Page 1 of 1 Enrofloxacin, Marbofloxacin and Ciprofloxacin

Total Page:16

File Type:pdf, Size:1020Kb

Page 1 of 1 Enrofloxacin, Marbofloxacin and Ciprofloxacin Enrofloxacin, Marbofloxacin and Ciprofloxacin - WSAVA 2002 Page 1 of 1 MAIN : Poster Communications : Pharmacology : Enrofloxacin, Marbofloxacin and Ciprofloxacin Back to Pharmacology Back to Table of Contents In vitro Activity of Enrofloxacin, Marbofloxacin and Ciprofloxacin Against Clinical Strains of Pseudomonas spp Isolated from Small Animals on Portugal *Constança Pomba-Féria, Marta Costa, Manuela Caniça, José Duarte Correia *CIISA, Faculty of Veterinary Medicine, Rua Prof. Cid dos Santos Lisbon, PT [email protected] OBJECTIVES The aim of this study was to evaluate the in vitro activity of veterinary fluoroquinolones Enrofloxacin and Marbofloxacin and human fluoroquinolone Ciprofloxacin in clinical strains of Pseudomonas spp isolated from small animal samples, at the Laboratório de Análises Clínicas Prof. Dr. Braço Forte, Faculty of Veterinary Medicine. MATERIALS 36 pathogenic strains of Pseudomonas spp of animal origin were isolated, 75% of them from otitis externa, 19.4% from urinary tract infection, and 5.6% from other infections. Of these, 58.3% were identified as Pseudomonas aeruginosa. Pseudomonas aeruginosa ATCC 27853 strain was used as control. Minimal Inhibitory Concentrations (MIC) were determined by broth microdilution according to NCCLS guidelines. For the veterinary fluoroquinolones, the NCCLS(M31-T,1997) veterinary criteria were applied, for Ciprofloxacin the NCCLS (2000) human breakpoints were used. RESULTS Enrofloxacin had a MIC50 of 1 µg/ml and a MIC90 of 32 µg/ml, MIC values ranged from 0.125 to 64 µg/ ml. Marbofloxacin MIC50 and MIC90 were 0.5 and 16 µg/ml, respectively, with values going from 0.0125 to 32 µg/ml. The MIC50 and MIC90 of Ciprofloxacin are lower than the ones for the veterinary fluoroquinolones, respectively 0.125 and 8 µg/ml, raging from 0.0625 to 16 µg/ml. Nevertheless Ciprofloxacin MIC90 is already beyond the defined breakpoint for resistance. CONCLUSION In this study the MIC50 found for Enrofloxacin (1 µg/ml) was above the susceptible NCCLS criteria which probably reflects its indiscriminate use. We also found low level of resistance in veterinary clinical strains to Enrofloxacin's metabolite Ciprofloxacin, which is of concern: Ciprofloxacin had greater efficacy in vitro against clinical veterinary Pseudomonas isolates than the veterinary quinolones, in spite of the detection of four resistant strains (11,4%). This work reports significant resistance of Pseudomonas veterinary isolates and supports the need for a rational antibiotic prescribing policy, in order to prevent the selection of resistant strains. SPEAKER I NFORMATION (click the speaker's name to view other papers and abstracts submitted by this speaker) Manuela Caniça Antibiotic Resistance Unit, NIH Dr. Ricardo Jorge José Duarte Correia CIISA, Faculty of Veterinary Medicine Marta Costa CIISA, Faculty of Veterinary Medicine and Laboratórios Atral-Cipan Constança Pomba -Féria CIISA, Faculty of Veterinary Medicine Rua Prof. Cid dos Santos Lisbon, Lisbon 1300-477 PT MAIN : Poster Communications : Pharmacology : Enrofloxacin, Marbofloxacin and Ciprofloxacin +00 34 93 206 46 46 | [email protected] | Fax: + 00 34 93 204 97 32 Copyright 2008, WSAVA http://www.vin.com/proceedings/Proceedings.plx?CID=WSAVA2002&PID=2830&P... 30/08/2008.
Recommended publications
  • Partners in Practice
    ADRENALS: Spring 2012 What you won’t find in a textbook Partners in Practice Dr Sue Foster BVSc, MVetClinStud, FACVSc Vetnostics Small Animal Medical Consultant ➤ Cutaneous Mycobacterial Disease in Dogs and Cats: Part 2 PART 4b: UCCr and CALP ➤ The Most Difficult and Frustrating Diagnoses As part 4 of this series looks at diagnostic tests, we can’t Corticosteroid-induced alkaline phosphatase escape some statistics. So, some very simplistic explanations (c-ALP) relative to hyperA are as follows: ➤ Adrenals: Part 4b Increased serum ALP, the most common routine laboratory Sensitivity: the likelihood that the test will detect hyperA abnormality in hyperA is due mainly to the induction Specificity: the chance that a positive test is truly hyperA of a specific ALP isoenzyme by glucocorticoids. The corticosteroid-induced isoenzyme of ALP can be measured Then, there are predictive values which take into account by electrophoretic separation, heat inactivation or more the prevalence or likelihood of a disease in addition to usually in commercial laboratories, by levamisole-inhibition. sensitivity and specificity. The levamisole inhibition explains why c-ALP is sometimes referred to as l-ALP but this terminology can be confusing Positive predictive value (PPV): the chance of a positive as sometimes l-ALP is used to describe the liver isoenzyme; result being indicative of hyperA in dogs with signs of it is also referred to as CAP (corticosteroid-induced ALP) or hyperA (e.g. Can we confidently diagnose hyperA when we SIAP (steroid-induced alkaline phosphatase). get a “positive” result?) The sensitivity of c-ALP has been reported to be 0.81-0.95.7-9 Negative predictive value (NPV): the likelihood that a Specificity is poor (0.18-0.44)7-9 and PPV in one study was negative results eliminates the possibility of hyperA in dogs as low as 21.4%7 thus this test cannot be recommended as with signs of hyperA (e.g.
    [Show full text]
  • A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
    A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity.
    [Show full text]
  • Pharmacology
    FORM UPDATED | 04/07/20 Pharmacology 865-974-5646 Diagnostic Laboratory Service For lab Date Received: # of Samples Received: vetmed.tennessee.edu/vmc/dls use only Institution/Practice: ASSAYS CURRENTLY AVAILABLE Veterinarian: Aciclovir Gabapentin Address: Amoxicillin Galliprant Bromide Ganciclovir Bupivacaine Hydromorphone Butorphanol Itraconazole & Hydroxyitraconazole Carboplatin Ivermectin Phone: Caffeine Ketamine & Norketamine Fax: Carprofen Ketoprofen Carvedilol Lidocaine & metabolites Type of Sample: Ceftiofur Meloxicam No. of Samples: Ceftiofur Equivalents Midazolam & Hydroxmidazolam Cefovecin Metronidazole Date &Time Dosed: Chloramphenicol Moxidectin Citrate (urine only) Omeprazole Date & Time Collected: Deracoxib Oxalate (urine only) Dosage Amount: Diazepam and Nordiazepam Oxytetracycline Famciclovir/Penciclovir Piroxicam Dosage Formulation: Fenbendazole Praziquantil Route: Fentanyl Prednisolone Firocoxib Propofol Sample Identification Info: Flunixin Robenacoxib Species: Canine Feline Equine Fluconazole Terbinafine Other:__________________________________________________________ Fluoroquinolones: Thiafentanil Medication History (All medications the animal is currently on or has recently received): Ciprofloxacin Tramadol and metabolites Enrofloxacin M1, M2, M4, & M5 Fleroxacin Uric Acid Marbofloxacin Valciclovir Moxifloxacin Voriconazole Furosemide Requested Assay: If you are interested in drugs not listed, contact the laboratory with questions about assay development and cost. Ship Samples to: UTCVM Pharmacology Laboratory 2407
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • AMEG Categorisation of Antibiotics
    12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Nitroaromatic Antibiotics As Nitrogen Oxide Sources
    Review biomolecules Nitroaromatic Antibiotics as Nitrogen Oxide Sources Review Allison M. Rice, Yueming Long and S. Bruce King * Nitroaromatic Antibiotics as Nitrogen Oxide Sources Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; Allison M. Rice , Yueming [email protected] and S. Bruce (A.M.R.); King [email protected] * (Y.L.) * Correspondence: [email protected]; Tel.: +1-336-702-1954 Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; [email protected]: Nitroaromatic (A.M.R.); [email protected] antibiotics (Y.L.) show activity against anaerobic bacteria and parasites, finding * Correspondence: [email protected]; Tel.: +1-336-702-1954 use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the Abstract: Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding usedevelopment in the treatment of new of Heliobacter treatments pylori forinfections, these conditio tuberculosis,ns, the trichomoniasis, associated toxicity human Africanand lack of clear trypanosomiasis,mechanisms of action Chagas have disease limited and their leishmaniasis. therapeutic Despite development. this activity Nitroaro and a clearmatic need antibiotics for require thereductive development bioactivation of new treatments for activity for theseand this conditions, reductive the associatedmetabolism toxicity can convert
    [Show full text]
  • In Vitro Pharmacokinetics/Pharmacodynamics Evaluation of Marbofloxacin Against Staphylococcus Pseudintermedius
    Original Paper Veterinarni Medicina, 65, 2020 (03): 116–122 https://doi.org/10.17221/82/2019-VETMED In vitro pharmacokinetics/pharmacodynamics evaluation of marbofloxacin against Staphylococcus pseudintermedius Yixian Quah, Naila Boby, Seung-Chun Park* Laboratory of Veterinary Clinical Pharmacology, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea *Corresponding author: [email protected] Citation: Quah Y, Boby N, Park SC (2020): In vitro pharmacokinetics/pharmacodynamics evaluation of marbofloxacin against Staphylococcus pseudintermedius. Vet Med-Czech 65, 116–122. Abstract: This study aimed at determining the in vitro antibacterial activity of a clinically achievable marbofloxa- cin (MAR) concentration against the clinical isolate S. pseudintermedius in an in vitro dynamic model simulat- ing the in vivo pharmacokinetics of dogs. The in vitro PK/PD (pharmacokinetic/pharmacodynamic) model that mimics the single daily doses of MAR (half-life, 8 h) was simulated. An inoculum (108 cfu/ml) of clinical isolate S. pseudintermedius (MIC = 0.0625 μg/ml) was exposed to monoexponentially decreasing concentrations of MAR with simulated AUC24 h/MIC varied from 34.81 h to 696.15 h. Every two hours, the multiple sample colony forming units were determined. The result of this study demonstrated that the clinically achieved MAR concentrations at AUC24 h/MIC ratios of 348.08 and 696.15 h produced a pronounced reduction in the bacterial counts and pre- vented the re-growth of the clinical isolate S. pseudintermedius. However, further study, considering the strains with different susceptibility levels, is recommended. Keywords: dogs; clinical isolates; simulation; antimicrobial resistance S. pseudintermedius is a coagulase positive Staph- et al.
    [Show full text]
  • DANMAP 2016 - Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark Borck Høg, Birgitte; Korsgaard, Helle Bisgaard; Wolff Sönksen, Ute; Bager, Flemming; Bortolaia, Valeria; Ellis-Iversen, Johanne; Hendriksen, Rene S.; Borck Høg, Birgitte; Jensen, Lars Bogø; Korsgaard, Helle Bisgaard Total number of authors: 27 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Borck Høg, B. (Ed.), Korsgaard, H. B. (Ed.), Wolff Sönksen, U. (Ed.), Bager, F., Bortolaia, V., Ellis-Iversen, J., Hendriksen, R. S., Borck Høg, B., Jensen, L. B., Korsgaard, H. B., Pedersen, K., Dalby, T., Træholt Franck, K., Hammerum, A. M., Hasman, H., Hoffmann, S., Gaardbo Kuhn, K., Rhod Larsen, A., Larsen, J., ... Vorobieva, V. (2017). DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Antimicrobial Stewardship: Getting the Most out of Culture and Susceptibility Tests Insights from a Microbiologist
    ANTIMICROBIAL STEWARDSHIP: GETTING THE MOST OUT OF CULTURE AND SUSCEPTIBILITY TESTS INSIGHTS FROM A MICROBIOLOGIST Joe Rubin, DVM, PhD Associate Professor Department of Veterinary Microbiology University of Saskatchewan DISCLOSURES • Received research grants from • Zoetis • Elanco/Novartis • I am a microbiologist and not a practitioner! OBJECTIVES • To give an overview of the scope of the problem of AMR • To inspire the intent to change/improve/reevaluate prescribing practices • To provide tools to use antimicrobials more effectively • Antimicrobial mechanisms of action and resistance • Introduction to intrinsic resistance • Overview of key emerging resistance in veterinary medicine THE POST-ANTIBIOTIC ERA Estimated Attributable Deaths in 2050 https://amr-review.org/ CURRENT THREATS BROAD SPECTRUM Β-LACTAMASES METHICILLIN RESISTANT STAPH AUREUS EMERGING RESISTANCE IN CANADA CHANGING RESISTANCE? ANTIMICROBIAL USE ANIMALS ANTIMICROBIAL USE COMPANION ANIMALS ANTIMICROBIAL USE COMPANION ANIMALS • Large study out of UK • 216 practices • Included data from >400,000 dogs and >200,000 cats • Beta-lactams most commonly used • Amox + clav in dogs • 3rd Generation cephalosporins in cats HOW CANADA’S AMU COMPARES STEWARDSHIP – WHAT IS IT? “The term “antimicrobial stewardship” is used to describe the multifaceted and dynamic approaches required to sustain the clinical efficacy of antimicrobials by optimizing drug use, choice, dosing, duration, and route of administration, while minimizing the emergence of resistance and other adverse effects.” STEWARDSHIP
    [Show full text]
  • Zeniquin® (Marbofloxacin)
    ZENIQUIN- marbofloxacin tablet Zoetis Inc. ---------- Zeniquin® (marbofloxacin) Tablets For oral use in dogs and cats only CAUTION: Federal law restricts this drug to use by or on the order of a licensed veterinarian. Federal law prohibits the extralabel use of this drug in food-producing animals. DESCRIPTION Marbofloxacin is a synthetic broad-spectrum antibacterial agent from the fluoroquinolone class of chemotherapeutic agents. Marbofloxacin is the non-proprietary designation for 9-fluoro-2,3-dihydro-3- methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[3,2,1-ij][4,1,2] benzoxadiazine-6-carboxylic acid. The empirical formula is C17H19FN4O4 and the molecular weight is 362.36. The compound is soluble in water; however, solubility decreases in alkaline conditions. The N-octanol/water partition coefficient (Kow) is 0.835 measured at pH 7 and 25°C. Figure 1: Chemical structure of marbofloxacin CLINICAL PHARMACOLOGY Marbofloxacin is rapidly and almost completely absorbed from the gastrointestinal tract following oral administration to fasted animals. Divalent cations are generally known to diminish the absorption of fluoroquinolones. The effects of concomitant feeding on the absorption of marbofloxacin have not been determined. (See Drug Interactions.) In the dog, approximately 40% of an oral dose of marbofloxacin is excreted unchanged in the urine1. Excretion in the feces, also as unchanged drug, is the other major route of elimination in dogs. Ten to 15% of marbofloxacin is metabolized by the liver in dogs. In vitro plasma protein binding of marbofloxacin in dogs was 9.1% and in cats was 7.3%. In the cat, approximately 70% of an oral dose is excreted in the urine as marbofloxacin and metabolites with approximately 85% of the excreted material as unchanged drug.
    [Show full text]
  • Comparative Efficacy of Kanamycin, Enrofloxacin, Moxifloxacin and Cefoperazone for the Treatment of Pneumonia in Buffaloes
    Journal of Animal Research: v.8 n.5, p. 807-811. October 2018 DOI: 10.30954/2277-940X.10.2018.10 Comparative Efficacy of Kanamycin, Enrofloxacin, Moxifloxacin and Cefoperazone for the Treatment of Pneumonia in Buffaloes Praveen Kumar1*, V.K. Jain1, Tarun Kumar2, Parveen Goel1 and Neelesh Sindhu2 1Department of Veterinary Medicine, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, INDIA 2Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, INDIA *Corresponding author: P Kumar; Email: [email protected] Received: 05 March., 2018 Revised: 21 July, 2018 Accepted: 31 July, 2018 ABSTRACT A study was conducted to evaluate the comparative efficacy of kanamycin, enrofloxacin, moxifloxacin and cefoperazone to treat pneumonia in buffaloes. During study period, a total of 28 buffaloes brought to VCC, LUVAS, Hisar with the history of fever, anorexia, nasal discharge, coughing and dyspnoea. Clinical examination revealed abnormal lung sounds during auscultation. All the buffaloes diagnosed with pneumonia were randomly divided into four equal groups viz. group I, II, III and IV. Animals of group I were treated with kanamycin @ 7.0 mg/kg b.wt., i/m, b.i.d., group II with enrofloxacin @ 5 mg/kg b.wt., i/m, o.d., group III with moxifloxacin @ 5 mg/kg b.wt., i/m, o.d. and group IV with cefoperazone@ 20 mg/kg b.wt., i/m, o.d., along with supportive therapy for 5 days. Clinical recovery was determined on the basis of remittance of clinical signs. The highest and earliest recovery was found in group II animals.
    [Show full text]