Pesticide Effects on Beneficial Insects and Mites in Vegetables
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multicolored Asian Lady Beetle Harmonia Axyridis (Pallas); Family: Coccinellidae
Multicolored Asian Lady Beetle Harmonia axyridis (Pallas); Family: Coccinellidae Table of Contents • Introduction • Distribution • Identification Characteristics • Life Cycle and Habits • Economic Impact • Management Recommendations • Outlook Fig. 3. Mature larva (fourth Fig. 4. Clustering activity of instar) of H. axyridis. H. axyridis adults. Fig. 1. Harmonia axyridis Fig. 2. Typical color variation Photo by M.H. Rhoades. Photo by P. W. Schaefer. adult, fully spotted individual. found in H. axyridis adult Photo by population. J.M. Ogrodnick. Photo by R.L. Pienkowski. Introduction The multicolored Asian lady beetle, Harmonia axyridis (Pallas) (fig. 1), first found in New York in Chemung County in early 1994, is an introduced biological control agent that is spreading rapidly in the Empire State and throughout New England. It has become a major nuisance to homeowners because of its habit of invading houses and buildings in large numbers in the fall (mid-October to early November) and appearing again on warm, sunny days in February and March. Despite its annoyance value, H. axyridis preys upon many species of injurious soft-bodied insects such as aphids, scales, and psyllids and is thus considered beneficial to growers and agriculturalists. Although "multicolored Asian lady beetle" is the common name officially accepted by the Entomological Society of America, several other common names are also found in the literature: halloween lady beetle (because of its pumpkin orange color and large populations often observed around Halloween), Japanese lady beetle (because Japan was the country of origin for specimens released in the southeastern United States), and Asian lady beetle. Distribution The native range of H. -
The Asian Multicolored Lady Beetle, Harmonia Axyridis
The Multicolored Asian Lady Beetle If you are having problems with clusters of lady beetles entering your house in the fall or winter, the Asian lady beetle is the most likely culprit. Harmonia axyridis is a large and colorful beetle that is easily identified by the large, black 'W' on the thorax, behind the head. The background coloration of the wing covers varies greatly, from yellowish to pale orange to bright red, depending on the type of food consumed in the larval stage. The spotting pattern is genetically determined. Spots vary in number and intensity and are often absent entirely in males. There is also a melanic (dark) form that bears two or more large red spots on a black background, but these are rare in North America. (© photo credits: John Pickering) Lady beetles are widely recognized as beneficial insects for the services they provide consuming large numbers of garden pests such as aphids. The Asian lady beetle was intentionally introduced to North America on multiple occasions in the 20th century in hopes it would contribute to biological control of various pests, but established populations were only discovered in the 1980's along the Gulf Coast, far from any release sites. However, this population underwent rapid range expansion and, in less than 20 years, the beetle has invaded most of continental North America. Recently, South America, United Kingdom, Europe and South Africa are also experiencing invasions of H. axyridis and this species is now listed as an invasive pest on the Global Invasive Species Database. Although the beetle is a valuable agent of pest control in various crops and horticultural settings, it has displaced many less competitive native lady beetles from particular habitats and poses a potential threat to biodiversity in some ecosystems. -
Spread of a Model Invasive Alien Species, the Harlequin Ladybird Harmonia Axyridis in Britain and Ireland 28 2018 Received: March 1 2 2 2 2 2 P
www.nature.com/scientificdata OPEN Data Descriptor: Spread of a model invasive alien species, the harlequin ladybird Harmonia axyridis in Britain and Ireland 28 2018 Received: March 1 2 2 2 2 2 P. M. J. Brown , D. B. Roy , C. Harrower , H. J. Dean , S. L. Rorke & H. E. Roy Accepted: 21 August 2018 Published: 23 October 2018 Invasive alien species are widely recognized as one of the main threats to global biodiversity. Rapid flow of information on the occurrence of invasive alien species is critical to underpin effective action. Citizen science, i.e. the involvement of volunteers in science, provides an opportunity to improve the information available on invasive alien species. Here we describe the dataset created via a citizen science approach to track the spread of a well-studied invasive alien species, the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae) in Britain and Ireland. This dataset comprises 48 510 verified and validated spatio-temporal records of the occurrence of H. axyridis in Britain and Ireland, from first arrival in 2003,to the end of 2016. A clear and rapid spread of the species within Britain and Ireland is evident. A major reuse value of the dataset is in modelling the spread of an invasive species and applying this to other potential invasive alien species in order to predict and prevent their further spread. database creation objective • citizen science design • biodiversity assessment Design Type(s) objective Measurement Type(s) population data Technology Type(s) longitudinal data collection method Factor Type(s) temporal_interval • body marking • developmental stage Sample Characteristic(s) Harmonia axyridis • British Isles • habitat 1 Applied Ecology Research Group, Department of Biology, Anglia Ruskin University, Cambridge, CB11PT, UK. -
The Coccinellids (Coleoptera:Coccinellidae) Fauna in Manduwala Region, Dehradun, India
J. Exp. Zool. India Vol. 21, No. 1, pp. 177-183, 2018 www.connectjournals.com/jez ISSN 0972-0030 THE COCCINELLIDS (COLEOPTERA:COCCINELLIDAE) FAUNA IN MANDUWALA REGION, DEHRADUN, INDIA Dinesh Kumar Bhardwaj and Jyoti Falswal Department of Zoology, Dolphin (P.G.) Institute of Biomedical and Natural Sciences, Dehradun, India. (Accepted 17 October 2017) ABSTRACT : The latitude of Manduwala in Dehradun, Uttarakhand, India is 30.321915, and the longitude is 78.026619. Dehradun, Uttarakhand, India is located at India Country. These beetles are useful because of their predaceous Nature. The specimens of this research were collected by hand picking. These are of small size and easy to capture by hand. Killing Jar is a device used by entomologists to kill captured insects quickly and with minimum damage. The Jar, typically glass, must be hermetically sealable and one design has a thin layer of hardened plaster of paris on the bottom to absorb the killing agent. The killing agent will then slowly evaporate, allowing the jar to be used many times before needing to refresh the jar. A second method utilizes a wad of cotton placed in the bottom of jar. Liquid killing agent is then added until the absorbent material is nearly saturated. The most common killing agent is Chloroform and ethyl acetate. The species belong the family Coccinellidae; Sub family- Coccinellinae, the total of 9 species, Coccinella quinquepunctata, Coccinella hieroglyphica, Coccinella transversalis, Harmonia dimidiata, Coccinella leonine, Harmonia conformis, Coccinella septempunctata, Hippodamia veriegata, Halmus chalybeus was identified. Coccinellids are the most important and powerful predators of hemipteran pests including, aphids, mealybugs, scale insects and whiteflies. -
Co-Invasion of the Ladybird Harmonia Axyridis and Its Parasites Hesperomyces Virescens Fungus and Parasitylenchus Bifurcatus
bioRxiv preprint doi: https://doi.org/10.1101/390898; this version posted August 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Co-invasion of the ladybird Harmonia axyridis and its parasites Hesperomyces virescens fungus and 2 Parasitylenchus bifurcatus nematode to the Caucasus 3 4 Marina J. Orlova-Bienkowskaja1*, Sergei E. Spiridonov2, Natalia N. Butorina2, Andrzej O. Bieńkowski2 5 6 1 Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia 7 2A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia 8 * Corresponding author (MOB) 9 E-mail: [email protected] 10 11 Short title: Co-invasion of Harmonia axyridis and its parasites to the Caucasus 12 13 Abstract 14 Study of parasites in recently established populations of invasive species can shed lite on sources of 15 invasion and possible indirect interactions of the alien species with native ones. We studied parasites of 16 the global invader Harmonia axyridis (Coleoptera: Coccinellidae) in the Caucasus. In 2012 the first 17 established population of H. axyridis was recorded in the Caucasus in Sochi (south of European Russia, 18 Black sea coast). By 2018 the ladybird has spread to the vast territory: Armenia, Georgia and south 19 Russia: Adygea, Krasnodar territory, Stavropol territory, Dagestan, Kabardino-Balkaria and North 20 Ossetia. Examination of 213 adults collected in Sochi in 2018 have shown that 53% of them are infested 21 with Hesperomyces virescens fungi (Ascomycota: Laboulbeniales) and 8% with Parasitylenchus 22 bifurcatus nematodes (Nematoda: Tylenchida, Allantonematidae). -
Coccinellidae)
ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology. -
Harmonia Axyridis
REVIEW Eur. J. Entomol. 110(4): 549–557, 2013 http://www.eje.cz/pdfs/110/4/549 ISSN 1210-5759 (print), 1802-8829 (online) Harmonia axyridis (Coleoptera: Coccinellidae) as a host of the parasitic fungus Hesperomyces virescens (Ascomycota: Laboulbeniales, Laboulbeniaceae): A case report and short review PIOTR CERYNGIER1 and KAMILA TWARDOWSKA2 1 Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland; e-mail: [email protected] 2 Department of Phytopathology and Entomology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 17, 10-721 Olsztyn, Poland; e-mail: [email protected] Key words. Ascomycota, Laboulbeniales, Hesperomyces virescens, Coleoptera, Coccinellidae, Harmonia axyridis, host-parasite association, novel host, range shift, host suitability, Acari, Podapolipidae, Coccipolipus hippodamiae, Nematoda, Allantonematidae, Parasitylenchus Abstract. Hesperomyces virescens is an ectoparasite of some Coccinellidae, which until the mid-1990s was relatively rarely only reported from warm regions in various parts of the world. Analysis of the host and distribution data of H. virescens recorded in the Western Palaearctic and North America reveals several trends in the occurrence and abundance of H. virescens: (1) it has recently been much more frequently recorded, (2) most of the recent records are for more northerly (colder) localities than the early records and (3) the recent records are mostly of a novel host, the invasive harlequin ladybird (Harmonia axyridis). While in North America H. virescens is almost exclusively found on H. axyridis, all European records of this association are very recent and still less numerous than records of Adalia bipunctata as a host. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Multicolored Asian Lady Beetle Joe Boggs, Assistant Professor, Ohio State University Extension, Department of Entomology Susan C
OHIO STATE UNIVERSITY EXTENSION AGRICULTURE AND NATURAL RESOURCES FACT SHEET ENT-44-14 Multicolored Asian Lady Beetle Joe Boggs, Assistant Professor, Ohio State University Extension, Department of Entomology Susan C. Jones, PhD, Professor of Entomology, Extension Specialist, Household and Structural Pests Lady beetles, which are sometimes called ladybugs understood, MALB populations began to decline in the or lady bird beetles, are familiar insects in many parts mid-2000s with numbers receding to such an extent of the United States. Lady beetles generally are benefi- that the beetles were seldom a problem in and around cial predators that consume aphids, scale insects, and homes by 2007. However, in 2013, MALB populations many other pests that injure plants in our gardens, land- began to rebound in Ohio with numerous localized scapes, and agricultural settings. In 1975, the “Ladybug” reports of large numbers of beetles entering homes, became Ohio’s official state insect by resolution of the particularly in the southern part of the state. Ohio General Assembly (1). Lady beetles are also state insects for Delaware, Massachusetts, New Hampshire, New York and Tennessee. The multicolored Asian lady beetle (MALB) (Figure 1) is native to Asia, where it is an important predator that feeds on aphids and other soft-bodied insects that dwell in trees. Exactly how MALB made its way to North America remains shrouded in controversy. There are several reports that this species was accidentally brought on ships to various ports, notably New Orleans and Seattle. However, it is well documented that MALB was also intentionally imported from Russia, Japan, Figure 1. -
E0020 Common Beneficial Arthropods Found in Field Crops
Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents. -
Phylogeny of Ladybirds (Coleoptera: Coccinellidae): Are the Subfamilies Monophyletic?
Molecular Phylogenetics and Evolution 54 (2010) 833–848 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of ladybirds (Coleoptera: Coccinellidae): Are the subfamilies monophyletic? A. Magro a,b,1, E. Lecompte b,c,*,1, F. Magné b,c, J.-L. Hemptinne a,b, B. Crouau-Roy b,c a Université de Toulouse, ENFA, EDB (Laboratoire Evolution et Diversité Biologique), 2 route de Narbonne, F-31320 Castanet Tolosan, France b CNRS, EDB (Laboratoire Evolution et Diversité Biologique), F-31062 Toulouse, France c Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France article info abstract Article history: The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known Received 20 April 2009 because of their use as biocontrol agents, and are the subject of many ecological studies. However, little Revised 15 October 2009 is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is Accepted 16 October 2009 needed for the family. This paper provides the first phylogenetic reconstruction of the relationships Available online 10 November 2009 within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relation- Keywords: ships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), Phylogeny and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference Coccinellidae Partitioned analyses with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae Evolution is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic. -
Beetles in a Suburban Environment: a New Zealand Case Study. The
tl n brbn nvrnnt: lnd td tl n brbn nvrnnt: lnd td h Idntt nd tt f Clptr n th ntrl nd dfd hbtt f nfld Alnd (4-8 GKhl . : rh At SI lnt rttn Mnt Albrt rh Cntr rvt Alnd lnd • SI lnt rttn prt • EW EAA EAME O SCIEIIC A IUSIA ESEAC 199 O Ο Ν Ε W Ε Ν ttr Grnt rd Τ Ε Ρ Ο Ι Ο Τ ie wi e suo o a oey Sciece eseac Ga om e ew eaa oey Gas oa is suo is gaeuy ackowege Ρ EW EAA SI ' EAME O lnt SCIEIIC A rttn IUSIA Wāhn ESEAC Mn p Makig Sciece Wok o ew eaa KUSCE G eees i a suua eiome a ew eaa case suy e ieiy a saus o Coeoea i e aua a moiie aias o yie Aucka (197-199 / G Kusce — Aucka SI 199 (SI a oecio eo ISS 11-1 ; o3 IS -77-59- I ie II Seies UC 5957(93111 © Cow Coyig uise y SI a oecio M Ae eseac Cee iae ag Aucka ew eaa eceme 199 ie y Geea iig Seices eso ew eaa Etiam pristina in aua Asο i a aua seig summa securitas et futura sweet tranquility and nature ., OISIECE e oe-eeig emoyci eee ioycus uuus (ou o is aie ooca os kaikaea (acycaus acyioies om e yie eee suey aea Aucka ew eaa e wie gaues o e eee ae oe cuses a ass ees is eee as a eic saus o uike a o e uaaa (Seoo as ossi eiece sows a e weei gou was iig i uassic imes way ack i e ea o e iosaus a gymosems moe a 1 miio yeas ago OEWO As a small boy in the 1930s I used to collect butterflies on the South Downs in southern England.