadcast treatment. Chlorfenapyr and thiamethoxam appeared best suited to use as mound treatments, as they had low horizontal toxicity and did not impede ant movement in barrier tests. At least one of the four tested rates of basil, citronella, lemon, peppermint, and tea tree oils were repellent to both ant species. In continuous exposure assays, citronella oil was toxic to both species, and peppermint and tea tree oils were toxic to Argentine ants.
    [Show full text]