The Role of Antibiotics and the Bacterial SOS Response

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Antibiotics and the Bacterial SOS Response Research Toxin Gene Expression by Shiga Toxin-Producing Escherichia coli: the Role of Antibiotics and the Bacterial SOS Response Patrick T. Kimmitt, Colin R. Harwood, Michael R. Barer The Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom Toxin synthesis by Shiga toxin-producing Escherichia coli (STEC) appears to be coregulated through induction of the integrated bacteriophage that encodes the toxin gene. Phage production is linked to induction of the bacterial SOS response, a ubiquitous response to DNA damage. SOS-inducing antimicrobial agents, particularly the quinolones, trimethoprim, and furazolidone, were shown to induce toxin gene expression in studies of their effects on a reporter STEC strain carrying a chromosome- based stx2::lacZ transcriptional fusion. At antimicrobial levels above those required to inhibit bacterial replication, these agents are potent inducers (up to 140-fold) of the transcription of type 2 Shiga toxin genes (stx2); therefore, they should be avoided in treating patients with potential or confirmed STEC infections. Other agents (20 studied) and incubation conditions produced significant but less striking effects on stx2 transcription; positive and negative influences were observed. SOS-mediated induction of toxin synthesis also provides a mechanism that could exacerbate STEC infections and increase dissemination of stx genes. These features and the use of SOS-inducing antibiotics in clinical practice and animal husbandry may account for the recent emergence of STEC disease. The associations between Escherichia coli strains are more closely associated with HUS O157:H7 infection, hemorrhagic colitis, and than are strains that produce only Stx1 (5,6). hemolytic uremic syndrome (HUS) were estab- Because antimicrobial agents may play a role lished in the early 1980s (1,2). Shiga toxin- in the pathogenesis of severe STEC disease, producing E. coli (STEC) strains have since been chemotherapy for STEC infections remains recognized as the cause of both outbreaks and controversial (7,8). The location of stx genes sporadic cases of diarrhea and HUS, involving (predominantly on λ-like bacteriophage genomes thousands of cases and numerous deaths (3). integrated into the chromosome of their host Shiga toxins are key virulence factors in the bacterium) has important implications because pathogenesis of STEC disease (3). The term Shiga the induction of the SOS response, an extensively toxin (Stx) refers to two families of related toxins, characterized genetic regulatory mechanism, Stx/Stx1, which includes the classical Shiga toxin induces high-level expression of previously silent produced by Shigella dysenteriae, and Stx2 (4). bacteriophage genes (9). Stx genes are coexpressed The stx genes carried by STEC strains are, with with genes of the bacteriophage (10,11), and one possible exception (stx2e), encoded on certain quinolones (known to be potent SOS bacteriophage genomes integrated into the inducers) induce increases in toxin (12,13) and bacterial chromosome. Stx2-producing STEC bacteriophage production (13) of two to three orders of magnitude within 2 to 4 hours. The Address for correspondence: M.R. Barer, Department of potential importance of a link between the SOS Microbiology and Immunology, University of Newcastle, The Medical School, Framlington Place, Newcastle upon Tyne, response and prophage induction for Stx1 and NE2 4HH, United Kingdom; Fax: +44 191 222 7736; e-mail: Stx2 expression has been reinforced by recent [email protected]. sequencing and pathogenicity studies (11,14,15). Emerging Infectious Diseases458 Vol. 6, No. 5, September–October 2000 Research We have constructed a genetically modified of prewarmed medium and incubated with derivative of a clinical isolate in which the genes shaking at 37°C to an optical density at 600 nm encoding both elements of the toxin (stx2AB) (OD600nm) of approximately 0.4. The culture was were partially replaced with a lacZ reporter gene. then divided, and test antibiotics were added to The product of this gene, ß-galactosidase, is these aliquots from stock solutions. Aliquots of easily assayed and detected; its expression these cultures (200 µL, 4 replicates) were then reflects the transcriptional activity of the stx2 injected into wells of honeycomb plates (Lab- gene and can be visualized in simple agar plate systems). The Biolink software was used to assays and quantified in biochemical assays. We program the Bioscreen C system to specify have extended our earlier observations on the wavelength, incubation temperature, length of effects of quinolones on reporter expression by experiment, timing of readings, and the rate of this strain to include a wider range of shaking of the cultures. The cultures were antimicrobial agents and the modulating effects incubated in the Bioscreen C system at 37°C with of different environmental conditions. Our continuous shaking, and OD600nm was recorded results show that several agents could increase every 15 min. MICs for selected antibiotics were the amounts of toxin produced and that SOS- determined in the Bioscreen system by using the inducing agents could play an important role in inoculation pattern described above and by the the epidemiology of STEC infections. conventional agar dilution method. Methods Detection of ß-galactosidase Activity An agar plate assay was used to screen the Bacterial Strain and Growth Conditions responses of the reporter strain, PK552 RV31, a strain of E. coli O157:H7 isolated (stx2A::lacZ), in producing ß-galactosidase activ- locally from a patient with hemorrhagic diarrhea, ity in the presence of antibiotics. The assays were was used to construct the reporter strain, performed by using Luria-Bertani (LB) agar PK552(stx2A::lacZ), which contains a copy of the plates containing 20 µg/mL of the chromogenic E. coli lacZ gene transcriptionally fused to the lactose analog X-gal (5-bromo-4-chloro-3-indolyl- promoter region of stx2 on the chromosome. ß-D-galactopyranoside; Sigma, Poole, Dorset, The reporter strain construction, which in- UK). An agar overlay of the PK552 reporter volved allelic exchange with a series of suicide strain was made by mixing 100 µL of an overnight plasmid vectors, will be described elsewhere. In culture with 3 mL of molten LB top agar, cooled to the first step, the entire indigenous lac operon 48°C, and pouring the mixture over the surface of and adjacent lacI gene were deleted to create a an LB agar plate. The plate was incubated with Lac- strain. Then, most of the coding sequence antibiotic discs (see below) placed on the surface, of the stx2A gene was replaced with a under the conditions specified. Expression of promoterless E. coli lacZ gene, resulting in a ß-galactosidase was indicated by the enzymatic transcriptional fusion in which transcription of cleavage of X-gal, resulting in a blue color, the the lacZ reporter gene is controlled by stx2 intensity of which related to the amount of regulatory mechanisms. The structure of the enzyme produced. final construct was confirmed by diagnostic Microaerobic conditions (5% O2, 10% CO2, polymerase chain reaction, Southern blotting, 85% N2) at 37°C were produced in a VAIN and nucleotide sequencing across the lacZ incubator (Don Whitley Scientific, Shipley, insertion points. Yorkshire, UK). Microaerobic conditions at 42°C Bacterial growth in the presence of antibiot- and anaerobic conditions were produced in gas ics was monitored by the Bioscreen C system and jars by using Oxoid gas-generating kits according associated Biolink software (Labsystems, Bas- to the manufacturer’s instructions. ingstoke, UK). This procedure allowed the Antibiotic discs (Oxoid/Unipath, UK) were simultaneous measurement of growth in up to as follows: ofloxacin (5 µg), nalidixic acid 200 tests by recording changes in optical density. (30 µg), cinoxacin (100 µg), enrofloxacin (5 µg): The stx2::lacZ reporter strain PK552 was grown flumequine (30 µg), ciprofloxacin (1 µg), overnight at 37°C in Antibiotic Medium No. 3 perfloxacin (5 µg), norfloxacin (10 µg), amoxycillin/ (Oxoid, Basingstoke, Hampshire, UK). A 2-mL clavulanic acid (20/10 µg), imipenem (10 µg), aliquot of overnight culture was added to 100 mL aztreonam (30 µg), ceftazidime (30 µg), cefotaxime Vol. 6, No. 5, September–October 2000459 Emerging Infectious Diseases Research (30 µg), cefuroxime (5 µg), piperacillin/tazobactam min. ß-galactosidase activity was determined by (10/75 µg), ampicillin (10 µg), cephalexin (30 µg), using the linear portion of the corrected OD420 / chloramphenicol (30 µg), doxycycline (30 µg), time relationship by the Miller formula, adjusted erythromycin (15 µg), trimethoprim (5 µg), for the sample volume (16). Replicate samples (at sulphamethoxazole (25 µg), furazolidone (50 µg), least four in all assays reported) yielded mean amoxicillin (25 µg), novobiocin (30 µg), rifampin values with coefficients of variation <10% in all (25 µg), gentamicin (10 µg), fosfomycin (200 µg) cases. (oral and systemic salts), polymyxin B (300 IU), and metronidazole (50 µg). Results The Bioscreen C system was also used to All the quinolones induced reporter expres- measure total ß-galactosidase activity in whole sion, while only a few of the other agents had this cultures of strain PK552 by orthonitrophenyl-ß- effect (Figure 1). The induction occurred in three D-galactoside (ONPG) assay (16). Aliquots general patterns: a defined zone within the zone (20 µL, 4 replicates) of culture were removed of growth inhibition (quinolones), a defined zone from wells
Recommended publications
  • A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
    A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Nitroaromatic Antibiotics As Nitrogen Oxide Sources
    Review biomolecules Nitroaromatic Antibiotics as Nitrogen Oxide Sources Review Allison M. Rice, Yueming Long and S. Bruce King * Nitroaromatic Antibiotics as Nitrogen Oxide Sources Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; Allison M. Rice , Yueming [email protected] and S. Bruce (A.M.R.); King [email protected] * (Y.L.) * Correspondence: [email protected]; Tel.: +1-336-702-1954 Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; [email protected]: Nitroaromatic (A.M.R.); [email protected] antibiotics (Y.L.) show activity against anaerobic bacteria and parasites, finding * Correspondence: [email protected]; Tel.: +1-336-702-1954 use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the Abstract: Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding usedevelopment in the treatment of new of Heliobacter treatments pylori forinfections, these conditio tuberculosis,ns, the trichomoniasis, associated toxicity human Africanand lack of clear trypanosomiasis,mechanisms of action Chagas have disease limited and their leishmaniasis. therapeutic Despite development. this activity Nitroaro and a clearmatic need antibiotics for require thereductive development bioactivation of new treatments for activity for theseand this conditions, reductive the associatedmetabolism toxicity can convert
    [Show full text]
  • Antimicrobial Stewardship: Getting the Most out of Culture and Susceptibility Tests Insights from a Microbiologist
    ANTIMICROBIAL STEWARDSHIP: GETTING THE MOST OUT OF CULTURE AND SUSCEPTIBILITY TESTS INSIGHTS FROM A MICROBIOLOGIST Joe Rubin, DVM, PhD Associate Professor Department of Veterinary Microbiology University of Saskatchewan DISCLOSURES • Received research grants from • Zoetis • Elanco/Novartis • I am a microbiologist and not a practitioner! OBJECTIVES • To give an overview of the scope of the problem of AMR • To inspire the intent to change/improve/reevaluate prescribing practices • To provide tools to use antimicrobials more effectively • Antimicrobial mechanisms of action and resistance • Introduction to intrinsic resistance • Overview of key emerging resistance in veterinary medicine THE POST-ANTIBIOTIC ERA Estimated Attributable Deaths in 2050 https://amr-review.org/ CURRENT THREATS BROAD SPECTRUM Β-LACTAMASES METHICILLIN RESISTANT STAPH AUREUS EMERGING RESISTANCE IN CANADA CHANGING RESISTANCE? ANTIMICROBIAL USE ANIMALS ANTIMICROBIAL USE COMPANION ANIMALS ANTIMICROBIAL USE COMPANION ANIMALS • Large study out of UK • 216 practices • Included data from >400,000 dogs and >200,000 cats • Beta-lactams most commonly used • Amox + clav in dogs • 3rd Generation cephalosporins in cats HOW CANADA’S AMU COMPARES STEWARDSHIP – WHAT IS IT? “The term “antimicrobial stewardship” is used to describe the multifaceted and dynamic approaches required to sustain the clinical efficacy of antimicrobials by optimizing drug use, choice, dosing, duration, and route of administration, while minimizing the emergence of resistance and other adverse effects.” STEWARDSHIP
    [Show full text]
  • Comparative Efficacy of Kanamycin, Enrofloxacin, Moxifloxacin and Cefoperazone for the Treatment of Pneumonia in Buffaloes
    Journal of Animal Research: v.8 n.5, p. 807-811. October 2018 DOI: 10.30954/2277-940X.10.2018.10 Comparative Efficacy of Kanamycin, Enrofloxacin, Moxifloxacin and Cefoperazone for the Treatment of Pneumonia in Buffaloes Praveen Kumar1*, V.K. Jain1, Tarun Kumar2, Parveen Goel1 and Neelesh Sindhu2 1Department of Veterinary Medicine, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, INDIA 2Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, INDIA *Corresponding author: P Kumar; Email: [email protected] Received: 05 March., 2018 Revised: 21 July, 2018 Accepted: 31 July, 2018 ABSTRACT A study was conducted to evaluate the comparative efficacy of kanamycin, enrofloxacin, moxifloxacin and cefoperazone to treat pneumonia in buffaloes. During study period, a total of 28 buffaloes brought to VCC, LUVAS, Hisar with the history of fever, anorexia, nasal discharge, coughing and dyspnoea. Clinical examination revealed abnormal lung sounds during auscultation. All the buffaloes diagnosed with pneumonia were randomly divided into four equal groups viz. group I, II, III and IV. Animals of group I were treated with kanamycin @ 7.0 mg/kg b.wt., i/m, b.i.d., group II with enrofloxacin @ 5 mg/kg b.wt., i/m, o.d., group III with moxifloxacin @ 5 mg/kg b.wt., i/m, o.d. and group IV with cefoperazone@ 20 mg/kg b.wt., i/m, o.d., along with supportive therapy for 5 days. Clinical recovery was determined on the basis of remittance of clinical signs. The highest and earliest recovery was found in group II animals.
    [Show full text]
  • The Grohe Method and Quinolone Antibiotics
    The Grohe method and quinolone antibiotics Antibiotics are medicines that are used to treat bacterial for modern fluoroquinolones. The Grohe process and the infections. They contain active ingredients belonging to var- synthesis of ciprofloxacin sparked Bayer AG’s extensive ious substance classes, with modern fluoroquinolones one research on fluoroquinolones and the global competition of the most important and an indispensable part of both that produced additional potent antibiotics. human and veterinary medicine. It is largely thanks to Klaus Grohe – the “father of Bayer quinolones” – that this entirely In chemical terms, the antibiotics referred to for simplicity synthetic class of antibiotics now plays such a vital role for as quinolones are derived from 1,4-dihydro-4-oxo-3-quin- medical practitioners. From 1965 to 1997, Grohe worked oline carboxylic acid (1) substituted in position 1. as a chemist, carrying out basic research at Bayer AG’s Fluoroquinolones possess a fluorine atom in position 6. In main research laboratory (WHL) in Leverkusen. During this addition, ciprofloxacin (2) has a cyclopropyl group in posi- period, in 1975, he developed the Grohe process – a new tion 1 and also a piperazine group in position 7 (Figure A). multi-stage synthesis method for quinolones. It was this This substituent pattern plays a key role in its excellent achievement that first enabled him to synthesize active an- antibacterial efficacy. tibacterial substances such as ciprofloxacin – the prototype O 5 O 4 3 6 COOH F COOH 7 2 N N N 8 1 H N R (1) (2) Figure A: Basic structure of quinolone (1) (R = various substituents) and ciprofloxacin (2) Quinolones owe their antibacterial efficacy to their inhibition This unique mode of action also makes fluoroquinolones of essential bacterial enzymes – DNA gyrase (topoisomer- highly effective against a large number of pathogenic ase II) and topoisomerase IV.
    [Show full text]
  • Bacterial Infection Imaging with [18F]Fluoropropyl-Trimethoprim
    Bacterial infection imaging with [18F]fluoropropyl-trimethoprim Mark A. Sellmyera,1, Iljung Leea, Catherine Houa, Chi-Chang Wenga, Shihong Lia, Brian P. Liebermana, Chenbo Zenga, David A. Mankoffa, and Robert H. Macha,1 aDepartment of Radiology, University of Pennsylvania, Philadelphia, PA 19104 Edited by Joanna S. Fowler, Brookhaven National Laboratory, Upton, NY, and approved June 15, 2017 (received for review February 23, 2017) There is often overlap in the diagnostic features of common pathologic To address this clinical challenge, we sought to make a small- processes such as infection, sterile inflammation, and cancer both molecule PET probe to identify bacterial infection in vivo, which clinically and using conventional imaging techniques. Here, we report would not be confounded by chemical inflammation or cancer the development of a positron emission tomography probe for live (Fig. 1A). The probe is based on the synthetic antibiotic tri- bacterial infection based on the small-molecule antibiotic trimethoprim methoprim (TMP) that inhibits bacterial dihydrofolate reductase (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater (dhfr), an enzyme in the DNA synthesis and folate pathway that is than 100-fold increased uptake in vitro in live bacteria (Staphylococcus conserved across most bacterial species including both Gram- aureus, Escherichia coli,andPseudomonas aeruginosa) relative to con- positive, Gram-negative, mycobacterial species such as Mycobac- 18 trols. In a rodent myositis model, [ F]FPTMP identified live bacterial terium tuberculosis and some parasites such as Toxoplasma gondii infection without demonstrating confounding increased signal in the (SI Appendix,Fig.S1) (6, 7). TMP has nanomolar affinity for dhfr same animal from other etiologies including chemical inflammation whereas it has micromolar affinity for human dihydrofolate re- (turpentine) and cancer (breast carcinoma).
    [Show full text]
  • ARCH-Vet Anresis.Ch
    Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland Joint report 2013 ARCH-Vet anresis.ch Publishing details © Federal Office of Public Health FOPH Published by: Federal Office of Public Health FOPH Publication date: November 2015 Editors: Federal Office of Public Health FOPH, Division Communicable Diseases. Elisabetta Peduzzi, Judith Klomp, Virginie Masserey Design and layout: diff. Marke & Kommunikation GmbH, Bern FOPH publication number: 2015-OEG-17 Source: SFBL, Distribution of Publications, CH-3003 Bern www.bundespublikationen.admin.ch Order number: 316.402.eng Internet: www.bag.admin.ch/star www.blv.admin.ch/gesundheit_tiere/04661/04666 Table of contents 1 Foreword 4 Vorwort 5 Avant-propos 6 Prefazione 7 2 Summary 10 Zusammenfassung 12 Synthèse 14 Sintesi 17 3 Introduction 20 3.1 Antibiotic resistance 20 3.2 About anresis.ch 20 3.3 About ARCH-Vet 21 3.4 Guidance for readers 21 4 Abbreviations 24 5 Antibacterial consumption in human medicine 26 5.1 Hospital care 26 5.2 Outpatient care 31 5.3 Discussion 32 6 Antibacterial sales in veterinary medicines 36 6.1 Total antibacterial sales for use in animals 36 6.2 Antibacterial sales – pets 37 6.3 Antibacterial sales – food producing animals 38 6.4 Discussion 40 7 Resistance in bacteria from human clinical isolates 42 7.1 Escherichia coli 42 7.2 Klebsiella pneumoniae 44 7.3 Pseudomonas aeruginosa 48 7.4 Acinetobacter spp. 49 7.5 Streptococcus pneumoniae 52 7.6 Enterococci 54 7.7 Staphylococcus aureus 55 Table of contents 1 8 Resistance in zoonotic bacteria 58 8.1 Salmonella spp.
    [Show full text]
  • Effect of Meloxicam and Its Combination with Levofloxacin, Pazufloxacin, and Enrofloxacin on the Plasma Antioxidative Activity and the Body Weight of Rabbits
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.6/Dec-2013/1.pdf Open Access Effect of meloxicam and its combination with levofloxacin, pazufloxacin, and enrofloxacin on the plasma antioxidative activity and the body weight of rabbits Adil Mehraj Khan and Satyavan Rampal Department of Pharmacology and Toxicology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences (GADVASU), Ludihana, Punjab, India Corresponding author: Adil Mehraj Khan, email: [email protected] Received: 25-09-2013, Revised: 12-10-2014, Accepted: 14-10-2013, Published online: 01-12-2013 doi: 10.14202/vetworld.2013.950-954 How to cite this article: Khan AM and Rampal S (2013) Effect of meloxicam and its combination with levofloxacin, pazufloxacin, and enrofloxacin on the plasma antioxidative activity and the body weight of rabbits, Veterinary World 6(12): 950-954. Abstract Aim: Evaluation of meloxicam, levofloxacin, pazufloxacin, and enrofloxacin for their effect on the plasma antioxidative activity (AOA) and the body weight in rabbits. Materials and Methods: Thirty two male Soviet Chinchilla rabbits were divided to eight groups of four rabbits each. Group A, serving as control, was administered 5 % dextrose. Group B, C, E and G were gavaged meloxicam, levofloxacin, pazufloxacin and enrofloxacin, respectively, in 5% dextrose. Levofloxacin and pazufloxacin were administered at the dose rate of 10 mg/kg body weight b.i.d 12h, whereas the meloxicam and enrofloxacin were administered at 0.2mg/kg body weight o.i.d and 20 mg/kg body weight, respectively. Groups D, F and H were co-gavaged meloxicam with levofloxacin, pazufloxacin, and enrofloxacin, respectively, at the above dose rates.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Simultaneous Determination of the Residues of Fourteen Quinolones
    Vol. 30, 2012, No. 1: 74–82 Czech J. Food Sci. Simultaneous Determination of the Residues of Fourteen Quinolones and Fluoroquinolones in Fish Samples using Liquid Chromatography with Photometric and Fluorescence Detection Florentina CAÑADA-CAÑADA, Anunciacion ESPINOSA-MAnsILLA, Ana JIMÉneZ GIRÓN and Arsenio MUÑOZ DE LA PeÑA Department of Analytical Chemistry, University of Extremadura, Badajoz, Spain Abstract Cañada-Cañada F., Espinosa-Mansilla A., Jiménez Girón A., Muñoz de la Peña A. (2012): Simul- taneous determination of the residues of fourteen quinolones and fluoroquinolones in fish samples using liquid chromatography with photometric and fluorescence detection. Czech J. Food Sci., 30: 74–82. A chromatographic method is described for assaying fourteen quinolones and fluoroquinolones (pipemidic acid, marbofloxacin, norfloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, nalidixic acid, flumequine, and pyromidic acid) in fish samples. The samples were extracted with m-phosphoric acid/acetonitrile mixture (75:25, v/v), purified, and preconcentrated on ENV + Isolute cartridges. The determina- tion was achieved by liquid chromatography using C18 analytical column. A mobile phase composed of mixtures of methanol-acetonitrile-10mM citrate buffer at pH 4.5, delivered under optimum gradient program, at a flow rate of 1.5 ml/min, allows accomplishing the chromatographic separation in 26 minutes. For the detection were used serial UV-visible diode-array at 280 nm and 254 nm and fluorescence detection at excitation wavelength/emission wavelength: 280/450, 280/495, and 280/405 nm. The detection and quantification limits were between 0.2–9.5 and 0.7–32 µg/kg, respectively. The procedure was applied to the analysis of spiked salmon samples at two different concentration levels (50 µg/k and 100 µg/kg).
    [Show full text]