Mechanisms for the Evolution of Superorganismality in Ants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Resasco Etal 2014 Plosone.Pdf (1.045Mb)
Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Resasco, Julian, Shannon L. Pelini, Katharine L. Stuble, Nathan J. Sanders, Robert R. Dunn, Sarah E. Diamond, Aaron M. Ellison, Nicholas J. Gotelli, and Douglas J. Levey. 2014. “Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages.” Edited by Martin Heil. PLoS ONE 9 (2) (February 4): e88029. doi:10.1371/journal.pone.0088029. http://dx.doi.org/10.1371/ journal.pone.0088029. Published Version doi:10.1371/journal.pone.0088029 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11857773 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages Julian Resasco1*†, Shannon L. Pelini2, Katharine L. Stuble 3‡, Nathan J. Sanders3§, Robert R. Dunn4, Sarah E. Diamond4¶, Aaron M. Ellison5, Nicholas J. Gotelli6, Douglas J. Levey7 1Department of Biology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA 3Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 4Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA 5Harvard University, Harvard Forest, Petersham, MA 01366 USA 6Department of Biology, University of Vermont, Burlington, VT 05405 USA 7National Science Foundation, Arlington, VA 22230, USA † Current address: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA ‡ Current address: Oklahoma Biological Survey, 111 E. -
The Mesosomal Anatomy of Myrmecia Nigrocincta Workers and Evolutionary Transformations in Formicidae (Hymeno- Ptera)
7719 (1): – 1 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The mesosomal anatomy of Myrmecia nigrocincta workers and evolutionary transformations in Formicidae (Hymeno- ptera) Si-Pei Liu, Adrian Richter, Alexander Stoessel & Rolf Georg Beutel* Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; Si-Pei Liu [[email protected]]; Adrian Richter [[email protected]]; Alexander Stößel [[email protected]]; Rolf Georg Beutel [[email protected]] — * Corresponding author Accepted on December 07, 2018. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Andy Sombke & Klaus-Dieter Klass. Abstract. The mesosomal skeletomuscular system of workers of Myrmecia nigrocincta was examined. A broad spectrum of methods was used, including micro-computed tomography combined with computer-based 3D reconstruction. An optimized combination of advanced techniques not only accelerates the acquisition of high quality anatomical data, but also facilitates a very detailed documentation and vi- sualization. This includes fne surface details, complex confgurations of sclerites, and also internal soft parts, for instance muscles with their precise insertion sites. Myrmeciinae have arguably retained a number of plesiomorphic mesosomal features, even though recent mo- lecular phylogenies do not place them close to the root of ants. Our mapping analyses based on previous morphological studies and recent phylogenies revealed few mesosomal apomorphies linking formicid subgroups. Only fve apomorphies were retrieved for the family, and interestingly three of them are missing in Myrmeciinae. Nevertheless, it is apparent that profound mesosomal transformations took place in the early evolution of ants, especially in the fightless workers. -
ON (19) 633-647.Pdf
ORNITOLOGIA NEOTROPICAL EDITOR RAYMOND McNEIL INDEX TO VOLUME 19, 2008 (Authors, key words, families, latin names) An International Journal of Neotropical Ornithology published by THE NEOTROPICAL ORNITHOLOGICAL SOCIETY INDEX, VOL. 19, 2008 The “S” prefix before page numbers refers to pages in the Proceedings of the VIIIth Neotropi- cal Ornithological Congress held in Venezuela, 13–19 May 2007, and published as a supplement to Volume 19 (2008) of Ornitología Neotropical. Abaco National Park, S165–S171 335–344, 403–416, 451–456, 457–461, Abreu, M., S461–S472 467–471, 495–515, 581–585 Abundance, 345–359, S287–S293, S295– Androgen receptors, S229–S239 S303, S433–S443, S491–S500 Angulo Pratolongo, F., S279–S286 Accipiter erythronemius, 15–29 Animal communication, 175–199 Acute stress responses, S241–S251 Antagonism, S485–S490 Adaptations, S511–S519 Antioquia, 467–471, 495–515 Addis, E., S241–S251 Antshrike, 293–297 Adrenocortical responses, S241–S251 Ara, S173–S181 Advances, S329–S337, S339–S346 Ara ararauna, 321–328, S113–S122 Aggressive interactions, 329–334 Ara chloropterus, 321–328 Agile Tit-Tyrant, 117–122 Ara macao, 321–328 Agroecosystems, S575–S585 Ara militaris, 255–263 Agroforestry, 15–29 Araucaria angustifolia, 15–29 Aguaruna indigenous communities, S587– Arbeláez, D., S567–S574 S594 Arbeláez-Alvarado, D., S549–S565 Aguaruna-Jívaro communities, S587–S594 Ardea cocoi, 485–493 Águila Poma, 611–616 Ardiles, K., 485–493 Aimophila sumichrasti, 123–127 Areta, J. I., 201–211 Alarcón-Nieto, G., 371–376 Argentina, 15–29, 31–41, 71–80, 109–116, Albrieu, C., S311–S319, S433–S443 161–174, 201–211, 299–303, 315–319, Alducin-Chávez, G. -
Ecology and Field Biology of Two Dominant Camponotus Ants
JOURNAL OF NATURAL HISTORY, 2018 VOL. 52, NOS. 3–4, 237–252 https://doi.org/10.1080/00222933.2017.1420833 Ecology and field biology of two dominant Camponotus ants (Hymenoptera: Formicidae) in the Brazilian savannah Mariane U.V. Ronquea, Vincent Fourcassiéb and Paulo S. Oliveira c aPrograma de Pós-Graduação em Ecologia, Instituto de Biologia, C.P. 6109, Universidade Estadual de Campinas, Campinas, Brazil; bCentre de Recherches sur la Cognition Animale, UMR CNRS Nº5169, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France; cDepartamento de Biologia Animal, C.P. 6109, Universidade Estadual de Campinas, Campinas, Brazil Camponotus renggeri and C. rufipes are very abundant in Brazilian ARTICLE HISTORY cerrado savannah, where they feed extensively on liquid rewards Received 23 March 2017 and commonly associate with plants bearing extrafloral nectaries Accepted 5 December 2017 and honeydew-producing insects. Here, we provide a qualitative Online 22 January 2018 and quantitative field account on the natural history and ecology of KEYWORDS these two ant species. The study was carried out in a cerrado Activity schedule; ants; reserve in south-eastern Brazil across a rainy/hot season (summer) cerrado vegetation; nesting and a dry/cold season (winter). The ants were found in two vegeta- habits; home range tion physiognomies: all nests of C. rufipes were located in the cerrado sensu stricto (scrub of shrubs and trees, 3–8 m tall), whereas C. renggeri occurred mostly in the cerradão (forest with more or less merging canopy, 10–12 m tall). Both species nested in fallen or erect dead trunks, as well as underground. -
Dynamics of Salticid-Ant Mimicry Systems
ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation. -
Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check list of ground-dwelling ants (Hymenoptera: PECIES S Formicidae) of the eastern Acre, Amazon, Brazil OF Patrícia Nakayama Miranda 1,2*, Marco Antônio Oliveira 3, Fabricio Beggiato Baccaro 4, Elder Ferreira ISTS 1 5,6 L Morato and Jacques Hubert Charles Delabie 1 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza. BR 364 – Km 4 – Distrito Industrial. CEP 69915-900. Rio Branco, AC, Brazil. 2 Instituo Federal do Acre, Campus Rio Branco. Avenida Brasil 920, Bairro Xavier Maia. CEP 69903-062. Rio Branco, AC, Brazil. 3 Universidade Federal de Viçosa, Campus Florestal. Rodovia LMG 818, Km 6. CEP 35690-000. Florestal, MG, Brazil. 4 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-graduação em Ecologia. CP 478. CEP 69083-670. Manaus, AM, Brazil. 5 Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau, Laboratório de Mirmecologia – CEPEC/CEPLAC. Caixa Postal 07. CEP 45600-970. Itabuna, BA, Brazil. 6 Universidade Estadual de Santa Cruz. CEP 45650-000. Ilhéus, BA, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The ant fauna of state of Acre, Brazilian Amazon, is poorly known. The aim of this study was to compile the species sampled in different areas in the State of Acre. An inventory was carried out in pristine forest in the municipality of Xapuri. This list was complemented with the information of a previous inventory carried out in a forest fragment in the municipality of Senador Guiomard and with a list of species deposited at the Entomological Collection of National Institute of Amazonian Research– INPA. -
Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus. -
Workers' Extra-Nest Behavioral Changes During Colony
Neotrop Entomol (2014) 43:115–121 DOI 10.1007/s13744-013-0193-6 ECOLOGY, BEHAVIOR AND BIONOMICS Workers’ Extra-Nest Behavioral Changes During Colony Fission in Dinoponera quadriceps (Santschi) JMEDEIROS,AARAÚJO Depto de Fisiologia, PPG em Psicobiologia, Lab de Biologia Comportamental, Univ Federal do Rio Grande do Norte, Natal, RN, Brasil Keywords Abstract Dependent colony foundation, Ant colonies can reproduce by two strategies: independent foundation, intraspecific competition, Ponerinae wherein the queen starts a new colony alone, and dependent foundation, Correspondence in which workers assist the queen. In the queenless species Dinoponera A Araújo, Depto de Fisiologia, PPG em quadriceps (Santschi), the colony reproduces obligatorily by fission, a type Psicobiologia, Lab de Biologia Comportamental, Univ Federal do Rio of dependent foundation, but this process is not well understood. This Grande do Norte, Natal, RN, Brasil; study describes a colony fission event of D. quadriceps in the field and [email protected] analyzes the influence of the fission process on workers’ extra-nest be- Edited by Kleber Del Claro – UFU havior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, Received 26 July 2013 and accepted 19 conflict stage, and post-conflict stage. The colony was initially monodomic December 2013 Published online: 18 February 2014 and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. * Sociedade Entomológica do Brasil 2014 After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter’s disappearance. Colony fission affected workers’ extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage. -
Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F. -
The Army Ant Aenictus Silvestrii and Its Related Species in Southeast Asia, with a Description of a New Species
Entomological Science (2010) 13, 328–333 doi:10.1111/j.1479-8298.2010.00385.x ORIGINAL ARTICLE The army ant Aenictus silvestrii and its related species in Southeast Asia, with a description of a new species (Hymenoptera: Formicidae: Aenictinae)ens_385 328..333 Weeyawat JAITRONG1,2 and Seiki YAMANE1 1Department of Natural Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan; and 2Natural History Museum, National Science Museum, Technopolis, Khlong Luang, Pathum Thani, Thailand Abstract Three species of Aenictus with reduced numbers of antennal segments (8–9) occur in Southeast Asia: A. jarujini sp. nov., A. latifemoratus and A. silvestrii. Aenictus latifemoratus is new to Java and Borneo, while A. silvestrii is recorded for the first time from Borneo. Key words: Aenictus jarujini sp. nov., army ants, southeast Asia, taxonomy. INTRODUCTION & Yamane (1989) (Sumatra, Indonesia); Terayama & Kubota (1993) (Vietnam and Thailand); Yamane The genus Aenictus Shuckard, 1840 (subfamily Aenicti- & Hashimoto (1999) (Sarawak, Borneo); Shattuck nae) is one of the large ant genera in the world. Currently (2008) (Australia). Jaitrong & Nabhitabhata (2005) 149 valid species and subspecies are listed (Bolton et al. listed the known species of Thailand. 2006). They are mainly distributed in the Old World During our survey on the Asian species of Aenictus, tropics and subtropics, from Africa through the Middle we have recognized a well-defined species group of three East, India, South China, southernmost part of Japan, Southeast Asian species comprising the two species various countries in Southeast Asia to New Guinea and above mentioned and a new species from Thailand. In Australia (Gotwald 1995). -
First Record of the Army Ant Cheliomyrmex Morosus in Panama and Its High Associate Diversity
BIOTROPICA *(*): ***-*** **** 10.1111/J.1744-7429.2007.00302.X First Record of the Army Ant Cheliomyrmex morosus in Panama and its High Associate Diversity Stefanie M. Berghoff1 and Nigel R. Franks School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK ABSTRACT The occurrence and distribution of hypogaeic army ants is still poorly known despite their potential importance for tropical soil ecosystems. We present the first record of one of the most cryptic of army ants, Cheliomyrmex morosus, in Panama and list a diverse array of associated arthropods. The late discovery of these ants and high diversity of their associates indicates that much remains to be discovered even in one of the most intensely studied research areas. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp. Key words: Acari; Coleoptera; Diptera; Ecitoninae; Formicidae; hypogaeic; myrmecophile; Zygentoma. THROUGHOUT THE TROPICS, ARMY ANTS ARE ONE OF THE MOST and evolution of other New World army ant associates. Here, we CONSPICUOUS GROUPS OF ANTS. Species with large epigaeic mass report the first record of a Cheliomyrmex morosus colony in Panama raids, such as Eciton and Labidus in the New World, Dorylus and give a summary of associates collected from the ant column. {Anomma) in Africa, and Aenictus in Asia, are recognized as key- We conducted extensive daily ant surveys in the Barro Col- stone species in their habitats (Franks & Bossert 1983, Gotwald orado Nature Monument and Soberanfa National Park (Panama, 1995, Brown & Feener 1998). Army ant colonies host very diverse 9° 10' N, 79°51' W) between March and May 2005. -
The Army Ant Aenictus Hottai (Hymenoptera: Formicidae: Aenictinae) and Related Species in Southeast Asia, with a Description Of
557 The Army AntAenictus hottai (Hymenoptera: Formicidae: Aenictinae) and Related Species in Southeast Asia, with a Description of a New Species by Decha Wiwatwitaya1 & Weeyawat Jaitrong2, 3 ABSTRACT The Aenictus hottai group is established to include two species (a named and a new species) occurring in Southeast Asia: Aenictus hottai Terayama et Yamane, 1989 and Aenictus yamanei Wiwatwitaya et Jaitrong, sp. nov. Both are probably restricted to Sundaland and inhabit lowland primary forests. Key words: Taxonomy, Formicidae, Aenictinae, Aenictus yamanei, army ants, new species. INTRODUCTION Currently 95 species are listed in the army ant genus Aenictus from the Oriental, Indo-Australian, and Australasian regions (Jaitrong & Eguchi 2010; Bolton 2011). Among them 67 species are known only from the worker caste. All of those species except one have a smooth and shining gaster. The species with a finely reticulated gaster, Aenictus hottai Terayama et Yamane, 1989, is also characterized by a well-developed subpetiolar process with a poster- oventrally produced arm, and is found only in Southeast Asia (Terayama & Yamane 1989; Rościszewski & Mashchwitz 1994; Malsch et al. 2003; Jaitrong & Nabhitabhata 2005). In the course of our examination of Aenictus specimens collected from Southeast Asia, we found another species from Malay Peninsula and Sarawak that is closely related to A. hottai but is much smaller than the latter. In this paper we describe this ant as a new species based on the worker caste and both species are classified into the Aenictus hottai group herein established. 1 Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand, E-mail: [email protected] 2 Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani 12120, Thailand, E-mail: [email protected] 3 Graduate School of Science and Engineering, Kagoshima University, Kagoshima 8900065, Japan 558 Sociobiology Vol.