Download Full Article As
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity. -
Antibiotic Resistance in the European Union Associated with Therapeutic Use of Veterinary Medicines
The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/CVMP/342/99-Final Antibiotic Resistance in the European Union Associated with Therapeutic use of Veterinary Medicines Report and Qualitative Risk Assessment by the Committee for Veterinary Medicinal Products 14 July 1999 Public 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Switchboard: (+44-171) 418 8400 Fax: (+44-171) 418 8447 E_Mail: [email protected] http://www.eudra.org/emea.html ãEMEA 1999 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1 DEFINITION OF ANTIBIOTICS 1 1.1.1 Natural antibiotics 1 1.1.2 Semi-synthetic antibiotics 1 1.1.3 Synthetic antibiotics 1 1.1.4 Mechanisms of Action 1 1.2 BACKGROUND AND HISTORY 3 1.2.1 Recent developments 3 1.2.2 Authorisation of Antibiotics in the EU 4 1.3 ANTIBIOTIC RESISTANCE 6 1.3.1 Microbiological resistance 6 1.3.2 Clinical resistance 6 1.3.3 Resistance distribution in bacterial populations 6 1.4 GENETICS OF RESISTANCE 7 1.4.1 Chromosomal resistance 8 1.4.2 Transferable resistance 8 1.4.2.1 Plasmids 8 1.4.2.2 Transposons 9 1.4.2.3 Integrons and gene cassettes 9 1.4.3 Mechanisms for inter-bacterial transfer of resistance 10 1.5 METHODS OF DETERMINATION OF RESISTANCE 11 1.5.1 Agar/Broth Dilution Methods 11 1.5.2 Interpretative criteria (breakpoints) 11 1.5.3 Agar Diffusion Method 11 1.5.4 Other Tests 12 1.5.5 Molecular techniques 12 1.6 MULTIPLE-DRUG RESISTANCE -
Belgian Veterinary Surveillance of Antibacterial Consumption
Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2013 1 Summary This fifth BelVetSAC report, covers the results of the data collection on veterinary antibacterial consumption in Belgium in the year 2013. Data consist of all veterinary antibacterials sold to a veterinarian or pharmacist in Belgium and of antibacterial premixes incorporated in medicated feed intended to be used in Belgium for the year 2013. It includes thus consumption data for farm animals as well as companion animals. The denominator for animal production was the biomass (in kg) calculated as the sum of the amount of beef, pork and poultry meat produced in 2013, plus the number of dairy cattle present in Belgium times 500 kg of metabolic weight per head. As the usage data are concerned, this report shows for the second year in a row a decrease in the total consumption of antibacterial compounds in veterinary medicine of -6,6% between 2012 and 2013. Due to the relative stable animal production (expressed in biomass -0,3%) the decrease expressed in mg/kg biomass is -6,3%. When using 2011 as a reference, a reduction of -12,7% (expressed in mg/kg biomass) was achieved between 2011 and 2013, distributed over a reduction of -13,3% in antibacterial pharmaceuticals and -10,2% in antibacterial premixes. When looking more in detail to the different types of antibacterials used, it is observed that the penicillines (31,1%), sulphonamides (28,7%), and tetracyclines (24,1%) remain the three most used antibacterial classes. This year a substantial decrease in sulphonamide plus trimethoprim use and a limited decrease in penicillin and tetracycline use was observed. -
Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org). -
WSAVA List of Essential Medicines for Cats and Dogs
The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs ..................................................................................................................... -
Nitroaromatic Antibiotics As Nitrogen Oxide Sources
Review biomolecules Nitroaromatic Antibiotics as Nitrogen Oxide Sources Review Allison M. Rice, Yueming Long and S. Bruce King * Nitroaromatic Antibiotics as Nitrogen Oxide Sources Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; Allison M. Rice , Yueming [email protected] and S. Bruce (A.M.R.); King [email protected] * (Y.L.) * Correspondence: [email protected]; Tel.: +1-336-702-1954 Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; [email protected]: Nitroaromatic (A.M.R.); [email protected] antibiotics (Y.L.) show activity against anaerobic bacteria and parasites, finding * Correspondence: [email protected]; Tel.: +1-336-702-1954 use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the Abstract: Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding usedevelopment in the treatment of new of Heliobacter treatments pylori forinfections, these conditio tuberculosis,ns, the trichomoniasis, associated toxicity human Africanand lack of clear trypanosomiasis,mechanisms of action Chagas have disease limited and their leishmaniasis. therapeutic Despite development. this activity Nitroaro and a clearmatic need antibiotics for require thereductive development bioactivation of new treatments for activity for theseand this conditions, reductive the associatedmetabolism toxicity can convert -
Fluoroquinolone Mechanisms of Action and Resistance
Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance David C. Hooper1 and George A. Jacoby2 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114 2Lahey Hospital and Medical Center, Burlington, Massachusetts 01805 Correspondence: [email protected] Quinolone antimicrobials are widely used in clinical medicine and are the only current class of agents that directly inhibit bacterial DNA synthesis. Quinolones dually target DNA gyrase and topoisomerase IV binding to specific domains and conformations so as to block DNA strand passage catalysis and stabilize DNA–enzyme complexes that block the DNA repli- cation apparatus and generate double breaks in DNA that underlie their bactericidal activity. Resistance has emerged with clinical use of these agents and is common in some bacterial pathogens. Mechanisms of resistance include mutational alterations in drug target affinity and efflux pump expression and acquisition of resistance-conferring genes. Resistance mu- tations in one or both of the two drug target enzymes are commonly in a localized domain of the GyrA and ParC subunits of gyrase and topoisomerase IV, respectively, and reduce drug binding to the enzyme–DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include other antimicrobials as well as quin- olones. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids confer low-level resistance that promotes the selection of mutational high-level resistance. -
PACKAGE LEAFLET: INFORMATION for the USER Levofloxacin 5 Mg
PACKAGE LEAFLET: INFORMATION FOR THE USER Levofloxacin 5 mg/ml solution for infusion Levofloxacin Read all of this leaflet carefully before you are given this medicine because it contains important information for you • Keep this leaflet. You may need to read it again. • If you have any further questions, ask your doctor, pharmacist or nurse. • This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. • If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet 1. What Levofloxacin solution for infusion is and what it is used for 2. What you need to know before you are given Levofloxacin solution for infusion 3. How Levofloxacin solution for infusion is given 4. Possible side effects 5. How to store Levofloxacin solution for infusion 6. Contents of the pack and other information 1. What Levofloxacin solution for infusion is and what it is used for The name of your medicine is Levofloxacin solution for infusion. Levofloxacin solution for infusion contains a medicine called levofloxacin. This belongs to a group of medicines called antibiotics. Levofloxacin is a ’quinolone’ antibiotic. It works by killing the bacteria that cause infections in your body. Levofloxacin solution for infusion can be used to treat infections of the: • Lungs, in people with pneumonia • Urinary tract, including your kidneys or bladder • Prostate gland, where you have a long lasting infection • Skin and underneath the skin, including muscles. -
Antimicrobial Stewardship: Getting the Most out of Culture and Susceptibility Tests Insights from a Microbiologist
ANTIMICROBIAL STEWARDSHIP: GETTING THE MOST OUT OF CULTURE AND SUSCEPTIBILITY TESTS INSIGHTS FROM A MICROBIOLOGIST Joe Rubin, DVM, PhD Associate Professor Department of Veterinary Microbiology University of Saskatchewan DISCLOSURES • Received research grants from • Zoetis • Elanco/Novartis • I am a microbiologist and not a practitioner! OBJECTIVES • To give an overview of the scope of the problem of AMR • To inspire the intent to change/improve/reevaluate prescribing practices • To provide tools to use antimicrobials more effectively • Antimicrobial mechanisms of action and resistance • Introduction to intrinsic resistance • Overview of key emerging resistance in veterinary medicine THE POST-ANTIBIOTIC ERA Estimated Attributable Deaths in 2050 https://amr-review.org/ CURRENT THREATS BROAD SPECTRUM Β-LACTAMASES METHICILLIN RESISTANT STAPH AUREUS EMERGING RESISTANCE IN CANADA CHANGING RESISTANCE? ANTIMICROBIAL USE ANIMALS ANTIMICROBIAL USE COMPANION ANIMALS ANTIMICROBIAL USE COMPANION ANIMALS • Large study out of UK • 216 practices • Included data from >400,000 dogs and >200,000 cats • Beta-lactams most commonly used • Amox + clav in dogs • 3rd Generation cephalosporins in cats HOW CANADA’S AMU COMPARES STEWARDSHIP – WHAT IS IT? “The term “antimicrobial stewardship” is used to describe the multifaceted and dynamic approaches required to sustain the clinical efficacy of antimicrobials by optimizing drug use, choice, dosing, duration, and route of administration, while minimizing the emergence of resistance and other adverse effects.” STEWARDSHIP -
Design, Synthesis and Pharmacological Evaluation of Sulfanilamide-Ciprofloxacin Conjugates Utilizing Hybridization Approach As New Antibacterial Agents
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.5, No.4, 2015 Design, Synthesis and Pharmacological Evaluation of Sulfanilamide-Ciprofloxacin Conjugates Utilizing Hybridization Approach as New Antibacterial Agents Mohamed Hassan Mohammed 1 Monther Faisal Mahdi 2 Noor Hatef Naser 3 Sulaf Majeed Ali 4 1.Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq 2.Department of Pharmaceutical Chemistry, College of Pharmacy, University of Al-Mustansiriyah, Baghdad, Iraq 3.Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kufa,Najaf, Iraq 4.Ministry of Health, Directorate of General Health National Reference Laboratory E-Mail of Corresponding author :[email protected] Abstract A group of novel antibacterial agents (I-V) were designed and synthesized, by utilizing hybridization approach between ciprofloxacin and sulfanilamide, through metabolically stable linkers, to be acted by dual mode of actions. Ciprofloxacin acts by inhibition of topoisomerase enzyme, which is necessary for DNA replication, while sulfonamides act through inhibition of carbonic anhydrase enzyme, which is necessary for bacterial metabolic activity. Anti-tuberculosis activity of these compounds was evaluated on MDR Mycobacterium tuberculosis (resist to rifampicin and INH), in a dose equivalent to (10 mg/ 5 ml D.W.) of ciprofloxacin. Compounds II, III showed non-significant reduction in the number of bacterial colonies (bacterial growth) with respect to the effect of ciprofloxacin (standard), compound IV produce a significant reduction in the number of bacterial colonies in comparable to ciprofloxacin. -
Disabling and Potentially Permanent Side Effects Lead to Suspension Or Restrictions of Quinolone and Fluoroquinolone Antibiotics
16 November 2018 EMA/795349/2018 Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics EMA has reviewed serious, disabling and potentially permanent side effects with quinolone and fluoroquinolone antibiotics given by mouth, injection or inhalation. The review incorporated the views of patients, healthcare professionals and academics presented at EMA’s public hearing on fluoroquinolone and quinolone antibiotics in June 2018. EMA’s human medicines committee (CHMP) has endorsed the recommendations of EMA’s safety committee (PRAC) and concluded that the marketing authorisation of medicines containing cinoxacin, flumequine, nalidixic acid, and pipemidic acid should be suspended. The CHMP confirmed that the use of the remaining fluoroquinolone antibiotics should be restricted. In addition, the prescribing information for healthcare professionals and information for patients will describe the disabling and potentially permanent side effects and advise patients to stop treatment with a fluoroquinolone antibiotic at the first sign of a side effect involving muscles, tendons or joints and the nervous system. Restrictions on the use of fluoroquinolone antibiotics will mean that they should not be used: • to treat infections that might get better without treatment or are not severe (such as throat infections); • to treat non-bacterial infections, e.g. non-bacterial (chronic) prostatitis; • for preventing traveller’s diarrhoea or recurring lower urinary tract infections (urine infections that do not extend beyond the bladder); • to treat mild or moderate bacterial infections unless other antibacterial medicines commonly recommended for these infections cannot be used. Importantly, fluoroquinolones should generally be avoided in patients who have previously had serious side effects with a fluoroquinolone or quinolone antibiotic. -
Comparative Efficacy of Kanamycin, Enrofloxacin, Moxifloxacin and Cefoperazone for the Treatment of Pneumonia in Buffaloes
Journal of Animal Research: v.8 n.5, p. 807-811. October 2018 DOI: 10.30954/2277-940X.10.2018.10 Comparative Efficacy of Kanamycin, Enrofloxacin, Moxifloxacin and Cefoperazone for the Treatment of Pneumonia in Buffaloes Praveen Kumar1*, V.K. Jain1, Tarun Kumar2, Parveen Goel1 and Neelesh Sindhu2 1Department of Veterinary Medicine, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, INDIA 2Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, INDIA *Corresponding author: P Kumar; Email: [email protected] Received: 05 March., 2018 Revised: 21 July, 2018 Accepted: 31 July, 2018 ABSTRACT A study was conducted to evaluate the comparative efficacy of kanamycin, enrofloxacin, moxifloxacin and cefoperazone to treat pneumonia in buffaloes. During study period, a total of 28 buffaloes brought to VCC, LUVAS, Hisar with the history of fever, anorexia, nasal discharge, coughing and dyspnoea. Clinical examination revealed abnormal lung sounds during auscultation. All the buffaloes diagnosed with pneumonia were randomly divided into four equal groups viz. group I, II, III and IV. Animals of group I were treated with kanamycin @ 7.0 mg/kg b.wt., i/m, b.i.d., group II with enrofloxacin @ 5 mg/kg b.wt., i/m, o.d., group III with moxifloxacin @ 5 mg/kg b.wt., i/m, o.d. and group IV with cefoperazone@ 20 mg/kg b.wt., i/m, o.d., along with supportive therapy for 5 days. Clinical recovery was determined on the basis of remittance of clinical signs. The highest and earliest recovery was found in group II animals.