2021 Herbicide Guide for Iowa Corn and Soybean Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2,4-Dichlorophenoxyacetic Acid
2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators. -
Growth Regulation and Other Secondary Effects of Herbicides Edivaldo D
Weed Science 2010 58:351–354 Growth Regulation and Other Secondary Effects of Herbicides Edivaldo D. Velini, Maria L. B. Trindade, Luis Rodrigo M. Barberis, and Stephen O. Duke* As all herbicides act on pathways or processes crucial to plants, in an inhibitory or stimulatory way, low doses of any herbicide might be used to beneficially modulate plant growth, development, or composition. Glyphosate, the most used herbicide in the world, is widely applied at low rates to ripen sugarcane. Low rates of glyphosate also can stimulate plant growth (this effect is called hormesis). When applied at recommended rates for weed control, glyphosate can inhibit rust diseases in glyphosate-resistant wheat and soybean. Fluridone blocks carotenoid biosynthesis by inhibition of phytoene desaturase and is effective in reducing the production of abscisic acid in drought-stressed plants. Among the acetolactate synthase inhibitors, sulfometuron-methyl is widely used to ripen sugarcane and imidazolinones can be used to suppress turf species growth. The application of protoporphyrinogen oxidase inhibitors can trigger plant defenses against pathogens. Glufosinate, a glutamine synthetase inhibitor, is also known to improve the control of plant diseases. Auxin agonists (i.e., dicamba and 2,4-D) are effective, low-cost plant growth regulators. Currently, auxin agonists are still used in tissue cultures to induce somatic embryogenesis and to control fruit ripening, to reduce drop of fruits, to enlarge fruit size, or to extend the harvest period in citrus orchards. At low doses, triazine herbicides stimulate growth through beneficial effects on nitrogen metabolism and through auxin-like effects. Thus, sublethal doses of several herbicides have applications other than weed control. -
Corn and Soybean Mode of Action Herbicide Chart
By Premix Corn and Soybean This chart lists premix herbicides alphabetically by their trade names so you can identify the premix’s component herbicides and their respective site of action groups. Refer Herbicide Chart to the Mode of Action chart for more information. Component Repeated use of herbicides with the same Site of Premix Trade Active Action site of action can result in the development of Trade Name ® Name ® Ingredient Group* herbicide-resistant weed populations. Authority First ............... Spartan sulfentrazone 14 FirstRate cloransulam 2 Axiom ........................... Define flufenacet 15 This publication was designed for commercial printing, color shifts may occur on other printers and on-screeen. Sencor metribuzin 5 Basis . ........................... Resolve rimsulfuron 2 Harmony GT thifensulfuron 2 By Mode of Action (effect on plant growth) Bicep II Magnum .......... Dual II Magnum s-metolachlor 15 AAtrex atrazine 5 This chart groups herbicides by their modes of action to assist Bicep Lite II Magnum .... Dual II Magnum s-metolachlor 15 AAtrex atrazine 5 you in selecting herbicides 1) to maintain greater diversity in Boundary ...................... Dual Magnum s-metolachlor 15 herbicide use and 2) to rotate among herbicides with different Sencor metribuzin 5 Breakfree ATZ ............... Breakfree acetochlor 15 sites of action to delay the development of herbicide resistance. atrazine atrazine 5 Breakfree ATZ Lite ........ Breakfree acetochlor 15 Number of atrazine atrazine 5 resistant weed Buctril + Atrazine ......... Buctril bromoxynil 6 atrazine atrazine 5 species in U.S. Bullet ............................ Micro-Tech alachlor 15 Site of Chemical Active atrazine atrazine 5 Action Product Examples Camix ........................... Callisto mesotrione 28 Group* Site of Action Family Ingredient (Trade Name ®) Dual II Magnum s-metolachlor 15 Lipid Canopy DF .................. -
Herbicide Mode of Action Table High Resistance Risk
Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®), -
Greenhouse and Field Evaluation of Isoxaflutole for Weed Control In
www.nature.com/scientificreports OPEN Greenhouse and field evaluation of isoxaflutole for weed control in maize in China Received: 27 June 2017 Ning Zhao, Lan Zuo, Wei Li, Wenlei Guo, Weitang Liu & Jinxin Wang Accepted: 18 September 2017 Greenhouse and field studies were conducted to provide a reference for pre-emergence (PRE) Published: xx xx xxxx application of isoxaflutole on maize in China. In greenhouse study, the isoxaflutole PRE application at 30 g active ingredient (a.i.) ha−1 could effectively control large numbers of weeds, especially some large-seeded broadleaves, tested in this study. The tolerance results indicated 21 maize hybrids showed different responses to isoxaflutole under greenhouse conditions. In 2015 and 2016, field experiments were conducted to determine and compare the weed control efficacy and safety to Zhengdan 958 maize with 6 herbicide treatments. In both years, isoxaflutole PRE at 100 to 250 g a.i. ha−1 was sufficient to provide satisfactory full-season control of the dominant common broadleaf and grass weeds in the field. Temporary injury to maize was observed with isoxaflutole treatments of 125, 150, and 250 g a.i. ha−1 in both years, but plants recovered within 4 to 6 wk. To maximize maize yield and provide satisfactory weed control, a range of 100 to 150 g a.i. ha−1 of isoxaflutole is recommended, depending on the soil characteristics, weather, and weed species present at the experimental site. Based on the results, isoxaflutole PRE has good potential for weed control in maize in China. Maize was planted on more hectares than any other crops in China from 2010 to 2014, with an average of 35 million ha planted per year and yield averaging 5,779 kg per ha per year1. -
Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor. -
Weed Control in Direct-Seeded Field Pea Gregory J
Weed Control in Direct-seeded Field Pea Gregory J. Endres and Blaine G. Schatz Weed control and field pea response to selected soil- and POST-applied herbicides were evaluated in a randomized complete-block design with three replicates. The experiment was conducted on a Heimdahl loam soil with 6.7 pH and 2.9% organic matter at the NDSU Carrington Research Extension Center. Herbicide treatments were applied to 5- by 25-ft plots with a pressurized hand-held plot sprayer at 17 gal/A and 30 psi through 8002 flat-fan nozzles. Fall sulfentrazone treatments were applied October 25, 2004 to a moist soil surface with 47 F, 71% RH, 15% clear sky, and 11 mph wind. On April 28, 2005, inoculated 'Integra' field pea was seeded into standing wheat stubble in 7-inch rows at a rate of 300,000 pure live seeds/A. PRE treatments were applied to a dry soil surface on April 30 with 31 F, 64% RH, 30% clear sky, and 10 mph wind. Rainfall totaled 1.22 inches 8 d following PRE application. The trial area was treated on May 6 with a PRE burn-down application of glyphosate at 0.75 lb ae/A plus ammonium sulfate at 1% v/v. The early POST (EPOST) treatment was applied on May 23 with 73 F, 35% RH, 100% cloudy sky, and 6 mph wind to 2-inch tall field pea, 1- to 2-leaf green and yellow foxtail, 0.5-inch tall common lambsquarters, 0.5-inch tall prostrate and redroot pigweed, and 0.5-inch tall wild buckwheat. -
Ecological Risk Assessment for Saflufenacil
TEXT SEARCHABLE DCOUMENT 2011 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CEMICAL SAFETY AND POLLUTION PREVENTION PC Code: 118203 DP Barcode: 380638 and 381293 Thursday, April 07, 2011 MEMORANDUM SUBJECT: Ecological Risk Assessment for Saflufenacil Section 3 New Chemical Uses as a harvest aid on dry edible beans, dry peas, soybean, oilseeds "sunflower subgroup 20B", oilseeds "cotton subgroup 20C", and oilseeds canola "subgroup 20A". TO: Kathryn Montague, M.S., Product Manager 23 Herbicide Branch Registration Division (RD) (7505P) FROM: ~ Mohammed Ruhman, Ph.D., Agronomist 2 :4- . ""=- ........ 04!tJt! (I neith Sappington, Senior Biologist/Science Adviso~.... Vd- Environmental Risk Branch V O'f/ .../ II Environmental Fate and Effects Division (7507P) THROUGH: Mah Shamim, Ph.D., Branch Chief Environmental Risk Branch VI Environmental Fate and Effects Division (7507P) This ecological risk assessment for saflufenacil new uses is relying on the attached previous assessment (Attachment 1). As shown in the usage summary (Table 1), the single and seasonal rate, for all the crops range from 0.045 to 0.089 lbs a.i/A are within the range application rates used in exposure modeling for the 2009 Section 3 New Chemical Environmental Fate and Ecological Risk Assessment (DP Barcode 349855). Therefore, risk findings determined for the 2009 assessment may be used in the assessment for this submittal. Specifically, the 2009 assessment found no chronic risks to avian and mammalian species at an agricultural use rate 0 0.134 lb a.i.lA. Acute risks were not determined for birds and mammals since saflufenacil was not acutely toxic at the highest doses tested. -
CFS Science Comments I
April 27, 2012 Docket No. APHIS–2010–0103 Regulatory Analysis and Development PPD, APHIS Station 3A-03.8 4700 River Road Unit 118 Riverdale, MD 20737-1238 Comments to USDA APHIS on Environmental Assessment for the Determination of Nonregulated Status of Herbicide-Tolerant DAS-40278-9 Corn, Zea mays, Event DAS- 40278-9 Center for Food Safety, Science Comments I – By Bill Freese, Science Policy Analyst These comments submitted by Center for Food Safety are one of three sets of comments from our organization. Legal comments and a second set of science comments are also being submitted. The references cited have been uploaded as supporting materials. The filenames for these documents match the citations in the text, and are all incorporated as (e.g. Benbrook 2012). Full citations are included at the end of each section. THE IMPACT OF DAS-40278-9 ON CORN HERBICIDE USE Summary of herbicide use Dow’s DAS-402787-9 corn is genetically engineered for resistance to 2,4-D and quizalofop, and if deregulated would be marketed with additional resistance to glyphosate and likely glufosinate – fostering greater use of three to four herbicide classes. APHIS must assess DAS-42078-9 as Dow intends it to be used, as a weed control system. DAS-40278-9 eliminates the risk of crop injury that currently limits 2,4-D use on corn, and is thus reasonably projected to trigger an up to 30-fold increase in the use of this toxic herbicide on corn, equivalent to a four-fold increase in overall agricultural use of 2,4-D, by the end of the decade. -
MC(' Potential Exposure of Humans to 2
(MC( FUNDAMENTAL AND APPLIED TOXICOLOGY 1:3 3 9-3 4 6 (1981) Potential Exposure of Humans to 2,4,5-T and TCDD in the Oregon Coast Ranges MICHAEL NEWTON" and LOGAN A. NORRISB "Professor of Forest Ecology, Oregon State University, Corvallis; BChief Research Chemist, USDA Forest Service, Corvallis, Oregon ABSTRACT Potential Exposure of Humans to 2,4,5-T and TCDD in Humans may be exposed to herbicides through drift; inges- the Oregon Coast Ranges. Newton, M. and Norris, L.A. tion of wild and domestic meat, vegetables, and fruit; con- (1981). F.undam. AppL Toxicol. 1:339-346. Research on the sumption of water; and dermal contact while handling the use of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) contami- chemicals, equipment, and treated vegetation. The range of -8 nated with 2.5 X 10 parts 2,3,7,8-tetrachlorodibenzo-p- potential exposure extends from zero, if there is no encounter dioxin (TCDD) in forests of the Oregon Coast Ranges per- with the herbicide, to the worst situation where the person has mits estimates of human exposures for both compounds. encountered the highest levels of water contamination, drift Estimated total exposure of nearby ( ^ 1/8 mile distant) resi- exposure, meat contamination, and dermal exposure simul- dents during the first week after application is 0.0039 mg/kg taneously. We have brought estimates of all sources together of 2,4,5-T for a 70-kg adult. Exposure to TCDD in the same to determine the possible range of total exposure from episode would be 1.9 X 10 b ° mg/kg. -
Aminopyralid Ecological Risk Assessment Final
Aminopyralid Ecological Risk Assessment Final U.S. Department of the Interior Bureau of Land Management Washington, D.C. December 2015 EXECUTIVE SUMMARY EXECUTIVE SUMMARY The United States Department of the Interior (USDOI) Bureau of Land Management (BLM) administers about 247.9 million acres in 17 western states in the continental United States (U.S.) and Alaska. One of the BLM’s highest priorities is to promote ecosystem health, and one of the greatest obstacles to achieving this goal is the rapid expansion of invasive plants (including noxious weeds and other plants not native to an area) across public lands. These invasive plants can dominate and often cause permanent damage to natural plant communities. If not eradicated or controlled, invasive plants will jeopardize the health of public lands and the activities that occur on them. Herbicides are one method employed by the BLM to control these plants. In 2007, the BLM published the Vegetation Treatments Using Herbicides on Bureau of Land Management Lands in 17 Western States Programmatic Environmental Impact Statement (17-States PEIS). The Record of Decision (ROD) for the 17-States PEIS allowed the BLM to use 18 herbicide active ingredients available for a full range of vegetation treatments in 17 western states. In the ROD, the BLM also identified a protocol for identifying, evaluating, and using new herbicide active ingredients. Under the protocol, the BLM would not be allowed to use a new herbicide active ingredient until the agency 1) assessed the hazards and risks from using the new herbicide active ingredient, and 2) prepared an Environmental Impact Statement (EIS) under the National Environmental Policy Act to assess the impacts of using new herbicide active ingredient on the natural, cultural, and social environment. -
Appendix C - Wildlife 9/8/2008
INVASIVE PLANT BIOLOGICAL ASSESSMENT Umatilla and Wallowa-Whitman National Forests Appendix C - Wildlife 9/8/2008 APPENDIX C - WILDLIFE C-1 INVASIVE PLANT BIOLOGICAL ASSESSMENT Umatilla and Wallowa-Whitman National Forests Appendix C - Wildlife 9/8/2008 C-2 INVASIVE PLANT BIOLOGICAL ASSESSMENT Umatilla and Wallowa-Whitman National Forests Appendix C - Wildlife 9/8/2008 Appendix C ......................................................................................................................... 1 Wildlife ............................................................................................................................... 1 Exposure Groups for Forest Service Sensitive Wildlife ................................................. 6 Effects of the Alternatives on Sensitive Wildlife ........................................................... 7 Tables C-5 – C-13 Herbicides ................................................................................... 11 Umatilla and Wallowa-Whitman National Forest Herbicide Spray Buffers ................ 12 Aquatics............................................................................................................. 15 Wildlife .............................................................................................................. 15 Worker Health: Based on backpack spray applications. ................................. 15 Public Health: ................................................................................................... 16 Summary of Herbicide Effects to Wildlife