Efficacy of Imazapic/Imazapyr and Other Herbicides in Mixtures for The

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy of Imazapic/Imazapyr and Other Herbicides in Mixtures for The Efficacy of imazapic/imazapyr and other herbicides in mixtures for the control of Digitaria insularis prior to soybean sowing Efectividad de imazapic/imazapyr y otros herbicidas en mezclas para el control de Digitaria insularis en pre-siembra de soya Alfredo Junior Paiola Albrecht1, Leandro Paiola Albrecht1, André Felipe Moreira Silva²*, Romulo Augusto Ramos³, Everson Pedro Zeny³, Juliano Bortoluzzi Lorenzetti4, Maikon Tiago Yamada Danilussi4, and Arthur Arrobas Martins Barroso4 ABSTRACT RESUMEN Herbicide mixtures, use of multiple sites of action, and other Las mezclas entre herbicidas, el uso de múltiples sitios de acción weed management practices are necessary to avoid cases of y otras prácticas de manejo de malezas son necesarias para biotype resistance. The aim of this study was to evaluate the evitar otros casos de resistencia de biotipos. El objetivo de este efficiency of imazapic/imazapyr and other herbicides in mix- estudio fue evaluar la eficiencia de imazapic/imazapyr y otros tures to control Digitaria insularis at burndown before soybean herbicidas en mezclas para controlar Digitaria insularis en la sowing. This field research was conducted in Umuarama, State desecación antes de la siembra de soya. Esta investigación de of Parana (PR), Brazil, in the 2018/19 soybean season. The ex- campo se realizó en Umuarama, Estado de Paraná (PR), Brasil, periment was conducted in a randomized block experimental en la cosecha de soya de 2018/19. El experimento se realizó en design with four replicates and 11 treatments composed of the un diseño experimental de bloques al azar, con cuatro repe- application of glyphosate, clethodim, haloxyfop, imazapic/ ticiones y 11 tratamientos, compuestos por la aplicación de imazapyr, glufosinate, 2,4-dichlorophenoxyacetic acid (2,4-D), glifosato, cletodim, haloxifop, imazapic/imazapir, glufosinato, dicamba, triclopyr, and saflufenacil, in mixtures. Weed control ácido 2,4-diclorofenoxiacético (2,4-D), dicamba, triclopir y was evaluated as well as soybean injury and yield. An analysis saflufenacil, en mezclas. Se evaluó el control de malezas, así of variance and F-test were performed, and the treatment como el daño y el rendimiento de la soya. Se realizaron un means were compared by the Scott-Knott test. All treatments análisis de varianza y test F, y se compararon las medias de los showed great control over the weed and low crop injury rate tratamientos con el test de Scott-Knott. Todos los tratamientos while maintaining soybean yield. The application of imazapic/ mostraron un gran control sobre la maleza y una baja tasa de imazapyr in mixtures with other herbicides was effective in daño a los cultivos mientras se mantenía el rendimiento de la controlling glyphosate-resistant D. insularis in burndown soya. La aplicación de imazapic/imazapir en mezclas con otros before soybean sowing and with sequential application of herbicidas fue eficaz en el control de D. insularis resistente al haloxyfop + glyphosate at V3 stage of soybean. This chemical glifosato, en desecación antes de la siembra de soya y con apli- management was also selective for soybean. cación secuencial de haloxifop + glifosato en la etapa V3 de la soya. Este manejo químico también fue selectivo para la soya. Key words: Glycine max, acetolactate synthase (ALS) inhibitors, Palabras clave: Glycine max, inhibidores de acetolactato sintasa weed, crop injury, chemical weed control. (ALS), hierba, daño al cultivo, control químico de malezas. Introduction compete against cultivated crops (Moreira and Bragança, 2011; Lorenzi, 2014). There are four known D. insularis The weed Digitaria insularis, known as sourgrass, is na- herbicide-resistant biotypes, all found in South America, tive to tropical and subtropical areas of America. It can be from which three are glyphosate-resistant and one is re- found in pasture lands, coffee plantations, orchards, crop sistant to haloxyfop and fenoxaprop. Weed resistance is a fields, roadsides, and in abandoned fields. It is referred to as problem across the globe, and Brazil is ranked fifth with rhizomatous and produces seeds throughout the summer, 50 registered resistance cases to EPSPs, ALS, ACCase, PSII, growing in clumps. These traits allow them to aggressively PSI, PPO, and auxins (Heap, 2020). Received for publication: 21 October, 2019. Accepted for publication: 9 November, 2020. Doi: 10.15446/agron.colomb.v38n3.83046 1 Universidade Federal do Paraná, Palotina, Parana (Brazil). ² Crop Science Pesquisa e Consultoria Agronômica, Parana (Brazil). ³ Basf S.A., Santo Antônio de Posse, São Paulo (Brazil). 4 Universidade Federal do Paraná, Curitiba, Parana (Brazil). * Corresponding author: [email protected] Agronomía Colombiana 38(3), 350-356, 2020 In addition to resistance cases, as a perennial grass D. growth of susceptible plants. Chlorosis happens to sensi- insularis is hard to control, especially during flowering tive plants followed by death in 7 to 14 d after treatment development (Zobiole et al., 2016; Canedo et al., 2019). A (Oliveira Júnior, 2011; Shaner and O’Connor, 2017). study by Gazziero et al. (2019) shows that a cohabitation of six D. insularis plants m-2 among soybean crops reduces its These herbicides are applied at pre- and post-emergence, yield by 40%. Thus, appropriate managing practices includ- controlling a range of monocotyledons and dicotyledons ing different control methods are shown to be important in cereal and soybean crops and nonagricultural areas to have an efficient outcome. (Oliveira Júnior, 2011; Rodrigues and Almeida, 2018). Pi- asecki and Rizzardi (2016) report that imazapic/imazapyr The association of different herbicides, rotation of sites (premix formulation) is efficient for controlling volunteer of actions, preventive methods, among other practices corn at soybean pre-emergence. Likewise, studies by Melo are essential to manage and prevent new weed biotypes et al. (2017) show the efficiency of imazapic/imazapyr on resistant to herbicides (Green, 2018; Heap and Duke, 2018; the control of D. insularis. Neve et al., 2018; Frisvold et al., 2020). However, in the lit- erature, there are reports of the antagonist effect of 2,4-D It is believed that the imazapic/imazapyr is effective in on the action of ACCase inhibitor graminicides, due to the controlling D. insularis when applied at pre-sowing burn- translocation reduction and increase in the metabolism of down. Thus, this study aimed to evaluate the efficiency herbicides from the ariloxifenoxipropionics group (Trezzi of imazapic/imazapyr (premix formulation) and other et al., 2007). Thus, there is a need for studies on the differ- herbicides in mixtures to control D. insularis at burndown ent mechanisms of control of D. insularis. before soybean sowing. Pre-emergent herbicides used before sowing are empha- Materials and methods sized as an important tool to weed management, especially in crop fields (Byker et al., 2013; Belfry et al., 2015). In this Conditions and experimental design sense, ALS inhibitors are highlighted for weed control as This field research was conducted in Umuarama, State of pre-emergence herbicides used in soybean fields (Braz et al., Parana (PR), Brazil (23°50’25.23” S, 53°13’45.70” W) during 2017; Underwood et al., 2017). Imidazolinone herbicides are the 2018/19 crop season. The soil was classified as sandy part of the group of the acetolactate synthase (ALS) (also (11% clay, 6.5% silt, and 82.5% sand) with the following called acetohydroxyacid synthase [AHAS]) inhibiting her- chemical properties on the 0-20 cm layer: pH (CaCl2) of 4.4, -3 bicides which hamper the synthesis of the branched-chain 1.33% organic matter, and 5.78 cmolc dm cation exchange amino acids valine, leucine, and isoleucine. After their capacity. Under the Köppen classification, the climate is absorption, the herbicides are translocated to meristems classified as Cfa, and Figure 1 shows the weather conditions and apexes that are actively growing areas, inhibiting the during the time of the research. 2018/19 season, Umuarama, PR August 08, 2018 to February 06, 2019 150 40 35 125 30 100 25 75 20 ainfall (mm) 15 R 50 st temperature (°C) application sowing seuential application 10 25 5 Minimum and maximum 0 0 t t t t t t t d d d d d d d d d d d d s s s s s s s r r r r r r n n n n n n 1 1 1 1 1 1 1 3 3 3 3 3 3 2 2 2 2 2 2 t v t c n g p b v t c n g p c v c n g p c o e a e e c o e a e o e a e O J F O N S J D Au O N S D Au J N S D Au Decendial Rainfall inimum temperature aximum temperature FIGURE 1. Representation of rainfall and minimum and maximum temperature for the study site. 2018/19 season, Umuarama, PR, Brazil. Albrecht, Albrecht, Silva, Ramos, Zeny, Lorenzetti, Danilussi, and Barroso: Efficacy of imazapic/imazapyr and other herbicides in mixtures for the control 351 of Digitaria insularis prior to soybean sowing The trial site was infested by D. insularis, identified as at 7, 14, 21, 28, and 35 d after sowing (DAS). Percentage indicative of glyphosate resistance. Before application, the grades from 0% (absence of symptoms) to 100% (death of plants were at the flowering stage with 3.5 clumps m-2. The the plant) were given, based on the apparent symptoms area was previously cultivated with maize. A no-till sowing related to the plant growth stage (Velini et al., 1995). system was used for soybean, using 0.45 cm row spacing. The cultivar used was Monsoy® 6410 IPRO (Monsanto Co. By the time of harvest, at the R8 stage (full maturation) of do Brasil, São Paulo, SP, Brazil). The experiment was con- soybean plants (Fehr et al., 1971), the yield was calculated ducted in a randomized block experimental design, with using only the plot’s two central lines of 4 m long each.
Recommended publications
  • Restricted Use Product Summary Report
    Page 1 of 17 Restricted Use Product Summary Report (January 19, 2016) Percent Active Registration # Name Company # Company Name Active Ingredient(s) Ingredient 4‐152 BONIDE ORCHARD MOUSE BAIT 4 BONIDE PRODUCTS, INC. 2 Zinc phosphide (Zn3P2) 70‐223 RIGO EXOTHERM TERMIL 70 VALUE GARDENS SUPPLY, LLC 20 Chlorothalonil 100‐497 AATREX 4L HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 42.6 Atrazine 100‐585 AATREX NINE‐O HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 88.2 Atrazine 100‐669 CURACRON 8E INSECTICIDE‐MITICIDE 100 SYNGENTA CROP PROTECTION, LLC 73 Profenofos 100‐817 BICEP II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 33; 26.1 Atrazine; S‐Metolachlor 100‐827 BICEP LITE II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 28.1; 35.8 Atrazine; S‐Metolachlor 100‐886 BICEP MAGNUM 100 SYNGENTA CROP PROTECTION, LLC 33.7; 26.1 Atrazine; S‐Metolachlor 100‐898 AGRI‐MEK 0.15 EC MITICIDE/INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2 Abamectin 100‐903 DENIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2.15 Emamectin benzoate 100‐904 PROCLAIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 5 Emamectin benzoate 100‐998 KARATE 1EC 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1075 FORCE 3G INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 3 Tefluthrin Acetochlor; Carbamothioic acid, dipropyl‐ 100‐1083 DOUBLEPLAY SELECTIVE HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 16.9; 67.8 , S‐ethyl ester 100‐1086 KARATE EC‐W INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1088 SCIMITAR GC INSECTICIDE 100 SYNGENTA CROP PROTECTION,
    [Show full text]
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Environmental Fate of Imidazolinone Herbicides and Their Enantiomers
    Title Environmental Fate of Imidazolinone Herbicides and Their Enantiomers in Soil and Water Mohammadkazem Ramezani B.Sc. Agronomy, M.Sc. Weed Science This thesis is presented for the degree of Doctorate of Philosophy of the University of Adelaide School of Agriculture, Food & Wine The University of Adelaide Waite Campus, South Australia 2007 Declaration This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying. Mohammadkazem Ramezani ii Abstract Imidazolinones represent a new class of herbicides with low mammalian toxicity that can be used at low application rates, either pre- or post-emergence for the control of a wide range of weeds in broadleaf and cereal crops, and non-crop situations. All imidazolinone herbicides are chiral, containing two enantiomers that derive from the chiral centre of the imidazolinone ring. The inhibitory activity of the R(+) enantiomer is nearly eight times greater than that of the S(-) enantiomer. The use of imidazolinone herbicides has increased in recent years in Australia owing to increased popularity of pulses and the introduction of imidazolinone-tolerant canola and wheat. Concerns have been raised about the potential carry over damage to the subsequent crops grown in rotation with legumes and herbicide tolerant crops.
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • Ecological Risk Assessment for Saflufenacil
    TEXT SEARCHABLE DCOUMENT 2011 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CEMICAL SAFETY AND POLLUTION PREVENTION PC Code: 118203 DP Barcode: 380638 and 381293 Thursday, April 07, 2011 MEMORANDUM SUBJECT: Ecological Risk Assessment for Saflufenacil Section 3 New Chemical Uses as a harvest aid on dry edible beans, dry peas, soybean, oilseeds "sunflower subgroup 20B", oilseeds "cotton subgroup 20C", and oilseeds canola "subgroup 20A". TO: Kathryn Montague, M.S., Product Manager 23 Herbicide Branch Registration Division (RD) (7505P) FROM: ~ Mohammed Ruhman, Ph.D., Agronomist 2 :4- . ""=- ........ 04!tJt! (I neith Sappington, Senior Biologist/Science Adviso~.... Vd- Environmental Risk Branch V O'f/ .../ II Environmental Fate and Effects Division (7507P) THROUGH: Mah Shamim, Ph.D., Branch Chief Environmental Risk Branch VI Environmental Fate and Effects Division (7507P) This ecological risk assessment for saflufenacil new uses is relying on the attached previous assessment (Attachment 1). As shown in the usage summary (Table 1), the single and seasonal rate, for all the crops range from 0.045 to 0.089 lbs a.i/A are within the range application rates used in exposure modeling for the 2009 Section 3 New Chemical Environmental Fate and Ecological Risk Assessment (DP Barcode 349855). Therefore, risk findings determined for the 2009 assessment may be used in the assessment for this submittal. Specifically, the 2009 assessment found no chronic risks to avian and mammalian species at an agricultural use rate 0 0.134 lb a.i.lA. Acute risks were not determined for birds and mammals since saflufenacil was not acutely toxic at the highest doses tested.
    [Show full text]
  • Post-Emergence Weed Control Options in Tree Nut Orchards
    Post-emergence Weed Control Options in Tree Nut Orchards Marcelo L. Moretti1, Rolando Mejorado1, Seth Watkins1, David Doll2, and Bradley D. Hanson1 1University of California, Davis, Dept. of Plant Sciences,2Cooperative Extension Merced County [email protected] Herbicides are the primary means of vegetation management in tree nut orchards in California. Among registered herbicides, post-emergence (POST) materials, like glyphosate, are the most widely used in tree crops because of low cost and broad weed control spectrum. However, herbicide resistance has compromised the efficacy of POST only herbicide programs in many parts of the state. Most cases of resistance in orchards are glyphosate-resistant hairy fleabane, horseweed, ryegrass, and junglerice. To manage resistant weed species, pre-emergence (PRE) herbicides can be applied during winter before weeds emerge; however, PRE herbicide use can be limited by cost and the need for rainfall to incorporate them. Even when PRE herbicides are used, most orchards will need a POST treatment to control weed escapes and to prepare the orchard for harvest operations. One approach to optimize control of late emerging or glyphosate-resistant weeds is to use alternate herbicides, mixtures, rates, or more appropriate application timing. The objective of this project was to evaluate POST control of hairy fleabane and yellow nutsedge with different herbicides combinations. Methods Field experiments were conducted in a three year-old almond orchard infested with hairy fleabane and yellow nutsedge. The orchard was located in a sandy soil area in Merced County, and irrigated with solid set sprinklers. The area is known to be infested with glyphosate-resistant hairy fleabane.
    [Show full text]
  • Weed Management with Diclosulam in Peanut (Arachis Hypogaea)1
    Weed Technology. 2002. Volume 16:724–730 Weed Management with Diclosulam in Peanut (Arachis hypogaea)1 ANDREW J. PRICE, JOHN W. WILCUT, and CHARLES W. SWANN2 Abstract: Field experiments were conducted at three locations in North Carolina in 1998 and 1999 and one location in Virginia in 1998 to evaluate weed management systems in peanut. Treatments consisted of diclosulam alone preemergence (PRE), or diclosulam plus metolachlor PRE alone or followed by (fb) bentazon plus acifluorfen postemergence (POST). These systems were also com­ pared with commercial standards of metolachlor PRE fb bentazon plus acifluorfen POST or imazapic POST. Our data indicate that diclosulam PRE plus metolachlor PRE in conventional tillage peanut production usually controlled common lambsquarters, common ragweed, prickly sida, and entireleaf morningglory. But control of spurred anoda, goosegrass, ivyleaf morningglory, large crabgrass, and pitted morningglory by this system was inconsistent and may require additional POST herbicide treatments. Systems that included diclosulam plus metolachlor PRE consistently provided high yields and net returns. Nomenclature: Acifluorfen, bentazon, diclosulam, imazapic, metolachlor; common lambsquarters, Chenopodium album L. #3 CHEAL; common ragweed, Ambrosia artemisiifolia L. # AMBEL; enti­ releaf morningglory, Ipomoea hederacea var. integruiscula Grey # IPOHG; goosegrass, Eleusine indica (L.) Gaertn. # ELEIN; ivyleaf morningglory, Ipomoea hederacea (L.) Jacq # IPOHE; large crabgrass, Digitaria sanguinalis L. Scop. # DIGSA; pitted morningglory, Ipomoea lacunosa L. # IPOLA; prickly sida, Sida spinosa L. # SIDSP; spurred anoda, Anoda cristata L. # ANVCR; peanut, Arachis hypogaea L. ‘NC 10C’, ‘NC 12C’. Additional index words: Economic analysis. Abbreviations: fb, followed by; POST, postemergence; PPI, preplant incorporated; PRE, preemer­ gence. INTRODUCTION Wilcut and Swann 1990; Wilcut et al.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Weed Control in Winter Crops 2019
    Weed control in winter crops 2019 NSW DPI MANAGEMENT GUIDE Greg Brooke and Colin McMaster www.dpi.nsw.gov.au New Axial Xtra. Local trial results show the new AXIAL XTRA formulation with an advanced built in adjuvant, delivers improved activity on Wild Oats, Phalaris and Ryegrass, with the same trusted crop safety. Speak to your advisor about AXIAL XTRA today. UP TO 30% CASHBACK agriclime.syngenta.com.au Partner of Visit syngenta.com.au Syngenta Australia Pty Ltd, Level 1, 2-4 Lyonpark Road, Macquarie Park NSW 2113. ABN 33 002 933 717. ® Registered trademark of Syngenta Group Company. *A maximum of 30% cash back may be payable. Please visit agriclime.syngenta.com for full terms and conditions. Axial Xtra is a registered trademark of a Syngenta Group Company. AD 19-038. Weed control in winter crops 2019 Greg Brooke Colin McMaster Research and Development Research and Development Agronomist, Trangie Agronomist, Orange NSW Department of Primary Industries NSW Department of Primary Industries [email protected] [email protected] More consistent control than Trifluralin + Triallate, at less than $30 a hectare. Consistent ryegrass control at a good honest price. To find out more, talk to your local reseller or visit www.TheHonestAgronomist.com.au UP TO 30% CASHBACK agriclime.syngenta.com.au Partner of Visit syngenta.com.au Syngenta Australia Pty Ltd, Level 1, 2-4 Lyonpark Road, Macquarie Park NSW 2113. ABN 33 002 933 717. ® Registered trademark of Syngenta Group Company. *A maximum of 30% cash back may be payable. Please visit agriclime.syngenta.com for full terms and conditions.
    [Show full text]
  • Comparison of Imazapyr and Imazamox for Control of Parrotfeather (Myriophyllum Aquaticum (Vell.) Verdc.)
    J. Aquat. Plant Manage. 45: 132-136 Comparison of Imazapyr and Imazamox for Control of Parrotfeather (Myriophyllum aquaticum (Vell.) Verdc.) RYAN M. WERSAL1 AND JOHN D. MADSEN1,2 INTRODUCTION techniques (Moreira et al. 1999). To date, chemical control has been the most effective method for controlling infesta- Parrotfeather (Myriophyllum aquaticum (Vell. Verdc) is an in- tions of M. aquaticum. Contact herbicides such as diquat vasive aquatic plant to the United States that is native to South (6,7-dihydrodipyrido (1,2-a:2’,1’-c) pyrazinedium dibro- America. Myriophyllum aquaticum is described as “stout, stems mide) and endothall (7-oxabicyclo (2.2.1) heptane-2,3-dicar- moderately elongate, partially submersed but with portions of boxylic acid) have been evaluated with mixed results leafy branches emersed (Godfrey and Wooten 1981). Emer- (Moreira et al. 1999, Westerdahl and Getsinger 1988). Con- gent leaves are whorled, stiff, usually with 20 or more linear fil- tact herbicides are typically effective for short-term control, iform divisions, appearing feather-like and grayish green. but significant regrowth of M. aquaticum typically occurs and Submersed shoots are comprised of whorls of four to six fila- multiple applications are necessary (Moreira et al. 1999). mentous, pectinate, red or orange, leaves arising from each Therefore, the use of a systemic herbicide may be more ef- node. Flowers are all pistillate, borne in the axils of unreduced fective in controlling this species. leaves (Godfrey and Wooten 1981). Myriophyllum aquaticum is Imazapyr (2-[4,5-dihydro-4-methyl-4-(1-methylethyl)5-oxo- dioecious, however only pistillate plants are found outside of 1H-imazol-2-yl]-3-pyridinecarboxylic acid) is a systemic herbi- its native range (Sutton 1985).
    [Show full text]
  • Glyphosate Poisoning
    Toxicol Rev 2004; 23 (3): 159-167 REVIEW ARTICLE 1176-2551/04/0003-0159/$31.00/0 © 2004 Adis Data Information BV. All rights reserved. Glyphosate Poisoning Sally M. Bradberry, Alex T. Proudfoot and J. Allister Vale National Poisons Information Service (Birmingham Centre) and West Midlands Poisons Unit, City Hospital, Birmingham, UK Contents Abstract ...............................................................................................................159 1. Epidemiology .......................................................................................................160 2. Mode of Action .....................................................................................................161 3. Mechanisms of Toxicity ..............................................................................................161 3.1 Glyphosate ....................................................................................................161 3.1.1 Acute Toxicity ............................................................................................161 3.1.2 Chronic Toxicity ...........................................................................................161 3.2 Surfactants .....................................................................................................161 3.2.1 Polyoxyethyleneamine ....................................................................................162 3.2.2 Surfactants Derived from Plant Fats .........................................................................162 3.2.3 Other Surfactants
    [Show full text]
  • Imazapyr Human Health and Ecological Risk Assessment FINAL REPORT
    SERA TR-052-29-03a Imazapyr Human Health and Ecological Risk Assessment FINAL REPORT Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-11-0012 SERA Internal Task No. 52-29 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 8125 Solomon Seal Manlius, New York 13104 E-Mail: [email protected] Home Page: www.sera-inc.com December 16, 2011 Table of Contents LIST OF FIGURES ...................................................................................................................... vii LIST OF TABLES ........................................................................................................................ vii LIST OF APPENDICES ............................................................................................................... vii ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................................................. viii COMMON UNIT CONVERSIONS AND ABBREVIATIONS .................................................... x CONVERSION OF SCIENTIFIC NOTATION ........................................................................... xi EXECUTIVE SUMMARY .......................................................................................................... xii 1. INTRODUCTION ...................................................................................................................... 1 1.1. Chemical Specific Information
    [Show full text]