Growth Regulation and Other Secondary Effects of Herbicides Edivaldo D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2,4-Dichlorophenoxyacetic Acid
2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators. -
A Novel Role of Ethephon in Controlling the Noxious Weed Ipomoea Cairica
www.nature.com/scientificreports OPEN A novel role of ethephon in controlling the noxious weed Ipomoea cairica (Linn.) Sweet Received: 09 April 2015 1,* 1,* 1,3,* 2 1 Accepted: 22 May 2015 Zhong-Yu Sun , Tai-Jie Zhang , Jin-Quan Su , Wah Soon Chow , Jia-Qin Liu , 1 1 3 1 Published: 18 June 2015 Li-Ling Chen , Wei-Hua Li , Shao-Lin Peng & Chang-Lian Peng Several auxin herbicides, such as 2, 4-D and dicamba, have been used to eradicate an exotic invasive weed Ipomoea cairica in subtropical China, but restraining the re-explosion of this weed is still a challenge. Since ethylene is one of the major intermediate functioning products during the eradication process, we explored the possibility, mechanism and efficiency of using ethephon which can release ethylene to control Ipomoea cairica. The results of the pot experiment showed that 7.2 g /L ethephon could totally kill Ipomoea cairica including the stems and roots. The water culture experiment indicated that ethephon released an abundance of ethylene directly in leaves and caused increases in electrolyte leakage, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA) and H2O2 and decreases in chlorophyll content and photosynthetic activity, finally leading to the death of Ipomoea cairica. The field experiment showed that the theoretical effective concentration of ethephon for controlling Ipomoea cairica (weed control efficacy, WCE = 98%) was 4.06 g/L and the half inhibitory concentration (I50) was 0.56 g/L. More than 50% of the accompanying species were insensitive to the phytotoxicity of ethephon. Therefore, ethephon is an excellent alternative herbicide for controlling Ipomoea cairica. -
INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401 -
Target-Site Mutations Conferring Herbicide Resistance
plants Review Target-Site Mutations Conferring Herbicide Resistance Brent P. Murphy and Patrick J. Tranel * Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-217-333-1531 Received: 4 September 2019; Accepted: 26 September 2019; Published: 28 September 2019 Abstract: Mutations conferring evolved herbicide resistance in weeds are known in nine different herbicide sites of action. This review summarizes recently reported resistance-conferring mutations for each of these nine target sites. One emerging trend is an increase in reports of multiple mutations, including multiple amino acid changes at the glyphosate target site, as well as mutations involving two nucleotide changes at a single amino acid codon. Standard reference sequences are suggested for target sites for which standards do not already exist. We also discuss experimental approaches for investigating cross-resistance patterns and for investigating fitness costs of specific target-site mutations. Keywords: D1 protein; acetolactate synthase; tubulin; ACCase; EPSPS; phytoene desaturase; PPO; glutamine synthetase; auxin 1. Introduction Herbicide-resistance mechanisms broadly fall under two categories: target-site mechanisms and non-target-site mechanisms [1,2]. The former involves a change to the molecular target of the herbicide (usually an enzyme) that decreases its affinity for the herbicide. Although much less common, target-site resistance can also occur via increased expression of the target, which results in more herbicide required to achieve a lethal effect [3,4]. Non-target-site resistance encompasses any mechanism that reduces the amount of herbicide that reaches the target site, or that ameliorates the effect of the herbicide despite its inhibition of the target site. -
South Umpqua Pilot Study 2014-19 Findings and Recommendations | Oregon Water Quality Management Team
South Umpqua Pilot Study 2014-19 Findings and Recommendations | Oregon Water Quality Management Team Background waters resulting from various types of land uses. The monitoring locations were chosen to represent the A pesticide water quality pilot study of the South predominant land use types existing within the various Umpqua subbasin (USGS 8-digit HUC 17100302)1 was watersheds as noted in the United States Geological initiated in the fall of 2014. The South Umpqua was Survey’s (USGS) 2016 National Land Cover Dataset. selected by the Water Quality Pesticide Management Initially, five monitoring locations were chosen. At Team (WQPMT) as one of four potential pilot projects the end of the spring 2015 sampling season two sites after the Pesticide Stewardship Partnership Program (Cow Creek at Mouth and Myrtle Creek at Mouth) received its first funding allocation from the Oregon were discontinued due to both the limited number of Legislature in 2013. The watersheds were selected pesticides detected and the low concentrations of those because of the multiple types of land uses in areas detections during the 2015 sampling period. In 2017 that use pesticides, the presence of municipal drinking two additional sites were added (Lookingglass Creek at water intakes, as well as existing water quality data the Happy Valley Bridge and the North of Myrtle Creek collected by DEQ and other entities. Within the South downstream of the Bilger Creek confluence) at the Umpqua subbasin, prospective local partners were suggestion of local partners (Table 1). contacted and expressed interest in participating in the pilot effort. Initial reconnaissance monitoring sites Based on the initial sampling results, the WQPMT were selected by a group comprised of state agencies approached the local stakeholder group about on the WQPMT, Partners for Umpqua Rivers (PUR), conducting a second phase of pilot monitoring in the Douglas Soil and Water Conservation District, Oregon South Umpqua 2017 which extended through the State University Extension, and the Cow Creek Band of spring of 2019. -
US EPA, Pesticide Product Label, DREXEL DUPLICATOR DUO,05/08
U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Reg. Number: Date of Issuance: Office of Pesticide Programs Registration Division (7505P) 19713-699 5/8/18 1200 Pennsylvania Ave., N.W. Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration Reregistration Unconditional (under FIFRA, as amended) Name of Pesticide Product: Drexel Duplicator Duo Name and Address of Registrant (include ZIP Code): Luz Chan Registration Manager Drexel Chemical Company P.O. Box Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Registration Division prior to use of the label in commerce. In any correspondence on this product always refer to the above EPA registration number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is unconditionally registered in accordance with FIFRA section 3(c)(5) provided that you: 1. Submit and/or cite all data required for registration/reregistration/registration review of your product when the Agency requires all registrants of similar products to submit such data. -
RR Program's RCL Spreadsheet Update
RR Program’s RCL Spreadsheet Update March 2017 RR Program RCL Spreadsheet Update DNR-RR-052e The Wisconsin DNR Remediation and Redevelopment Program (RR) has updated the numerical soil standards in the August 2015 DNR-RR- 052b RR spreadsheet of residual contaminant levels (RCLs). The RCLs were determined using the U.S. EPA RSL web- calculator by accepting EPA exposure defaults, with the exception of using Chicago, IL, for the climatic zone. This documentThe U.S. provides EPA updateda summary its Regionalof changes Screening to the direct-contact Level (RSL) RCLs website (DC-RCLs) in June that2015. are To now reflect in the that March 2017 spreadsheet.update, the The Wisconsin last page ofDNR this updated document the has numerical the EPA exposuresoil standards, parameter or residual values usedcontaminant in the RCL levels calculations. (RCLs), in the Remediation and Redevelopment program’s spreadsheet of RCLs. This document The providesU.S. EPA a RSL summary web-calculator of the updates has been incorporated recently updated in the Julyso that 2015 the spreadsheet.most up-to-date There toxicity were values no changes for chemi - cals madewere certainlyto the groundwater used in the RCLs,RCL calculations. but there are However, many changes it is important in the industrial to note that and the non-industrial web-calculator direct is only a subpartcontact of the (DC) full RCLsEPA RSL worksheets. webpage, Tables and that 1 andthe other 2 of thissubparts document that will summarize have important the DC-RCL explanatory changes text, generic tablesfrom and the references previous have spreadsheet yet to be (Januaryupdated. -
Nursery Weed Control in the Usa - Practice and Problems
Weed Control in US NURSERY WEED CONTROL IN THE USA - PRACTICE AND PROBLEMS DAVID B. SOUTH Auburn University Southern Forest Nursery Management Cooperative School of Forestry and Alabama Agricultural Experiment Station Auburn University, Alabama 36849-5418, USA ABSTRACT In southern pine seedbeds, weed control relies on the use of diphenylether herbicides (oxyfluorfen, lactofen) and selective grass herbicides (sethoxydim and fluzifop-p-butyl). A number of nurseries use a polymer to stabilize the soil after sowing. This helps keep the herbicide barrier intact and extends the preemergence activity. Weekly postemergence applications of low rates are common and have proven more effective on weeds than monthly applications at higher rates. A few nurseries tank-mix liquid nutrients along with postemergence applications of oxyfluorfen. This eliminates the need for extra tractor trips to apply granular fertilisers and, in some areas, reduces the cost of fertilisation. The median handweeding time for southern pine nurseries is now 25 hours/ha/yr. INTRODUCTION In 1991, more than 1.6 billion seedlings were produced in tree nurseries in the United States (US) (Mangold et al. 1992). Of this number, 69% were produced in 13 southern states. In comparison, approximately 14% were produced in the Pacific Northwest (Washington and Oregon). Pine seedlings produced in the southern states are almost exclusively 1+0 stock while both container and bare-root stock (2+0, 1+1 and 2+1) are used in the Pacific Northwest. Weed management practices discussed in this paper pertain mainly to 1+0 seedlings of Pinus taeda L. and Pinus elliottii Engelm. Herbicides for hardwood seedbeds are discussed elsewhere (South 1984; South 1992a). -
US EPA, Pesticide Product Label, Metolachlor + Metribuzin EC,04/15
U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Reg. Number: Date of Issuance: Office of Pesticide Programs Registration Division (7505P) 42750-360 4/15/20 1200 Pennsylvania Ave., N.W. Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration Reregistration Conditional (under FIFRA, as amended) Name of Pesticide Product: METOLACHLOR + METRIBUZIN EC Name and Address of Registrant (include ZIP Code): Albaugh, LLC P.O. Box 2127 Valdosta, GA 31604-2127 Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Registration Division prior to use of the label in commerce. In any correspondence on this product always refer to the above EPA registration number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide and Rodenticide Act. Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is conditionally registered in accordance with FIFRA section 3(c)(7)(A). You must comply with the following conditions: 1. Submit and/or cite all data required for registration/reregistration/registration review of your product under FIFRA when the Agency requires all registrants of similar products to submit such data. -
Ten Reasons Not to Use Pesticides
JOURNAL OF PESTICIDE REFORM/ SUMMER 2006 • VOL. 26, NO. 2 PESTICIDE BASICS contaminated with pesticides. They play in ways that in- crease their exposure. Also, their growing bodies can be Ten Reasons Not to Use particularly sensitive. EPA succinctly summarizes the reasons why children should not be Pesticides exposed to pesticides: • their internal organs are still BY CAROLINE COX has written, “the range of these adverse developing and maturing, health effects includes acute and persis- • in relation to their body weight, tent injury to the nervous system, lung infants and children eat and drink damage, injury to reproductive organs, more than adults, possibly increasing 1. Pesticides don’t solve pest dysfunction of the immune and endo- problems. They don’t change their exposure to pesticides in food crine [hormone] systems, birth defects, and water. the conditions that encourage and cancer.”3 pests. • certain behaviors--such as play- Pesticides that damage human ing on floors or lawns or putting Some pesticides are remarkably ef- health are used in staggering amounts. objects in their mouths—increase a ficient tools for killing pests, but almost Consider just the 27 most commonly 4 child’s exposure to pesticides used in all do nothing to solve pest problems. used pesticides. Fifteen of these have 8 5 homes and yards. To solve a pest problem, the most been classified as carcinogens by EPA Researchers continue to gather de- important step is to change the con- and their use totals about 300 million 4 tailed evidence that EPA’s concerns ditions that have allowed the pest to pounds every year. -
US EPA, Pesticide Product Label, LPI SULFOMETURON METHYL, 09/05
r •In U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Registration Date of Issuance: Office of Pesticide Programs Number: Registration Division (7505P) Ariel Rios Building 1200 Pennsylvania Ave., NW 34704-1002 SEP 05 2013 Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration Unconditional X Reregistration Name of Pesticide Product: (under FIFRA, as amended) LPI Sulfometuron Methyl Name and Address of Registrant (include ZIP Code): Loveland Products, Inc. P.O. Box 1286 Greeley, CO 80632-1286 On the basis of information furnished by the registrant, the above named pesticide is hereby registered/reregistered under the Federal Insecticide, Fungicide and Rodenticide Act. Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. EPA received a label amendment request submitted on September 5, 2013. EPA grants this request under the authority of section 3(c)(5) of the Federal Insecticide, Fungicide and Rodenticide Act, as amended. With this accepted labeling, all requirements set forth in the Reregistation Eligibility Decision (RED) for sulfometuron methyl have been satisfied. Therefore, EPA reregisters the product listed above. This action is taken under the authority of section 4(g)(2)(c) of the Federal Insecticide, Fungicide, and Rodenticide Act, as amended. -
Nozzle Selection and Adjuvant Impact on the Efficacy of Glyphosate And
agronomy Article Nozzle Selection and Adjuvant Impact on the Efficacy of Glyphosate and PPO-Inhibiting Herbicide Tank-Mixtures Jesaelen G. Moraes 1,* , Thomas R. Butts 1 , Vitor M. Anunciato 2 , Joe D. Luck 3 , Wesley C. Hoffmann 4, Ulisses R. Antuniassi 5 and Greg R. Kruger 1 1 Department of Agronomy and Horticulture, University of Nebraska-Lincoln, North Platte, NE 69101, USA; [email protected] (T.R.B.); [email protected] (G.R.K.) 2 Department of Plant Protection, Sao Paulo State University, Botucatu, SP 18618687, Brazil; [email protected] 3 Department of Biological System Engineering, University of Nebraska-Lincoln, North Platte, NE 69101, USA; [email protected] 4 USDA-ARS Aerial Application Technology Research Unit, College Station, TX 77845, USA; [email protected] 5 Department of Rural Engineering, Sao Paulo State University, Botucatu, SP 18618687, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +1-402-219-1674 Abstract: PPO-inhibiting herbicides in combination with glyphosate for postemergence applications is a common approach to manage glyphosate- and ALS-inhibitor-resistant weeds. PPO-inhibitors can reduce glyphosate translocation when applied in tank-mixtures, but adjuvants may be used to overcome this effect. Additionally, optimal droplet size may be affected by tank-mixtures of different Citation: Moraes, J.G.; Butts, T.R.; herbicides and it can be crucial to herbicide efficacy. Field and greenhouse studies were conducted M. Anunciato, V.; Luck, J.D.; to investigate the impact of nozzle selection and adjuvants on weed control and interactions when Hoffmann, W.C.; Antuniassi, U.R.; applying PPO-inhibitors (fomesafen or lactofen) alone or in tank-mixture with glyphosate to five Kruger, G.R.