Characteristics of Exotic Ants in North America Supplement 1: Literature Sources for the Dataset, Phylogeny, and Species List

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Exotic Ants in North America Supplement 1: Literature Sources for the Dataset, Phylogeny, and Species List Wittenborn, Jeschke: Characteristics of exotic ants in North America Supplement 1: Literature sources for the dataset, phylogeny, and species list Akre RD, Hansen LD, Myhre EA (1994) Colony size and polygyny in carpenter ants (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society 67: 1-9. Alloway TM, Buschinger A, Talbot M, Stuart R, Thomas C (1982) Polygyny and polydomy in three North American species of the ant genus Lepthothorax Mayr (Hymenoptera: Formicidae). Psyche 89: 249-274. AntWeb (2009) http://www.antweb.org (last access: August 2009). Astruc C, Malosse C, Errard C (2001) Lack of intraspecific aggression in the ant Tetramorium bicarinatum: a chemical hypothesis. Journal of Chemical Ecology 27: 1229-1248. Astruc C, Julien JF, Errard C, Lenoir A (2004) Phylogeny of ants (Formicidae) based on morphology and DNA sequence data. Molecular Phylogenetics and Evolution 31: 880-893. Baur A, Sanetra M, Chalwatzis N, Buschinger A, Zimmermann FK (1996) Sequence comparisons of the internal transcribed spacer region of ribosomal genes support close relationships between parasitic ants and their respective host species (Hymenoptera: Formicidae). Insectes Sociaux 43: 53-67. Beckers R, Goss S, Deneubourg JL, Pasteels JM (1989) Colony size, communication and ant foraging strategy. Psyche 96: 239-256. Beshers SN, Traniello JFA (1996) Polyethism and the adaptiveness of worker size variation in the attine ant Trachymyrmex septentrionalis. Journal of Insect Behavior 9: 61-83. Billick I (2002) The relationship between the distribution of worker sizes and new worker production in the ant Formica neorufibarbis. Oecologia 132: 244-249. Blacker NC (1992) Some ants (Hymenoptera: Formicidae) from southern Vancouver Island, British Columbia. Journal of the Entomological Society of British Columbia 89: 3-12. Bolton B (1975) A revision of the ant genus Leptogenys Roger (Hymenoptera: Formicidae) in the ethiopian region with a review of the malagasy species. Bulletin of the British Museum (Natural History) 31: 235-305. Bolton B (1979) The ant tribe Tetramoriini (Hymenoptera: Formicidae). The genus Tetramorium Mayr in the malagasy region and in the new world. Bulletin of the British Museum (Natural History) 38: 129-181. Bolton B (1982) Afrotropical species of the myrmicine ant genera Cardiocondyla, Leptothorax, Melissotarsus, Messor and Cataulacus (Formicidae). Bulletin of the British Museum (Natural History) 45: 307-370. 1 Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press (Cambridge). Bolton B (2000) The ant tribe Dacetini. Memoirs of the American Entomological Institute 65: 1-1028. Boomsma JJ, Keller L, Nielsen MG (1995) A comparative analysis of sex ratio investment parameters in ants. Functional Ecology 9: 743-753. Bourke AFG (1988) Worker reproduction in the higher eusocial Hymenoptera. Quarterly Review of Biology 63: 291-311. Bourke AFG, Franks NR (1995) Social evolution in ants – monographs in behavior and ecology. Princeton University Press (Princeton). Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences USA 103: 18172-18177. Brandão CRF, Mayhé-Nunes AJ (2007) A phylogenetic hypothesis for the Trachymyrmex species groups, and the transition from fungus-growing to leaf-cutting in the Attini. Memoirs of the American Entomological Institute 80: 72-88. Brown MJF, Bonhoeffer S (2003) On the evolution of claustral colony founding in ants. Evolutionary Ecology Research 5: 305-313. Brown WL (1953) Revisionary studies in the ant tribe Dacetini. American Midland Naturalist 50: 1-137. Brown WL (1976) Contributions toward a reclassification of the Formicidae, part VI. Ponerinae, tribe Ponerini, subtribe Odontomachiti. Section A. Introduction, subtribal characters. Genus Odontomachus. Studia Entomologica 19: 66-171. Brown WL (1978) Contributions toward a reclassification of the Formicidae, Part VI. Ponerinae, tribe Ponerini, subtribe Odontomachiti. Section B. Genus Anochetus and bibliography. Studia Entomologica 20: 549-651. Brown WL (1979) A remarkable new species of Proceratium, with dietary and other notes on the genus (Hymenoptera: Formicidae). Psyche 86: 337-346. Brown WL, Kempf WW (1960) A world revision of the ant tribe Basicerotini (Hym. Formicidae). Studia Entomologica 3: 161-250. Buczkowski G, Bennet GW (2006) Dispersed central-place foraging in the polydomous odorous house ant, Tapinoma sessile as revealed by a protein marker. Insectes Sociaux 53: 282-290. Buren WF (1944) A list of Iowa ants. Iowa State College Journal of Science 18: 277-312. 2 Buren WF (1972) Revisionary studies on the taxonomy of the imported fire ants. Journal of the Georgia Entomological Society 7: 1-26. Burrill AC, Smith MR (1919) A key to the species of Wisconsin ants, with notes on their habits. Ohio Journal of Science 19: 279-292. Cahan S, Helms KR, Rissing SW (1998) An abrupt transition in colony founding behaviour in the ant Messor pergandei. Animal Behaviour 55: 1583-1594. Calabi P, Traniello JFA (1989) Social organization in the ant Pheidole dentata – physical and temporal caste ratios lack ecological correlates. Behavioral Ecology and Sociobiology 24: 69-78. Calixto AA, Harris MK, Barr C (2007) Resurgence and persistence of Dorymyrmex flavus after reduction of Solenopsis invicta Buren with a broadcast bait. Environmental Ecology 36: 549-554. Chew EA, Chew RM (1980) Body size as a determinant of small-scale distributions of ant in evergreen woodland southeastern Arizona. Insectes Sociaux 27: 189-202. Chiotis M, Jermiin LS, Crozier RH (2000) A molecular framework for the phylogeny of the ant subfamily Dolichoderinae. Molecular Phylogenetics and Evolution 17: 108-116. Choe JC (1988) Worker reproduction and social evolution in ants (Hymenoptera: Formicidae). In: Trager JC, Wheeler GC (Eds) Advances in myrmecology. Brill (Leiden): 163-187. Cole AC (1940) A guide to the ants of the Great Smoky Mountains National Park, Tennessee. American Midland Naturalist 24: 1-88. Cole AC (1963) A new species of Veromessor from the Nevada test site and notes on related species (Hymenoptera: Formicidae). Annals of the Entomological Society of America 56: 678-682. Cole AC Jr (1966) Ants of the Nevada test site. Brigham Young University Science Bulletin, Biological Series 7: 1-27. Cole BJ (1986) The social behaviour of Leptothorax allardycei (Hymenoptera: Formicidae) time budgets and the evolution of worker reproduction. Behav Ecol Sociobiol 18: 165-173. Collingwood CA (1979) The Formicidae (Hymenoptera) of Fennoscandia and Denmark. Fauna Entomol Scand 8: 1-174. Conway JR (1983) Nest architecture and population of the honey ant, Myrmecocystus mexicanus Wesmael (Formicidae), in Colorado. Southwest Nat 28: 21-31. Conway JR (1986) The biology of honey ants. Am Biol Teach 48: 335-343. Coovert GA (2005) The ants of Ohio (Hymenoptera: Formicidae). B Ohio Biol Survey New Series 15: 1-196. 3 Cornelius ML, Grace JK, Yates JR III (1996) Acceptability of different sugars and oils to three tropical ant species (Hymen., Formicidae). Anzeiger für Schädlingskunde (Journal Pest Sci) 69: 41-43. Cory, EN, Haviland EE (1938) Population studies of Formica exsectoides Forel. Annals of the Entomological Society of America 31: 50-57. Cover SP, Deyrup M (2007) A new ant genus from the southwestern United States. Memoirs of the American Entomological Institute 80: 89-99. Creighton WS (1930) The new world species of the genus Solenopsis (Hymenop. Formicidae). Proceedings of the American Academy of Arts and Sciences 66: 39-152. Creighton WS (1950) The ants of North America. Bulletin of the Museum of Comparative Zoology 104: 1-585. Creighton WS, Snelling RR (1974) Notes on the behavior of three species of Cardiocondyla in the United States (Hymenoptera: Formicidae). Journal of the New York Entomological Society 82: 82-92. Crozier RH (1973) Apparent differential selection at an isozyme locus between queens and workers of the ant Aphaenogaster rudis. Genetics 73: 313-318. Cushman JH, Lawton JH, Manly BFJ (1993) Latitudinal patterns in european ant assemblages: variation in species richness and body size. Oecologia 95: 30-37. Dash ST (2004) Species diversity and biogeography of ants (Hymenoptera: Formicidae) in Louisiana, with notes on their ecology. Master Thesis. Louisiana State University (Louisiana). Davidson DW (1977) Species diversity and community organization in desert seed-eating ants. Ecology 58: 712-724. Debout G, Schatz B, Elias M, McKey D (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. Biological Journal of the Linnean Society 90: 319-348. Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ (2004) Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Systematic Biology 53: 95-110. Dejean, A, Le Breton J, Suzzoni JP, Orivel J, Saux-Moreau C (2005) Influence of interspecific competition on the recruitment behaviour and liquid food transport in the tramp ant species Pheidole megacephala. Naturwissenschaften 92: 324-327. Del Toro I, Pacheco JA, Mackay WP (2009) Revision of the ant genus Liometopum (Hymenoptera: Formicidae). Sociobiology 53: 299-369. 4 Dennis CA (1938) The distribution of ant species in Tennessee with reference to ecological factors. Annals of the Entomological Society of America 31: 265-308. Depickère S, Fresneau D, Deneubourg JL (2004) Dynamics of
Recommended publications
  • Does Argentine Ant Invasion Conserve Colouring Variation of Myrmecomorphic Jumping Spider?
    Open Journal of Animal Sciences, 2014, 4, 144-151 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ojas http://dx.doi.org/10.4236/ojas.2014.43019 Argentine Ant Affects Ant-Mimetic Arthropods: Does Argentine Ant Invasion Conserve Colouring Variation of Myrmecomorphic Jumping Spider? Yoshifumi Touyama1, Fuminori Ito2 1Niho, Minami-ku, Hiroshima City, Japan 2Laboratory of Entomology, Faculty of Agriculture, Kagawa University, Ikenobe, Japan Email: [email protected] Received 23 April 2014; revised 3 June 2014; accepted 22 June 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Argentine ant invasion changed colour-polymorphic composition of ant-mimetic jumping spider Myrmarachne in southwestern Japan. In Argentine ant-free sites, most of Myrmarachne exhibited all-blackish colouration. In Argentine ant-infested sites, on the other hand, blackish morph de- creased, and bicoloured (i.e. partly bright-coloured) morphs increased in dominance. Invasive Argentine ant drives away native blackish ants. Disappearance of blackish model ants supposedly led to malfunction of Batesian mimicry of Myrmarachne. Keywords Batesian Mimicry, Biological Invasion, Linepithema humile, Myrmecomorphy, Myrmarachne, Polymorphism 1. Introduction It has attracted attention of biologists that many arthropods morphologically and/or behaviorally resemble ants [1]-[4]. Resemblance of non-ant arthropods to aggressive and/or unpalatable ants is called myrmecomorphy (ant-mimicry). Especially, spider myrmecomorphy has been described through many literatures [5]-[9]. Myr- mecomorphy is considered to be an example of Batesian mimicry gaining protection from predators.
    [Show full text]
  • Effects of Grassland Restoration Efforts on Mound-Building Ants in the Chihuahuan Desert
    Journal of Arid Environments 111 (2014) 79e83 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Short communication Effects of grassland restoration efforts on mound-building ants in the Chihuahuan Desert * Monica M. McAllister a, b, Robert L. Schooley a, , Brandon T. Bestelmeyer b, John M. Coffman a, b, Bradley J. Cosentino c a Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA b USDA-ARS Jornada Experimental Range, New Mexico State University, MSC 3JER Box 30003, Las Cruces, NM 88003, USA c Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA article info abstract Article history: Shrub encroachment is a serious problem in arid environments worldwide because of potential re- Received 21 April 2014 ductions in ecosystem services and negative effects on biodiversity. In southwestern USA, Chihuahuan Received in revised form Desert grasslands have experienced long-term encroachment by shrubs including creosotebush (Larrea 4 August 2014 tridentata). Land managers have attempted an ambitious intervention to control shrubs by spraying Accepted 13 August 2014 herbicides over extensive areas to provide grassland habitat for wildlife species of conservation concern. Available online 15 September 2014 To provide a broader assessment of how these restoration practices affect biodiversity, we evaluated responses by four mound-building ant species (Pogonomyrmex rugosus, Aphaenogaster cockerelli, Myr- Keywords: Biodiversity mecocystus depilis, and Myrmecocystus mexicanus). We compared colony densities between 14 pairs of e Desert ants treated areas (herbicide applied 10 30 years before sampling) and untreated areas (spatially matched Landscape restoration and dominated by creosotebush).
    [Show full text]
  • 91 Table F-10 Golden Eagle REA Mitigation
    91 Table F-10 Golden Eagle REA Mitigation: Extrapolation of the Relative Productivity of Electric Pole Retrofitting in 2011 Over the 30 Years Associated with the Average Life Cycle of Wind Energy Projects Table F-11 Golden Eagle REA Scaling: Mitigation Owed for a 5-Year Permitted Take of 25 Golden Eagles (5 Eagles Annually) (REA Step 16) Total Debit 485.74 PV bird-years for 5 years of Golden Eagle take ÷ Relative Productivity of Electric Pole Retrofitting ÷4.20 Avoided loss of PV bird-years per retrofitted pole = Mitigation owed =115.61 Poles to be retrofitted to achieve no net loss PV=Present Value 92 APPENDIX G COMPENSATORY MITIGATION CASE STUDY7: POWER POLE RETROFITTING TO COMPENSATE FOR TAKE OF GOLDEN EAGLES To offset projected and permitted take, retrofitting of non- Avian Power Line Interaction Committee (APLIC) compliant power poles has been selected by the Service as the initial focus of compensatory mitigation projects. Raptor electrocution is a known source of eagle mortality in the United States (Franson et al. 1995, Millsap et al. 2004, APLIC 2006, Lehman et al. 2007, Lehman et al. 2010). In particular, Golden Eagles are electrocuted more than any other raptor in North America; Lehman et al. (2007) noted Golden Eagles accounted for 50 – 93% of all reported mortalities of raptor electrocutions. Eagles often come into contact with non-APLIC compliant electric transmission poles. These poles are often responsible for the high incidence of eagle mortality, especially in open habitat devoid of natural perches. Specific utility poles and line spans in need of retrofit due to known mortalities of eagles and other large raptors will be reviewed by the Service and selected for retrofit based on criteria specified below.
    [Show full text]
  • The Ants of Oklahoma Master of Science
    THE ANTS OF OKLAHOMA By Jerry H. Young(I\" Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1955 Submitted to the faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1 1956 tl<lAWMA AGCMCl«.f�Al L �Ci'!AlttCAl e&U.Ull LIBRARY JUL16195 6 THE ANTS OF OKLAHOMA Thesis Approved: Thesis Adviser }>JcMem��f � 't'" he Thesis ) Committee Member of the Thesis Committee 7'4'.��Member of the Thesis Committee Head of the Department ifean of the Graduate School 361565 ii PREFACE The study of the distribution of ants in the United States has been a long and continuous process with many contributors, but the State of Oklahoma has not received the attentions of these observers to any great extent. The only known list of ants of Oklahoma is one prepared by Mo Ro Smith (1935)0 Early in 1954 a survey of the state of Oklahoma was made to determine the species present and their distributiono The results of this survey, which blanketed the entire State, are given in this paper. The author wishes to express his appreciation to Dro Do E. Howell, chairman of the writer's thesis committee, for his valuable assistance and careful guidance in the preparation of this papero Also, much guidance on preparation of this manuscrip_t was received from Drs. Do Eo Bryan, William H. Irwin and F. A. Fenton. Many of the determin­ ations were made by M. R. Smith.. Vital infonnation was obtained from the museums at Oklahoma Agricultural and Mechanical College and the University of Oklahoma.
    [Show full text]
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • A Survey of Ground-Dwelling Ants (Hymenoptera: Formicidae) in Georgia
    Ipser et al.: Ground-Dwelling Ants in Georgia 253 A SURVEY OF GROUND-DWELLING ANTS (HYMENOPTERA: FORMICIDAE) IN GEORGIA REID M. IPSER, MARK A. BRINKMAN, WAYNE A. GARDNER AND HAROLD B. PEELER Department of Entomology, University of Georgia, College of Agricultural and Environmental Sciences Griffin Campus, 1109 Experiment Street, Griffin, GA 30223-1797, USA ABSTRACT Ground-dwelling ants (Hymenoptera: Formicidae) were sampled at 29 sites in 26 counties in Georgia with pitfall traps, leaf litter extraction, visual searching, and bait stations. We found 96 ant taxa including nine species not previously reported from Georgia: Myrmica ameri- cana Weber, M. pinetorum Wheeler, M. punctiventris Roger, M. spatulata Smith, Pyramica wrayi (Brown), Stenamma brevicorne (Mayr), S. diecki Emery, S. impar Forel, and S. schmitti Wheeler, as well as three apparently undescribed species (Myrmica sp. and two Ste- namma spp.). Combined with previous published records and museum records, we increased the total number of ground-dwelling ants known from Georgia to 144 taxa. Key Words: ground-dwelling ants, Formicidae, survey, Georgia, species. RESUMEN Hormigas que habitan en el suelo (Hymenoptera: Formicidae) fueron recolectadas en 29 si- tios en 26 condados del estado de Georgia con trampas de suelo, extración de hojarasca, bus- queda visual, y trampas de cebo. Nosotros encontramos 96 taxa de hormigas incluyendo nueve especies no informadas anteriormente en Georgia: Myrmica americana Weber, M. pin- etorum Wheeler, M. punctiventris Roger, M. spatulata Smith, Pyramica wrayi (Brown), Ste- namma brevicorne (Mayr), S. diecki Emery, S. impar Forel, y S. schmitti Wheeler, además de tres especies aparentemente no descritas (Myrmica sp. y dos Stenamma spp.).
    [Show full text]
  • Taxonomy and Ecology of Messor Himalayanus Forel (Hymenoptera: Formicidae)
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) ISSN: 21019-2402X Volume 1, Issue 1 (Sep.-Oct. 2012), PP 19-21 www.iosrjournals.org Taxonomic Redescription of Messor Himalayanus Forel (Hymenoptera: Formicidae), New Report from South India 1 Presty John & K A Karmaly 2 1s.H College, Thevara, Cochin, India 2 St.Xaviers College For Women Aluva. India Abstract: Ants are dominant insects and highly developed social animal. They are widely distributed throughout the world. Currently there are 28 subfamilies and 408 genera. (Bolton et.al, 2007) The species Messor himalayanus Forel belongs to the subfamily Myrmicinae of family Formicidae. The present study was carried out in three places of Kollam district viz. Kuriottumala, Punalur and Yeroor. The ecology of this species ie; nesting pattern, habit, habitat, food preferences, active involvement in day timings and colonial behavior are observed. The species Messor himalayanus Forel resdescribed, compared with other species of Messor and similarities and dissimilarities are also provided. Currently there are only two species of Messor reported from India and only one from South India and the species Messor himalayanus Forel adds a new report to South India. Keywords: Messor himalayanus, Myrmicinae, New report, Resdescription, South India. I. Introduction The genus Messor was established by Forel in 1890 as subgenus of Aphaenogaster . In 1892d Emery synonimised as Cratomyrmex based on the type-species Cratomyrmex regalis by monotypy, 1895 as subgenus of Stenamma . In 1903 Bingham raised Messor as genus based on the type species Formica Barbara, , in 1917 Veromessor by Forel as subgenus of Novomessor. The genus Veromessor was recently synonymised with Messor (Bolton, 1982).
    [Show full text]
  • Larvae of the Green Lacewing Mallada Desjardinsi (Neuroptera: Chrysopidae) Protect Themselves Against Aphid-Tending Ants by Carrying Dead Aphids on Their Backs
    Appl Entomol Zool (2011) 46:407–413 DOI 10.1007/s13355-011-0053-y ORIGINAL RESEARCH PAPER Larvae of the green lacewing Mallada desjardinsi (Neuroptera: Chrysopidae) protect themselves against aphid-tending ants by carrying dead aphids on their backs Masayuki Hayashi • Masashi Nomura Received: 6 March 2011 / Accepted: 11 May 2011 / Published online: 28 May 2011 Ó The Japanese Society of Applied Entomology and Zoology 2011 Abstract Larvae of the green lacewing Mallada desj- Introduction ardinsi Navas are known to place dead aphids on their backs. To clarify the protective role of the carried dead Many ants tend myrmecophilous homopterans such as aphids against ants and the advantages of carrying them for aphids and scale insects, and utilize the secreted honeydew lacewing larvae on ant-tended aphid colonies, we carried as a sugar resource; in return, the homopterans receive out some laboratory experiments. In experiments that beneficial services from the tending ants (Way 1963; Breton exposed lacewing larvae to ants, approximately 40% of the and Addicott 1992; Nielsen et al. 2010). These mutualistic larvae without dead aphids were killed by ants, whereas no interactions between ants and homopterans reduce the larvae carrying dead aphids were killed. The presence of survival and abundance of other arthropods, including the dead aphids did not affect the attack frequency of the non-honeydew-producing herbivores and other predators ants. When we introduced the lacewing larvae onto plants (Bristow 1984; Buckley 1987; Suzuki et al. 2004; Kaplan colonized by ant-tended aphids, larvae with dead aphids and Eubanks 2005), because the tending ants become more stayed for longer on the plants and preyed on more aphids aggressive and attack arthropods that they encounter on than larvae without dead aphids.
    [Show full text]
  • Hymenoptera: Formicidae)
    SYSTEMATICS Phylogenetic Analysis of Aphaenogaster Supports the Resurrection of Novomessor (Hymenoptera: Formicidae) 1 B. B. DEMARCO AND A. I. COGNATO Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824. Ann. Entomol. Soc. Am. 108(2): 201–210 (2015); DOI: 10.1093/aesa/sau013 ABSTRACT The ant genus Aphaenogaster Mayr is an ecologically diverse group that is common throughout much of North America. Aphaenogaster has a complicated taxonomic history due to variabil- ity of taxonomic characters. Novomessor Emery was previously synonymized with Aphaenogaster, which was justified by the partial mesonotal suture observed in Aphaenogaster ensifera Forel. Previous studies using Bayesian phylogenies with molecular data suggest Aphaenogaster is polyphyletic. Convergent evolution and retention of ancestral similarities are two major factors contributing to nonmonophyly of Aphaenogaster. Based on 42 multistate morphological characters and five genes, we found Novomessor more closely related to Veromessor Forel and that this clade is sister to Aphaenogaster. Our results confirm the validity of Novomessor stat. r. as a separate genus, and it is resurrected based on the combi- nation of new DNA, morphological, behavioral, and ecological data. KEY WORDS Aphaenogaster, Novomessor, phylogenetics, resurrection Introduction phylogenetic analyses resolved Aphaenogaster as polyphyletic, including Messor Forel, 1890 and Sten- The ant genus Aphaenogaster Mayr, 1853 is a speciose amma (Brady et al. 2006, Moreau and Bell 2013). group,whichhasnotbeentaxonomicallyreviewedin Ward (2011) suggested that convergent evolution and over 60 years (Creighton 1950). Aphaenogaster con- retention of ancestral similarities were two major fac- tains 227 worldwide species (Bolton 2006), with 23 tors contributing to polyphyly of Aphaenogaster. valid North American species reduced from 31 original Aphaenogaster taxonomy was further complicated species descriptions.
    [Show full text]
  • Arkansas Academy of Science
    Journal of the CODEN: AKASO ISBN: 0097-4374 ARKANSAS ACADEMY OF SCIENCE VOLUME 61 2007 Library Rate ARKANSAS ACADEMY OF SCIENCE ARKANSAS TECH UNIVERSITY DEPARTMENT OF PHYSICAL SCIENCES 1701 N. BOULDER RUSSELLVILLE. AR 72801-2222 Arkansas Academy ofScience, Dept. of Physical Sciences, Arkansas Tech University PAST PRESIDENTS OF THE ARKANSAS ACADEMY OF SCIENCE Charles Brookover, 1917 C. E. Hoffman, 1959 Paul Sharrah, 1984 Dwight M. Moore, 1932-33, 64 N. D. Buffaloe, 1960 William L. Evans, 1985 Flora Haas, 1934 H. L. Bogan, 1961 Gary Heidt, 1986 H. H. Hyman, 1935 Trumann McEver, 1962 Edmond Bacon, 1987 L. B. Ham, 1936 Robert Shideler, 1963 Gary Tucker, 1988 W. C. Muon, 1937 L. F. Bailey, 1965 David Chittenden, 1989 M. J. McHenry, 1938 James H. Fribourgh, 1966 Richard K. Speairs, Jr. 1990 T. L. Smith, 1939 Howard Moore, 1967 Robert Watson, 1991 P. G. Horton, 1940 John J. Chapman, 1968 Michael W. Rapp, 1992 I. A. Willis, 1941-42 Arthur Fry, 1969 Arthur A. Johnson, 1993 L. B. Roberts, 1943-44 M. L. Lawson, 1970 George Harp, 1994 JeffBanks, 1945 R. T. Kirkwood, 1971 James Peck, 1995 H. L. Winburn, 1946-47 George E. Templeton, 1972 Peggy R. Dorris, 1996 E. A. Provine, 1948 E. B. Wittlake, 1973 Richard Kluender, 1997 G. V. Robinette, 1949 Clark McCarty, 1974 James Daly, 1998 John R. Totter, 1950 Edward Dale, 1975 Rose McConnell, 1999 R. H. Austin, 1951 Joe Guenter, 1976 Mostafa Hemmati, 2000 E. A. Spessard, 1952 Jewel Moore, 1977 Mark Draganjac, 2001 Delbert Swartz, 1953 Joe Nix, 1978 John Rickett, 2002 Z.
    [Show full text]
  • Akes an Ant an Ant? Are Insects, and Insects Are Arth Ropods: Invertebrates (Animals With­
    ~ . r. workers will begin to produce eggs if the queen dies. Because ~ eggs are unfertilized, they usually develop into males (see the discus­ : ~ iaplodiploidy and the evolution of eusociality later in this chapter). =- cases, however, workers can produce new queens either from un­ ze eggs (parthenogenetically) or after mating with a male ant. -;c. ant colony will continue to grow in size and add workers, but at -: :;oint it becomes mature and will begin sexual reproduction by pro· . ~ -irgin queens and males. Many specie s produce males and repro­ 0 _ " females just before the nuptial flight . Others produce males and ---: : ._ tive fem ales that stay in the nest for a long time before the nuptial :- ~. Our largest carpenter ant, Camponotus herculeanus, produces males _ . -:= 'n queens in late summer. They are groomed and fed by workers :;' 0 it the fall and winter before they emerge from the colonies for their ;;. ights in the spring. Fin ally, some species, including Monomoriurn : .:5 and Myrmica rubra, have large colonies with multiple que ens that .~ ..ew colonies asexually by fragmenting the original colony. However, _ --' e polygynous (literally, many queens) and polydomous (literally, uses, referring to their many nests) ants eventually go through a -">O=- r' sexual reproduction in which males and new queens are produced. ~ :- . ant colony thus functions as a highly social, organ ized "super­ _ _ " 1." The queens and mo st workers are safely hidden below ground : : ~ - ed within the interstices of rotting wood. But for the ant workers ~ '_i S ' go out and forage for food for the colony,'life above ground is - =- .
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]