Cost-Effectiveness Analysis of Aerial Platforms and Suitable Communication Payloads

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Calhoun: The NPS Institutional Archive

  • Theses and Dissertations
  • Thesis Collection

2014-03

Cost-effectiveness analysis of aerial platforms and suitable communication payloads

Everly, Randall E.

Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/41375

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

COST-EFFECTIVENESS ANALYSIS OF AERIAL PLATFORMS AND SUITABLE COMMUNICATION
PAYLOADS

by
Randall E. Everly David C. Limmer

March 2014
Thesis Advisor: Co-Advisor:
Cameron MacKenzie
Glenn Cook

  • Second Reader
  • John Gibson

Approved for public release;distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.

  • 1. AGENCY USE ONLY (Leave blank)
  • 2. REPORT DATE
  • 3. REPORT TYPE AND DATES COVERED

  • March 2014
  • Master’s Thesis

  • 4. TITLE AND SUBTITLE
  • 5. FUNDING NUMBERS

COST-EFFECTIVENESS ANALYSIS OF AERIAL PLATFORMS AND SUITABLE COMMUNICATION PAYLOADS

6. AUTHOR(S) Randall E. Everly and David C. Limmer 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

8. PERFORMING ORGANIZATION REPORT NUMBER

Monterey, CA 93943–5000

  • 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
  • 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

N/A
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

  • 12a. DISTRIBUTION / AVAILABILITY STATEMENT
  • 12b. DISTRIBUTION CODE

Approved for public release;distribution is unlimited

13. ABSTRACT (maximum 200 words)

The goal of this research is to perform a cost-effectiveness analysis of selected aerial platforms and suitable communication payloads for use as communication relays in support of distributed military operations. Aerial platforms, for the purpose of this study, include UAVs, towers and aerostats. A multi-objective analysis is utilized to compare dissimilar attributes together among the alternatives. Cost data for each system considered is presented. To analyze the cost-effectiveness of alternatives for different mission sets, three hypothetical scenarios are used including disaster relief, long-range relay, and the tactical user. This research identifies the most cost-effective aerial platforms and communication payloads for each scenario based on the authors’ preferences. Future decision makers can utilize this study as a decision tool to match their own preferences.

14. SUBJECT TERMS Unmanned Aerial Vehicle, UAV, Unmanned Aerial System, UAS, communication, payload, cost-effectiveness, cost-benefit analysis, CBA, business case, tower, aerostat, airship, satellite, relay, beyond line of sight, over the horizon, UHF, VHF, data, voice

15. NUMBER OF PAGES

203

16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT
18. SECURITY CLASSIFICATION OF THIS PAGE
19. SECURITY CLASSIFICATION OF ABSTRACT
20. LIMITATION OF ABSTRACT

  • Unclassified
  • Unclassified
  • Unclassified
  • UU

NSN 7540–01–280–5500
Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18

i
THIS PAGE INTENTIONALLY LEFT BLANK ii

Approved for public release;distribution is unlimited

COST-EFFECTIVENESS ANALYSIS OF AERIAL PLATFORMS AND
SUITABLE COMMUNICATION PAYLOADS

Randall E. Everly
Lieutenant Commander, United States Navy B.S., United States Naval Academy, 1998

David C. Limmer
Lieutenant, United States Navy B.S., Gordon College, 2001

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT and
MASTER OF BUSINESS ADMINISTRATION

from the

NAVAL POSTGRADUATE SCHOOL
March 2014

  • Authors:
  • Randall E. Everly

David C. Limmer

  • Approved by:
  • Cameron MacKenzie

Thesis Advisor

Glenn Cook Co-Advisor

John Gibson Second Reader

Dan Boger Chair, Department of Information Systems

Bill Gates Dean, Graduate School of Business

iii
THIS PAGE INTENTIONALLY LEFT BLANK iv

ABSTRACT

The goal of this research is to perform a cost-effectiveness analysis of selected aerial platforms and suitable communication payloads for use as communication relays in support of distributed military operations. Aerial platforms, for the purpose of this study, include UAVs, towers and aerostats. A multi-objective analysis is utilized to compare dissimilar attributes together among the alternatives. Cost data for each system considered is presented. To analyze the cost-effectiveness of alternatives for different mission sets, three hypothetical scenarios are used including disaster relief, long-range relay, and the tactical user. This research identifies the most cost-effective aerial platforms and communication payloads for each scenario based on the authors’ preferences. Future decision makers can utilize this study as a decision tool to match their own preferences.

v
THIS PAGE INTENTIONALLY LEFT BLANK vi

TABLE OF CONTENTS

  • I.
  • INTRODUCTION........................................................................................................1

A. B. C.
U.S. MILITARY’S GROWING NEED FOR CONNECTIVITY ...............1 SATELLITES CANNOT BE THE SINGULAR SOLUTION ....................1 UAV COMMUNICATION RELAYS PROVIDE A POSSIBLE SOLUTION ......................................................................................................2 ANY SOLUTION MUST BE COST-EFFECTIVE......................................4 RESEARCH HIGHLIGHTS..........................................................................4
D. E.
1. 2. 3. 4. 5.
Problem Statement...............................................................................4 Purpose Statement ...............................................................................4 Methodology.........................................................................................4 Scope......................................................................................................5 Limitations............................................................................................5

  • F.
  • ORGANIZATION ...........................................................................................5

  • II.
  • BACKGROUND ..........................................................................................................7

A. B.
RELATED STUDIES......................................................................................7 AERIAL PLATFORMS................................................................................14

  • 1.
  • UAVs ...................................................................................................16

a. b. c. d. e.
Small........................................................................................16 Medium....................................................................................18 Large........................................................................................21 HALE.......................................................................................24 Vertical Takeoff and Landing (VTOL) ..................................26

  • 2.
  • Alternative Aerial Platforms.............................................................28

a. b. c. d. e.
Rapidly Erected Towers ..........................................................28 Tethered Multi-rotors..............................................................30 Tethered Balloons/Aerostats...................................................30 Untethered Balloons – Google................................................32 Unmanned Airships ................................................................33

  • C.
  • COMMUNICATION TECHNOLOGY AND PAYLOADS......................33

  • 1.
  • Networking and Communications....................................................34

a. b. c. d. e.
Direct Link...............................................................................34 Satellite ....................................................................................35 Cellular....................................................................................35 Mesh ........................................................................................35 MANET ...................................................................................36

2. 3.
Technical Background.......................................................................36

a. b. c. d.
Link Budget.............................................................................36 Shannon Limit ........................................................................37 Radio Horizon .........................................................................37 Size, Weight, Power and Cooling ...........................................38

Communication Payloads..................................................................39

  • a.
  • Persistent Systems Wave Relay...............................................39

vii

b. c. d. e.
TrellisWare WildCat II and Ocelot ........................................40 Oceus Networks Xiphos ..........................................................41 Harris Falcon III AN/PRC-117G and RF-7800W OU440 ...42 AeroVironment Digital Data Link (DDL)..............................44

D. METHODOLOGY ....................................................................................................47 A. MODELING APPROACH FOR CEA ........................................................47
SUMMARY ....................................................................................................44
III.

1. 2. 3. 4. 5. 6.
Introduction to CEA..........................................................................47 Objectives Hierarchy.........................................................................49 Value Functions..................................................................................51 Importance Weights...........................................................................54 MOE....................................................................................................57 Determining a Cost-Effective Solution.............................................57

a. b. c. d.
Superior Solution....................................................................57 Efficient Solution....................................................................58 Satisficing Solutions ...............................................................59 MOE and Cost Tradeoffs........................................................60

  • B.
  • HEIRARCHIES.............................................................................................61

  • 1.
  • Aerial Platform Hierarchy................................................................62

a. b. c. d.
Flexibility.................................................................................62 Performance............................................................................64 Readiness.................................................................................66 Survivability.............................................................................68

  • 2.
  • Communication Payload Hierarchy.................................................70

a. b. c.
Performance............................................................................71 Flexibility.................................................................................73 Readiness.................................................................................74

C. D.
COSTS ............................................................................................................75 1. 2.
Aerial Platform Costs ........................................................................75 Communication Payload Costs.........................................................77
SUMMARY ....................................................................................................78

  • IV.
  • ANALYSIS .................................................................................................................79

A. HUMANITARIAN AID/DISASTER RELIEF (HADR) SCENARIO......79
1. 2. 3.
HADR Scenario: Mission and Environmental Conditions ............79 HADR Scenario: Aerial Platform Importance Weights.................80 HADR Scenario: Aerial Platform Value Functions........................82

a. b. c. d.
Flexibility.................................................................................82 Performance............................................................................83 Readiness.................................................................................88 Survivability.............................................................................89

4. 5.
HADR Scenario: Aerial Platform Cost-Effective Solutions...........89 HADR Scenario: Communication Payload Importance Weights................................................................................................96

  • HADR Scenario: Communication Payload Value Functions ........97
  • 6.

  • a.
  • Performance............................................................................97

viii

b. c.
Flexibility...............................................................................100 Readiness...............................................................................100

7. 8.
HADR Scenario: Communication Payload Cost-Effective Solutions............................................................................................101 HADR Scenario: Solution Compatibility ......................................104

  • B.
  • LONG-RANGE SCENARIO......................................................................105

1. 2. 3.
Long-Range Scenario: Mission and Environmental Conditions.105 Long-Range Scenario: Aerial Platform Importance Weights .....105 Long-Range Scenario: Aerial Platform Value Functions ............107

a. b. c. d.
Flexibility...............................................................................107 Performance..........................................................................108 Readiness...............................................................................112 Survivability...........................................................................112

4. 5. 6.
Long-Range Scenario: Aerial Platform Cost-Effective Solutions............................................................................................113 Long-Range Scenario: Communication Payload Importance Weights..............................................................................................117 Long-Range Scenario: Communication Payload Value Functions...........................................................................................118

a. b. c.
Performance..........................................................................118 Flexibility...............................................................................119 Readiness...............................................................................121

Recommended publications
  • Professlonal Engllsh Medlcl NE and Dlagnostlcs Навчальний Посiбник

    Professlonal Engllsh Medlcl NE and Dlagnostlcs Навчальний Посiбник

    MlHlcTEPcTBo освIти l нАуки укрА[ни Нацiональний авiацiйний унiверситет О. Г, Шостак, В. l, Базова PRoFESSloNAL ENGLlSH MEDlcl NE AND DlAGNoSTlcS навчальний посiбник КиТв 2015 ь- Еи_ встуII KypciB напря- Навча-гьrшай посiбrrик уrшадеrпш1 дIя студенть I_tv прог- му пi.щоmвки 6.051402 <Бiомедична iюrсенерЙ>, Назчальними (за професiйним. спряму- рамами мсциIIJIIни <<Iноземна мова i*.о*tо передбачено вивчення студеЕтами напряму <<Бiомедrтчtrа 1 ха- irженерiш десяти модулiв, що визначае струкгуру посlоника !а- Принципи побудови ракгер виIOтадеш{я навчаJIьного MaTepia,Try, посiбьм виповiдають також формаry Програми з англiйськоi курсу ESP l{о"" дrr" студекгiв немовних спецiа:ьностей, завданням та вимогам Болонського процесу. основна мета нrrвч€lJl"rrоrо посiбrпш<а - н2IвIIити майбугrriх фа- xl хьцьзбiомедщчноiiяженерiiосноВzl}\,IпрофесiйногоспiлкУвапня аrглйською мовою. Автори також ставиJIи перед собою завдання перекJlад/, рзвинути у оryдеrггЬ cTiйKi н{lвички читанЕя, реферу- в"r"{Я технiчноi лiтератури з метою oтриманIUI 1 використання rе- необхiдrоi дlя професiftrоi дiяльностi iнформачii,-ПосiбrшшС 0го можIIивlсть прове- умiшryе тексти дIя щrгff*щ що дае hiB навчаJъноrо деннЯ дисrсусЙ та максиIшаjБного заJýленrrя сryдекrЬ до завданrш з W2 процесу. Система вправ дозвоJuIс вимадачевi обиратлл ура- й**;" iнд.вiдrЙrло< здiбноСrей сryдеrrГiв (нагп,rсаШ11 Рефератiв, Ыш*ч* доповЙей викоIlrlнtlf рiзноманiпшо< коruунiмцiйшпоi вправ). TBopd шдл rив,m-Гьноiдiяльносгi, що гр5пrrуIorься ImypиBI@( з I*rJ,KoBo- ,"йrrrr* д""рел, пi,щrлrцrють моrшацiю сryдеrrгiв, а змiстовi iндшi- peaJБHolvfy жшггi ryашнi завдаш{я допомагitють розв!шrуш необхiдli В KoMyHiKжlrBHi навlrчr<и та здатнiсть до са},Iовираження, У посiбlшку викIIадено основи грitматики англйськоi мови. Слов- нrшс TepMiHiB до кожного роздiлу дOпомагае краще оволодiтк jIексичним матерiалом та дае змOry Еоповнити словниковии запас, засвоенtrя лексичного та rраматиqного матерiалу допоможе сту- сЕряму- деrrговi орiсrrryватиоя в zlнгломовнiй лiтераryрi фахового кIHIUI, брати участь у мiхсrародншr конфереrщiях, MODULE 1.
  • Designing Unmanned Aircraft Systems: a Comprehensive Approach

    Designing Unmanned Aircraft Systems: a Comprehensive Approach

    Designing Unmanned Aircraft Systems: A Comprehensive Approach Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the American Institute of Aeronautics and Astronautics, Inc. 1801 Alexander Bell Drive, Reston, Virginia 20191-4344 NOMENCLATURE Item Definition A area; availability; ground area covered in a mission; radar antenna area, m2; conversion between radians and minutes of arc Aa achieved availability Abound bounded area for a closed section 2 Ad IR detector sensitive area, m 2 Aeff effective antenna area, length Ai inherent availability AO operational availability; UA availability 2 Ap propeller disk area, length ARate area coverage rate Ar effective collection area of optical receiver ASurf surface area AR aspect ratio ARWet wetted aspect ratio AR0 aspect ratio along spanwise path a UA acceleration; maximum fuselage cross-section width; speed of sound; detector characteristic dimension awa radar mainlobe width metric awr radar mainlobe width metric ax acceleration along the x direction (acceleration) B acuity gain due to binoculars; boom area; effective noise bandwidth of receiving process, Hz 21 BDoppler Doppler bandwidth (time ) BN effective noise bandwidth of the receiving process 21 BT radar signal bandwidth (time ) BSFCSL brake specific fuel consumption at sea level b web length; wing span; maximum fuselage cross- section height bw wing span b0 span without dihedral C cost of contractor
  • Shaping the Future Wind Tunnel Testing Helps Boeing Shape 737 MAX— and the Future of Flight

    Shaping the Future Wind Tunnel Testing Helps Boeing Shape 737 MAX— and the Future of Flight

    Frontierswww.boeing.com/frontiers JULY 2012 / Volume XI, Issue III Shaping the future Wind tunnel testing helps Boeing shape 737 MAX— and the future of flight PB BOEING FRONTIERS / JULY 2012 1 BOEING FRONTIERS / JULY 2012 On the Cover Tunnel vision Computer simulations are crucial in developing the aerodynamics of Boeing aircraft, but at some point it’s time to turn on the wind! From 22 the B-47 bomber to the 787 Dreamliner, what Boeing engineers learn from testing models in wind tunnels has shaped the future of flight. Today, another Boeing jet, the 737 MAX, is undergoing this rigorous testing that comes early in the development process. COVER IMAGE: BOEING ENGINEER JIM CONNER PREPARES A MODEL OF THE 737 MAX FOR TESTING IN THE TRANSONIC WIND TUNNEL IN SEATTLE. BOB FERGUSON/BOEING PHOTO: A LOOK AT THE HIGH-SPEED DIFFUSER OF THE BOEING VERTICAL/SHORT TAKEOFF AND LANDING WIND TUNNEL IN PHILADELPHIA. FRED TROILO/BOEING Ad watch The stories behind the ads in this issue of Frontiers. Inside cover: Page 6: Back cover: This ad was created This ad for the new Every July, the Boeing to highlight Boeing’s 747-8 Intercontinental is Store commemorates Commercial Crew running in Chinese trade Boeing’s anniversary Development System, and business publications with a weeklong a reliable, cost-effective and Aviation Week. celebration, offering and low-risk solution The headline speaks to special merchandise, for commercial space the airplane’s striking gifts and free birthday transportation. The beauty (new Boeing Sky cake in the stores. ad is running in trade Interior), classic elegance This ad for the 2012 publications.
  • Up from Kitty Hawk Chronology

    Up from Kitty Hawk Chronology

    airforcemag.com Up From Kitty Hawk Chronology AIR FORCE Magazine's Aerospace Chronology Up From Kitty Hawk PART ONE PART TWO 1903-1979 1980-present 1 airforcemag.com Up From Kitty Hawk Chronology Up From Kitty Hawk 1980-1989 F-117 Nighthawk stealth fighters, first flight June 1981. Articles noted throughout the chronology are hyperlinked to the online archive for Air Force Magazine and the Daily Report. 1980 March 12-14, 1980. Two B-52 crews fly nonstop around the world in 43.5 hours, covering 21,256 statute miles, averaging 488 mph, and carrying out sea surveillance/reconnaissance missions. April 24, 1980. In the middle of an attempt to rescue US citizens held hostage in Iran, mechanical difficulties force several Navy RH-53 helicopter crews to turn back. Later, one of the RH-53s collides with an Air Force HC-130 in a sandstorm at the Desert One refueling site. Eight US servicemen are killed. Desert One May 18-June 5, 1980. Following the eruption of Mount Saint Helens in northwest Washington State, the Aerospace Rescue and Recovery Service, Military Airlift Command, and the 9th Strategic Reconnaissance Wing conduct humanitarian-relief efforts: Helicopter crews lift 61 people to safety, while SR–71 airplanes conduct aerial photographic reconnaissance. May 28, 1980. The Air Force Academy graduates its first female cadets. Ninety-seven women are commissioned as second lieutenants. Lt. Kathleen Conly graduates eighth in her class. Aug. 22, 1980. The Department of Defense reveals existence of stealth technology that “enables the United States to build manned and unmanned aircraft that cannot be successfully intercepted with existing air defense systems.” Sept.
  • In Memorandum

    In Memorandum

    RAAF Radschool Association Magazine Vol 35 May 2011 Sadly in the few Our lovely Page 3 girl months since our last this time is Dianne issue, we have once Pickering. And – we again lost some very have photos of good mates. courses from a long time ago. See Page 2 See Page 3 Sam asks the question, with all Randall Kingsley these new iPad reminisces about his things, are PC‟s and Appy days and we Windows on the way have a good look at out?? and does 3D Frognall. TV have a future?? And lots more!! See Page 5 See Page 4 RAAF Radschool Association Magazine – Vol 35 Page 1 Ted‟s got the new pension rates and has Ken Marks, ex Radtech some good advice if Air, tells us his story you‟re receiving a and we go to pension and about to Caboolture to see the travel overseas. mighty Mustang. See page 6 See Page 7 We get to have a good Let men grieve as men! look over Laverton, How safe is your home, there‟s been a lot of as we age we are more changes since we were at risk of falls in our there in 1967. home. Homefront will call and check your See Page 8 home for risks. See Page 11 The truth on E10 fuel, Anzac Day in Brisbane should we be using it? was a big day. We‟ve and are frequent flier got lots of photos. cards worth having? See Page 14 See Page 13 A few blokes are not as We‟re looking for a few well as they should be.
  • Boeing History Chronology Boeing Red Barn

    Boeing History Chronology Boeing Red Barn

    Boeing History Chronology Boeing Red Barn PRE-1910 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Boeing History Chronology PRE-1910 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 PRE -1910 1910 Los Angeles International Air Meet Museum of Flight Collection HOME PRE-1910 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1881 Oct. 1 William Edward Boeing is born in Detroit, Michigan. 1892 April 6 Donald Wills Douglas is born in Brooklyn, New York. 1895 May 8 James Howard “Dutch” Kindelberger is born in Wheeling, West Virginia. 1898 Oct. 26 Lloyd Carlton Stearman is born in Wellsford, Kansas. 1899 April 9 James Smith McDonnell is born in Denver, Colorado. 1903 Dec. 17 Wilbur and Orville Wright make the first successful powered, manned flight in Kitty Hawk, North Carolina. 1905 Dec. 24 Howard Robard Hughes Jr. is born in Houston, Texas. 1907 Jan. 28 Elrey Borge Jeppesen is born in Lake Charles, Louisiana. HOME PRE-1910 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1910 s Boeing Model 1 B & W seaplane HOME PRE-1910 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1910 January Timber baron William E. Boeing attends the first Los Angeles International Air Meet and develops a passion for aviation. March 10 William Boeing buys yacht customer Edward Heath’s shipyard on the Duwamish River in Seattle. The facility will later become his first airplane factory. 1914 May Donald W. Douglas obtains his Bachelor of Science degree from the Massachusetts Institute of Technology (MIT), finishing the four-year course in only two years.
  • Boeing High Altitude Long Endurance (HALE) UAS

    Boeing High Altitude Long Endurance (HALE) UAS

    Boeing Defense, Space & Security PhantomWorks Boeing High Altitude Long Endurance (HALE) UAS Pat O’Neil Director, HALE Programs Boeing Phantom Works BOEING is a trademark of Boeing Management Company. Copyright © 2012 Boeing. All rights reserved. BDS | PhantomWorks Boeing Defense, Space & Security . Headquartered in St. Louis, Mo., with global operations in 4 nations and 21 states . Designing, building and supporting net-enabled platforms and systems for government and commercial customers . Balanced backlog across all markets including a strong mix of development, production and support contracts . Approximately 64,000 employees Delivering the future Copyright © 2012 Boeing. All rights reserved. Phantom Eye Apr 2012 | 2 BDS | PhantomWorks Integrated Team, Working for Growth BDS Businesses New Program & Business Transition . Execution . Keep it sold . Follow-on business Phantom Works . Integrated concept development . Analysis, modeling, simulation & experiments . Rapid prototyping . Mature and apply new technology . Next generation systems (pre-SDD) . Adjacencies and new markets Technology Transition Boeing Research & Technology . Develop required core technology . Leap frog and disruptive technology Copyright © 2012 Boeing. All rights reserved. Phantom Eye Apr 2012 | 3 BDS | PhantomWorks Operations in the Stratosphere Mission Needs . Threats to communications infrastructure and inability to rapidly reconstitute . Need to persist over areas of interest, providing continual, long-dwell surveillance Enabling Technologies . Hydrogen internal
  • An Unmanned Aircraft System for Maritime Search and Rescue

    An Unmanned Aircraft System for Maritime Search and Rescue

    An Unmanned Aircraft System for Maritime Search and Rescue by Andre Paul Meredith Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Engineering at Stellenbosch University Supervisor: Prof Thomas Jones Department of Electrical and Electronic Engineering March 2011 Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2011 Copyright © 2011 Stellenbosch University All rights reserved i Abstract Search and Rescue is an essential service provided by States and Militaries to search for, locate and rescue survivors of accidents and incidents. Civil Search and Rescue utilizes a system of well-trained professionals or volunteers, an effective Search and Rescue organization, supported by industry and other providers of infrastructure and assets. The service is rendered to save the lives of civilian individuals in imminent danger of losing their lives. Military (Combat) Search and Rescue is provided by militaries to save the lives of military practitioners in a similar predicament. In addition, Search and Rescue is performed over land and over the sea. All forms of Search and Rescue rely on capable, specialized assets for efficiency en affectivity. Assets are specified and chosen on the grounds of various factors, amongst others operating environment, operational profile, performance and special abilities.
  • Mekanisk Säkring Av Helikopter På Fartygsdäck – En Konceptuell Fallstudie Av Saabs UAV-System Skeldar M

    Mekanisk Säkring Av Helikopter På Fartygsdäck – En Konceptuell Fallstudie Av Saabs UAV-System Skeldar M

    Mekanisk säkring av helikopter på fartygsdäck – en konceptuell fallstudie av Saabs UAV-system Skeldar M Mechanical securing of a helicopter on a ship deck – a conceptual case study on Saab’s UAV system Skeldar M David Karlsson Tobias Berg Flygplansbyggnation Examensarbete Institutionen för ekonomisk och industriell utveckling LIU-IEI-TEK-A--08/00367--SE Datum 2008-03-10 Avdelning, institution Date 10/03/2008 Division, Department Institutionen för ekonomisk och industriell utveckling Fluid och mekanisk systemteknik Department of Management and Engineering Fluid and Mechanical Engineering Systems Språk Rapporttyp ISBN Language Report category Svenska/Swedish Licentiatavhandling ISRN Engelska/English Examensarbete LiU-IEI-TEK-A--08/00367--SE C-uppsats Serietitel och serienummer ISSN D-uppsats Title of series, numbering ________________ Övrig rapport _____________ URL för elektronisk version Titel Mekansk säkring av helikopter vid fartygslandning – en konceptuell fallstudie av Saabs UAV-system Skeldar M Titel Mechanical securing of a helicopter on a ship deck – a conceptual case study on Saab’s UAV system Skeldar M Författare David Karlsson, Tobias Berg Author David Karlsson, Tobias Berg Sammanfattning Den senaste trenden inom flygvapenindustrin är utveckling av obemannade farkoster. Den svenska vapenindustrikoncernen Saab AB följer denna trend i och med den stundande introduktionen av företagets obemannade helikopter Skeldar V-150. Som ett led i vidareutvecklingen av detta system finns planer på att även lansera en marin variant, kallad Skeldar M. Tanken med denna marina variant är att möjliggöra fullständigt autonoma starter och landningar från fartyg. För att kunna genomföra detta på ett tryggt sätt även i hårt väder krävs att helikoptern hålls säkrad på fartygsdäcket såväl innan start som efter landning.
  • Miehittämättömien Helikoptereiden Kehitys 2000-Luvulla

    Miehittämättömien Helikoptereiden Kehitys 2000-Luvulla

    MAANPUOLUSTUSKORKEAKOULU MIEHITTÄMÄTTÖMIEN HELIKOPTEREIDEN KEHITYS 2000-LUVULLA Kandidaatintutkielma Kadetti Mikko Punkka Kadettikurssi 99 Maasotalinja Maaliskuu 2015 MAANPUOLUSTUSKORKEAKOULU Kurssi Linja Kadettikurssi 99 Maasotalinja Tekijä Kadetti Mikko Punkka Tutkielman nimi Miehittämättömien helikoptereiden kehitys 2000-luvulla Oppiaine johon työ liittyy Säilytyspaikka Sotatekniikka MPKK:n kurssikirjasto Aika Maaliskuu 2015 Tekstisivuja 24 Liitesivuja 2 TIIVISTELMÄ Miehittämättömät ilma-alukset ovat kasvattaneet tärkeyttään nykyajan sodankäynnissä jat- kuvasti. Niiden avulla pystytään vähentämään operaatioissa ihmisohjaajaan kohdistuvia riskejä, mikä on tärkeää erityisesti nykyaikaisissa matalan intensiteettitason konflikteissa. Kiinteäsiipiset UAV:t ovat jo vakiinnuttaneet asemansa taistelukentällä, mutta miehittämät- tömät helikopterit ovat vasta viime vuosikymmenellä kehittyneet tasolle, joka mahdollistaa niiden operatiivisen käytön. Tutkielmassa tarkastellaan miehittämättömien helikoptereiden kehitystä ja vastataan pääkysymykseen: Miten miehittämättömien helikoptereiden suoritus- kyky on kehittynyt valittuna ajanjaksona? Lisäksi selvitetään kahden alakysymyksen avul- la, mihin suorituskyvyn kehittyminen pohjautuu ja mistä suorituskyvyn eri osa-alueiden kehitystarve johtuu. Tutkimusmenetelmänä tutkielmassa käytetään laadullista kirjallisuustutkimusta ja laadullis- ta sisällönanalyysiä. Tutkielmassa aihetta käsitellään kahdessa kappaleessa, joista ensim- mäisessä esitellään tutkimuksen kohteena olevat ilma-alukset, sekä käydään
  • Microsoft Word Viewer

    2013 NASA Range Safety Annual Report This 2013 Range Safety Annual Report is produced by virtue of funding and support from the following: Terrence W. Wilcutt, Chief Safety and Mission Assurance NASA Headquarters Sandra Hudson, Headquarters Range Safety Program Executive NASA Headquarters Robert D. Cabana Director, Kennedy Space Center Russell Romanella Director, Safety and Mission Assurance Russ Deloach Deputy Director, Safety and Mission Assurance 3 Table of Contents I. INTRODUCTION ......................................................................................................................9 Deleted: 7 II. AGENCY RANGE SAFETY PROGRAM...............................................................................11 Deleted: 8 A. Range Safety Training 2013 ..............................................................................................11 Deleted: 8 1. Range Safety Orientation (SMA-SAFE-NSTC-0074)......................................................12 Deleted: 9 2. ELV Flight Safety Analysis (SMA-SAFE-NSTC-0086) ....................................................13 Deleted: 10 3. NASA Range Flight Safety Analysis (KSC-SA-NRFSA) .................................................15 Deleted: 12 4. Range Flight Safety Systems (SMA-SAFE-NSTC-0096)................................................16 Deleted: 13 5. Range Safety Operations Course (SMA-SAFE-NSTC-0097) .........................................17 Deleted: 14 B. Development, Implementation, Support of Range Safety Policy .......................................19
  • Possibilities and Difficulties for Rotorcraft Using

    CEAS Aeronaut J DOI 10.1007/s13272-016-0191-6 ORIGINAL PAPER Possibilities and difficulties for rotorcraft using variable transmission drive trains 1 2 2 1 H. Amri • R. Feil • M. Hajek • M. Weigand Received: 25 March 2015 / Revised: 9 March 2016 / Accepted: 10 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This publication shows advantages and possible may support this. Some rotorcraft architectures can benefit applications for variable transmission drivetrains within from a variable speed rotor technology. It probably will rotorcraft. The power requirement of a generic helicopter increase efficiency, decrease noise levels, fuel consumption with constant and variable rotor speed was calculated. Var- and CO2 production, and the flight envelope may be ious drive train technologies that support a variable trans- extended. mission were described. The prospects of this technology, its influence on the dynamic behaviour of a rotor and further Keywords Variable speed rotor Á Variable transmission areas that need to be investigated extensively are presented. drivetrain Á Power optimisation Á Economic rotor craft Á This technology is applicable to some rotorcraft architecture. Flight envelope extension Á Future technology Requests from the rotorcraft industry underline the necessity for future rotorcraft using variable rotational speeds. How- ever, the A160 or the EC145 and Mi-8 already show the 1 Introduction potential of this technique. Reduction of required power of the rotor should be possible and also an extension of the flight Current research indicates the necessity for variable speed envelope towards higher flight speeds, higher altitudes, rotor technologies in future rotorcraft.