RAMOS Near Term Observations

Total Page:16

File Type:pdf, Size:1020Kb

RAMOS Near Term Observations RAMOS Near Term Observations Cynthia J. Beeler 1Visidyne, Inc. 10 Corporate Place, S. Bedford St. Burlington, MA 01803 617 273-2820 [email protected] Charles H. Humphrey1 [email protected] Andrew J. LePage1 [email protected] Mary E. Pitkanen1. [email protected] Orr Shepherd1 [email protected] Captain Barry Tilton SAF/RESPO 11781 Lee Jackson Highway, Suite 500 Fairfax, VA 22033 Pager: 800 759-8255 PIN: 2832955 [email protected] Abstract--The Russian American Observational dimensional background radiance and spatial Satellites (RAMOS) program is a joint US- structure statistics, and of obtaining the ability Russian experiment designed to collect to monitor environmental trends and specific simultaneous stereo imagery in the visible and atmospheric events, such as hurricanes. The IR wavelength regions in support of clutter intermediate goals of the RAMOS program and measurements and environmental monitoring. how they will be accomplished through these The classic RAMOS experiment utilizes near-term observations are discussed in this complementary sensors on board two dedicated, paper. The first set of assets used for these extended-lifetime satellites, an American observations is the NASA-owned WB-57 Observational Satellite (AOS) and a Russian aircraft for the U.S. and either one of two Observational Satellite (ROS), which are in the Russian satellites, Resource 1 or MIR. Two same low Earth orbit. In preparation for the simultaneous data collection events have launch of these dedicated satellites, the RAMOS occurred thus far. The U.S. sensors include an program is currently making use of existing US infrared multi-spectral imager, IR imagers, and and Russian assets in a series of near term visible cameras. The Russian satellites feature observations. These observations are designed visible line scanners, visible and IR imagers, to accomplish the milestones that lead RAMOS and video cameras. Future U.S. assets to be to its goals of developing a data base of three- used for RAMOS near-term observations include the Midcourse Space Experiment prior to the implementation of the classic (MSX) and Miniature Sensor Technology RAMOS experiment, would greatly increase the Integration (MSTI 3) satellites. This paper success and utility of RAMOS. includes discussions of both recent and future RAMOS near-term data collections and These milestones are being accomplished by a analysis, and presents data collected during the series of RAMOS near-term observations that recent simultaneous measurements. make use of existing U.S. and Russian assets. The goals of these near-term observations are TABLE OF CONTENTS both programmatic and technical. The programmatic goal refers to the fact that the 1. INTRODUCTION Russian and American teams have to establish 2. RAMOS NEAR-TERM GOALS and exercise the mission operations procedures 3. U.S. INSTRUMENTATION as well as work out the details of the 4. RUSSIAN INSTRUMENTATION data/technology transfer procedures and 5. SIMULTANEOUS DATA COLLECTION requirements in order to insure successful 6. DATA ANALYSIS PLANS simultaneous data collection. The technical 7. FUTURE OBSERVATIONS goals are to demonstrate the ability to create 8. CONCLUSIONS three-dimensional scenes from imagery acquired by disparate sensors by first exercising the techniques on data collected over well-surveyed 1. INTRODUCTION topographical areas, and then by applying these The Russian American Observational Satellites verified techniques to data containing high (RAMOS) program has the unique capability of altitude clouds and other sources of spatial real-time stereoscopic measurements in both the structure. visible and infrared wavelengths. Therefore, RAMOS will be able to collect valuable 2. RAMOS NEAR-TERM GOALS scientific data on a number of dynamical The RAMOS program has a well-defined set of atmospheric phenomena. RAMOS has a science objectives that the team has broken mission that includes both measurement of down into a series of intermediate goals to be atmospheric phenomena and environmental accomplished by sets of near-term observations. monitoring. The program’s scientific objectives These goals will aid in the development and are to demonstrate the ability to measure testing of processing and analysis techniques to hurricane intensities, cloud polarization and be applied to the data. In addition, they will solar albedo, with the use of stereo imagery, as provide valuable information to be used as input well as to collect an Earth backgrounds data [1]. to the design of the classic RAMOS experiment and sensors. The “classic” RAMOS experiment [2], consists of two dedicated satellites, the American The first set of goals for these near-term Observation Satellite (AOS) and the Russian observations is to construct stereoscopic Observation Satellite (ROS), designed imagery from simultaneously acquired data specifically to meet the requirements dictated by using existing U.S. and Russian sensors (visible the RAMOS science objectives. However there and infrared). The ability to construct such are several milestones, which, if accomplished three-dimensional scenes will be demonstrated in steps: first by observing sites with well using available instrumentation. surveyed terrain structure, i.e., cloud-free mountain peaks, and then by observing sites, or 3. U.S. INSTRUMENTATION scenes that consist of a combination of The near-term observations planned for structured clouds and terrain. The successful RAMOS will make use of various existing U.S. demonstration of the stereoscopic processing sensors and sensor platforms. The three most technique, using these types of observation accessible platforms for these simultaneous scenes, will lend more confidence to the ability measurements are the NASA-owned ARES to create three-dimensional scenes of cloud WB-57F aircraft, BMDO-sponsored MSX (Mid- decks and hurricanes complete with accurate Course Space Experiment) satellite, and the Air cloud height and hurricane intensity Force’s MSTI (Miniature Sensor Technology information. Integration) satellite. Each of these platforms will provide high resolution, multi-spectral Three-dimensional structured scenes in the imagery in the infrared wavelengths. A visible can be used as a first approximation in description of these platforms and their on board determining the source of infrared structure, i.e., sensors is provided below. cloud temperatures can be inferred from cloud altitude. However, some of the near-term ARES observations are designed to include measurements in the LWIR thermal wavelength The Airborne Remote Earth Sensing (ARES) regions, allowing for more accurate cloud Program is the only high altitude short/medium temperature determination, which will aid in wave infrared (S/MWIR) spectral collection spatial structure analysis. capability currently operating in the US. The program consists of a WB-57F aircraft operated Part of the stereoscopic demonstration is the for the Air Force by NASA Johnson Space ability to merge data collected by disparate Center, Houston, and a Lockheed Martin (LM) sensors. For example, the sensor imagery will IR spectral imager, operated by LM's Palo Alto have different footprint sizes and resolutions, Research Labs and the Air Force. and will represent radiation in different wavelength regions. These corrections are non- Platform Overview--The WB-57 airplane is trivial, and the techniques for handling them capable of normal flight operation between will be refined during the data analysis of the 8,000 - 65,000 feet, with about 7 hours of flight near-term observations. duration. It is a highly modified version of the old B-57 Canberra used in Vietnam. General These RAMOS near-term goals also include test Dynamics modified the aircraft in the early experiments for the cloud polarization 1960's for high altitude (65,000 ft) missions. experiment, wind field at altitude The WB-57F has a crew of two (Pilot & measurements, and other dynamic atmospheric Navigator/Payload Operator), permitting sensor phenomena. All of these near-term goals will be operation by a dedicated flight crewmember. accomplished by the successful acquisition, Aircraft main bay payload volume is 250 ft3, processing, and analysis of simultaneous data and it can carry up to a 4000 lb payload. over carefully selected observational sites and Additionally, the nose can carry a 250 lb under the appropriate observational conditions payload (volume - 25 ft3). The main bay is unpressurized, but the nose bay can be either as infrared focal plane data. The continuous pressurized or not. Currently two flyable WB- imaging sequences from the infrared imaging 57's exist, the other one is owned by the National Center for Atmospheric Research in Boulder, CO. Sensor Overview--The ARES sensor may be operated as either a 4-band radiometer or as a 75-channel imaging spectrometer in the 2.0 - 6.4 μm IR bands. These spectral bands are given in Table 1 along with the noise equivalent spectral radiance. This system has an Indium doped Silicon 45 90 element focal plane, and operates at a 10, 20, 40 or 80 Hz data rates. Figure 1 ARES Spectrometer Operation Mode Data is collected and recorded digitally at an tracker and the RTDS (Real Time Display instantaneous dynamic range of 12 bits. System displays IR focal plane image) are recorded onto their own systems which include Operating Modes--As stated previously, the separate VHS tape recorders. Further, the sensor has two operating modes. The output of the payload operator's video monitor, radiometer mode makes use of two filter wheels, which displays the output chosen from either one with four narrow bandpass filters and the one of two visible cameras (wide FOV black other with four neutral density filters plus an and white & narrow NTSC color FOV) , the IR open position. A rotation between filter camera, or the RTDS, is recorded in-flight onto combinations requires one second. The its own VHS recorder. spectrometer mode (Figure 1) uses optical scanning of the image across a fixed reflecting Fields-of-view--Both the radiometer and slit. The slit image is spectrally dispersed by a spectrometer make use of the same 45 90 bi-prism and the resulting 75 spectral channels pixel focal plane.
Recommended publications
  • Secretariat GENERAL ST/SG/SER.E/320 23 May 1997 ENGLISH ORIGINAL: RUSSIAN
    UNITED NATIONS ST Distr. Secretariat GENERAL ST/SG/SER.E/320 23 May 1997 ENGLISH ORIGINAL: RUSSIAN COMMITTEE ON THE PEACEFUL USES OF OUTER SPACE INFORMATION FURNISHED IN CONFORMITY WITH THE CONVENTION ON REGISTRATION OF OBJECTS LAUNCHED INTO OUTER SPACE Note verbale dated 15 April 1997 from the Permanent Mission of the Russian Federation to the United Nations (Vienna) addressed to the Secretary-General The Permanent Mission of the Russian Federation to the United Nations (Vienna) presents its compliments to the Secretary-General of the United Nations and, in accordance with article IV of the Convention on Registration of Objects Launched into Outer Space,* has the honour to transmit information concerning space objects launched by the Russian Federation from April to December 1996 and conce rning Russian space objects which ceased to exist within those same periods of time and are no longer in Earth orbit (see annex). *General Assembly resolution 3235 (XXIX), annex, of 12 November 1974. V.97-23994T ST/SG/SER.E/320 Page 2 ST/SG/SER.E/320 Page 3 ST/SG/SER.E/320 Page 4 ST/SG/SER.E/320 Page 5 ST/SG/SER.E/320 Page 6 ST/SG/SER.E/320 Page 7 ST/SG/SER.E/320 Page 8 ST/SG/SER.E/320 Page 9 Annex* REGISTRATION DATA ON SPACE OBJECTS LAUNCHED BY THE RUSSIAN FEDERATION IN APRIL 1996 1. In April 1996, the Russian Federation launched the following space objects: Basic orbit characteristics Date of Apogee Perigee Inclination Period No. Name of space object launching (km) (km) (degrees) (minutes) General purpose of space object 2985 Priroda 23 April 347 220 51.6 89.9 The Priroda module is intended for the per- (launched by a Proton carrier rocket formance of research and experiments by the crew from the Baikonur launch site) of the Mir orbital station, partly under the programme of cooperation between the Russian Federation and the United States of America 2986 Cosmos-2332 24 April 1 585 304 83 104 The space object is intended for assignments on (launched by a Cosmos carrier rocket behalf of the Ministry of Defence of the Russian from the Plesetsk launch site) Federation 2.
    [Show full text]
  • Part 2 Almaz, Salyut, And
    Part 2 Almaz/Salyut/Mir largely concerned with assembly in 12, 1964, Chelomei called upon his Part 2 Earth orbit of a vehicle for circumlu- staff to develop a military station for Almaz, Salyut, nar flight, but also described a small two to three cosmonauts, with a station made up of independently design life of 1 to 2 years. They and Mir launched modules. Three cosmo- designed an integrated system: a nauts were to reach the station single-launch space station dubbed aboard a manned transport spacecraft Almaz (“diamond”) and a Transport called Siber (or Sever) (“north”), Logistics Spacecraft (Russian 2.1 Overview shown in figure 2-2. They would acronym TKS) for reaching it (see live in a habitation module and section 3.3). Chelomei’s three-stage Figure 2-1 is a space station family observe Earth from a “science- Proton booster would launch them tree depicting the evolutionary package” module. Korolev’s Vostok both. Almaz was to be equipped relationships described in this rocket (a converted ICBM) was with a crew capsule, radar remote- section. tapped to launch both Siber and the sensing apparatus for imaging the station modules. In 1965, Korolev Earth’s surface, cameras, two reentry 2.1.1 Early Concepts (1903, proposed a 90-ton space station to be capsules for returning data to Earth, 1962) launched by the N-1 rocket. It was and an antiaircraft cannon to defend to have had a docking module with against American attack.5 An ports for four Soyuz spacecraft.2, 3 interdepartmental commission The space station concept is very old approved the system in 1967.
    [Show full text]
  • Mir Mission Chronicle
    Index A Clifford, Rich 38, 40 air supply systems 10, 29, 39, 42, 47 CNES 49 ALICE II experiment 50 COGNILAB 50 Alisa lidar 43 Collins, Eileen M. 5, 6 Andre-Deshays, Claudie 49, 50 comet Giacobini Zinner 28 androgynous peripheral assembly system comet Hyakutake 39 (APAS) 18, 20, 30 computer malfunction 23 anniversaries cooling systems 28, 35 –Gagarin flight 11 See also air supply systems –Mir launch, 10th anniversary 36 cooperative solar array –Mir launch, 9th anniversary 8 See Mir cooperative Solar Array Anticipatory Postural Activity (POSA) countermeasures exercises 17, 23 experiment 48 crops 37, 48, 50 APAS; APDA; APDS. See androgynous peripheral assembly D system Dezhurov, Vladimir 9, 12, 13 Apollo-Soyuz Test Project 18 Discovery (Space Shuttle). art contest 33 See STS-63 Astra-2 14 Docking Module 1, 32, 38 Astro-2 52 –description 30 astrophysics experiments 3, 8, 27 –EVA on exterior 40 Atlantis (Space Shuttle). –on-orbit assembly 19 See STS-71, STS-74, and STS-76 –illustrations 31, 34 Atlas-03 51 docking systems. See androgynous peripheral automatic docking systems. See Kurs assembly system (APAS) Avdeyev, Sergey 26, 28 dockings with Mir See also redockings –Atlantis 20, 32, 39 B –Priroda 44 backpacks 40 –Progress-M modules 8, 11, 25, 27, Baker, Ellen S. 20 35, 45, 48, 50 batteries, electric 39, 41, 42, 44, 45 –Spektr 16 Biokin air scrubber 29 –Soyuz-TM modules 9, 26, 37, 49 biomedical samples 17, 22, 35 Dunbar, Bonnie J. 20 Biorack experiments 38, 39 Dutch participation at Mir 29, 39 Biotechnology System Facility 47 DYNALAB 50 Boutrous-Ghali, Boutrous 32 Budarin, Nikolai 20-23, 26 E eggs, quail 11 C Earth observations 4, 14, 37, 41 CADMOS 49 Earth science studies 42, 46 Cameron, Kenneth D.
    [Show full text]
  • Quarterly Launch Report
    Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters. 1st Quarter 1996 United States Department of Transportation • Federal Aviation Administration Office of Associate Administrator for Commercial Space Transportation Quarterly Launch Report 1 1st QUARTER REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. The report highlights commercial launch activities, classifying commercial launches as one or more of the following: • internationally competed launch events (i.e. launch opportunities considered available in principle to competitors in the international launch services market), • any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S. Code Title 49, Subsection 9, Section 701 (previously known as the Commercial Space Launch Act), and • certain European launches of Post, Telegraph and Telecommunications payloads on Ariane vehicles. Photo credit: Lockheed Martin Corporation (1995). Image is of the Atlas 2A launch on December 15, 1995. It successfully orbited a Galaxy 3R commercial communications satellite for Hughes Communications,
    [Show full text]
  • Nasa Thesaurus Supplement
    NASA/SP--2000-7501/SUPPL5 NASA THESAURUS SUPPLEMENT A three-part cumulative update of the 1998 edition of the NASA Thesaurus July 2000 The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated CONFERENCE PUBLICATION. Collected to the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or cosponsored by NASA. part in helping NASA maintain this important role. SPECIAL PUBLICATION. Scientific, technical, or historical information from The NASA STI Program Office is operated by NASA programs, projects, and missions, Langley Research Center, the lead center for often concerned with subjects having NASA's scientific and technical information. substantial public interest. The NASA STI Program Office provides access to the NASA STI Database, the largest collection TECHNICAL TRANSLATION. of aeronautical and space science STI in the English-language translations of foreign world. The Program Office is also NASA's scientific and technical material pertinent to institutional mechanism for disseminating the NASA's mission. results of its research and development activities. These results are published by NASA in the Specialized services that complement the STI NASA STI Report Series, which includes the Program Office's diverse offerings include following report types: creating custom thesauri, building customized databases, organizing and publishing research TECHNICAL PUBLICATION. Reports of results.., even providing videos. completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data or Program Office, see the following: theoretical analysis.
    [Show full text]
  • Phase 1 Science Report
    Investigation Title: Enhanced Dynamic Load Sensors (EDLS) on Mir Principal Investigator(s): Sherwin Beck, NASA/Langley Research Center Additional Investigator(s): INVESTIGATION OBJECTIVES The Enhanced Dynamic Load Sensor (EDLS) experiment is designed to measure the crew-induced forces and torques imparted on the Mir habitat module’s interior surfaces. The EDLS hardware measure the magnitude and frequency of the crew-induced disturbances of the Mir microgravity environment. PHASE 1 MISSIONS Mir 21 - Mir 24, NASA 2 - NASA 5 OPERATIONAL ACTIVITIES · EDLS hardware (ESM and sensors) transported to Mir and installed in the Priroda module in 1996 · Approximately 20 EDLS sessions performed during NASA 2/Mir 21 missions (5/96-8/96) · Original EDLS ESM replaced with similar ESM for MiDSE experiment (1997) · Approximately 15 high quality EDLS sessions performed during NASA 4/Mir 22/Mir 23 missions (2/97-5/97) The torque/force sensors were mounted in the Mir Priroda module and used as restraints by the crew in the performance of their normal work routine duties involving glovebox activities. RESULTS Analysis of data collected indicated that the crew loads induced on module internal structures are no greater than 70 Newtons at a frequency of range from 0 to 10 Hertz (Hz). During the initial arrival periods, crew induced loads are higher but as space adaptation period progressed, these loads were reduced. A crewmember learns to reduce his/her effort needed to perform intended motions, thus reducing the loads imparted to the spacecraft structure. CONCLUSIONS Not provided by PI. PUBLICATIONS 1. Lofton R, Conley C. International Space Station Phase 1 Risk Mitigation and Technology Demonstration Experiments.
    [Show full text]
  • S Pace a Lmanac 1 9
    All digital images © 1996 Corbis; original image courtesy NASA SpaceSpace Almanac Almanac 11999 9 9 9 26 AIR FORCE Magazine / August 1999 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Earth Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Space Almanac Compiled by Tamar A. Mehuron, Associate Editor On the following pages appears a variety of in- formation and statistical material about space— particularly military activity in space. This almanac was compiled by the staff of Air Force Magazine, with assistance and information from R.W. Sturdevant, Air Force Space Command History Office; Tina Thompson, editor of TRW Space Log; Phillip S. Clark, Molniya Space Con- sultancy, Whitton, UK; Joseph J. Burger, Space Analysis and Research, Inc.; and Air Force Space Command Public Affairs Office. Figures that appear in this section will not Space facts from NASA public affairs. always agree because of different cutoff dates, rounding, or different methods of reporting. The information is intended to illustrate trends in space activity. AIR FORCE Magazine / August 1999 27 Introduction In space, astronauts use a special wind- What’s Up There up shaver that contains a vacuum device As of May 26, 1999 to suck up cut whiskers, which could float Country/Organization Satellites Space Debris Total about and possibly harm spacecraft equipment. Probes USA 715 45 3,148 3,908 CIS (Russia/former USSR) 1,338 35 2,586 3,959 Iridium 86 0 0 86 Japan 65 4 51 120 Intl.
    [Show full text]
  • Beyond Earth a CHRONICLE of DEEP SPACE EXPLORATION, 1958–2016
    Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 Asif A. Siddiqi Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 by Asif A. Siddiqi NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Office of Communications NASA History Division Washington, DC 20546 NASA SP-2018-4041 Library of Congress Cataloging-in-Publication Data Names: Siddiqi, Asif A., 1966– author. | United States. NASA History Division, issuing body. | United States. NASA History Program Office, publisher. Title: Beyond Earth : a chronicle of deep space exploration, 1958–2016 / by Asif A. Siddiqi. Other titles: Deep space chronicle Description: Second edition. | Washington, DC : National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2018] | Series: NASA SP ; 2018-4041 | Series: The NASA history series | Includes bibliographical references and index. Identifiers: LCCN 2017058675 (print) | LCCN 2017059404 (ebook) | ISBN 9781626830424 | ISBN 9781626830431 | ISBN 9781626830431?q(paperback) Subjects: LCSH: Space flight—History. | Planets—Exploration—History. Classification: LCC TL790 (ebook) | LCC TL790 .S53 2018 (print) | DDC 629.43/509—dc23 | SUDOC NAS 1.21:2018-4041 LC record available at https://lccn.loc.gov/2017058675 Original Cover Artwork provided by Ariel Waldman The artwork titled Spaceprob.es is a companion piece to the Web site that catalogs the active human-made machines that freckle our solar system. Each space probe’s silhouette has been paired with its distance from Earth via the Deep Space Network or its last known coordinates. This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 978-1-62683-043-1 90000 9 781626 830431 For my beloved father Dr.
    [Show full text]
  • Paper Session II-B - U.S./ Russian EVA Interoperability Status
    1996 (33rd) America's Space Program -What's The Space Congress® Proceedings Ahead? Apr 24th, 2:00 PM - 5:00 PM Paper Session II-B - U.S./ Russian EVA Interoperability Status Richard K. Fullerton EVA Project Office, NASA Johnson Space Center L. Dale Thomas Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Fullerton, Richard K. and Thomas, L. Dale, "Paper Session II-B - U.S./ Russian EVA Interoperability Status" (1996). The Space Congress® Proceedings. 5. https://commons.erau.edu/space-congress-proceedings/proceedings-1996-33rd/april-24-1996/5 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. U.S./Russian EVA Interoperability Status Richard K. Fullerton EVA Project Office NASA Johnson Space Center ABSTRACT the United States, Canada, the European nations and Japan to create a truly global Guidance for the goals of U.S. and Russian platform for scientific investigations. At cooperation in the International Space present, NASA and the Russian Space Station (ISS) was provided in an Agency (RSA) are cooperating in early addendum to the Program Implementation missions to the Mir space station as Plan, dated November 1, 1993, which was preparation for ISS joint activities and to jointly signed by the NASA Administrator accomplish early scientific and technology and the RSA General Director. development objectives. Many of these Mir Subsequent working level agreements for investigations are described as risk Extravehicular Activity (EVA) have resulted mitigation experiments since they are in joint projects which are building specifically intended to validate new ISS confidence and capabilities for technologies before they become commonality of hardware and operations.
    [Show full text]
  • Aw Orld Without Gravity
    SP-1251 SP-1251 AW – Research in Space for Health and Industrial Processes – ORLD WITHOUT GRAVITY by Günther Seibert et al. Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 A World without Gravity SP-1251 June 2001 A WORLD WITHOUT GRAVITY By G. Seibert et al. Editors: B. Fitton & B. Battrick ii sdddd SP-1251 A World without Gravity iii Preface The principal task of the European Space Agency is to develop and to operate spaceflight systems for research and applications and, in doing so, to promote European and international co-operation. One of the Agency’s major programmes is the European participation in the building and operation of the International Space Station (ISS). The ISS is the largest science and technology venture ever undertaken in space. Its assembly started in late-1998 and will last until early 2005, at which point the routine utilisation and exploitation phase will begin. However, access will be available to some research facilities on the ISS from 2002 onwards. A major motivation for Europe to participate in the development and utilisation of the ISS is that this unique laboratory in space opens up a new era of research in the field of life and physical sciences and applications in space. For the first time, European scientists and industry will have routine and long-term access to a wide range of sophisticated experiment equipment and facilities in space, with laboratory-like working conditions. Experimenters who utilise the weightless conditions of space – the so-called ‘microgravity environment’ – will find outstanding opportunities to expand their research, to the eventual benefit of both industry and human health and welfare.
    [Show full text]
  • NASA Facts National Aeronautics and Space Administration Lyndon B
    NASA Facts National Aeronautics and Space Administration Lyndon B. Johnson Space Center IS-1997-06-ISS009JSC Houston, Texas 77058 International Space Station June 1997 1998 A History of U.S. Space Stations Introduction Everett Hale published a science fiction tale called “The Brick Moon” in the Atlantic Monthly. Hale’s manned Space stations have long been seen as a laboratories for satellite was a navigational aid for ships at sea. Hale learning about the effects of space conditions and as a proved prophetic. The fictional designers of the Brick springboard to the Moon and Mars. In the United States, Moon encountered many of the same problems with the Apollo lunar program preempted early station efforts in redesigns and funding that NASA would with its station the early 1960s, and changing priorities in the U.S. more than a century later. deferred post-Apollo station efforts to the 1980s. Since In 1923, Hermann Oberth, a Romanian, coined the term 1984, space station design has evolved in response to “space station.” Oberth’s station was the starting point for budgetary, programmatic, and political pressures, flights to the Moon and Mars. Herman Noordung, an becoming increasingly international in the process. This Austrian, published the first space station blueprint in evolution has culminated in the International Space 1928. Like today’s International Space Station, it had Station, orbital assembly of which will begin in 1998. modules with different functions. Both men wrote that space station parts would be launched into space by The Beginning (1869-1957) rockets. In 1926, American Robert Goddard made a major The concept of a staffed outpost in Earth orbit dates from breakthrough by launching the first liquid-fueled rocket, just after the Civil War.
    [Show full text]
  • 25 Years of European Human Spaceflight
    FEUSTEL 12/3/03 1:47 PM Page 6 Human Spaceflight 25 Years of European Human Spaceflight Jörg Feustel-Büechl ESA Director of Human Spaceflight, Research and Applications, ESTEC, Noordwijk, The Netherlands 6 esa bulletin 116 - november 2003 www.esa.int FEUSTEL 12/3/03 1:47 PM Page 7 25 Years of European Human Spaceflight Just a few weeks ago, on 28 August 28 November until 8 December 1978, place per year and a good balance of 2003, in the company of the President together with five American astronauts. cooperative missions with Russia and of the Federal Republic of Germany, He had trained for more than five the United States, Europe has achieved Johannes Rau, we celebrated the 25th years for that flight, together with his a high level of astronaut missions with Anniversary of Sigmund Jähn’s flight ESA colleague Wubbo Ockels who outstanding scientific results and to the Russian Salyut 6 space station served as his back-up. operational experience. aboard a Soyuz spacecraft. This A total of 44 missions involving 30 The integration of all European flight lasted from 26 August until astronauts from ESA Member States astronauts into a single European 3 September 1978 and was actually the have taken place, 26 of which were Astronaut Corps, presently comprising third flight by a European astronaut, performed in co-operative programmes 15 astronauts, and the creation of an following those of Czechoslovakia’s with NASA, whilst 18 flights used EAC Team made up of experts from Vladimir Remek and Poland’s Miroslav Russian space vehicles. several Member States and ESA, Hermascewski in 1978.
    [Show full text]