Phylogeny of Ladybirds (Coleoptera: Coccinellidae): Are the Subfamilies Monophyletic?

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of Ladybirds (Coleoptera: Coccinellidae): Are the Subfamilies Monophyletic? Molecular Phylogenetics and Evolution 54 (2010) 833–848 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of ladybirds (Coleoptera: Coccinellidae): Are the subfamilies monophyletic? A. Magro a,b,1, E. Lecompte b,c,*,1, F. Magné b,c, J.-L. Hemptinne a,b, B. Crouau-Roy b,c a Université de Toulouse, ENFA, EDB (Laboratoire Evolution et Diversité Biologique), 2 route de Narbonne, F-31320 Castanet Tolosan, France b CNRS, EDB (Laboratoire Evolution et Diversité Biologique), F-31062 Toulouse, France c Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France article info abstract Article history: The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known Received 20 April 2009 because of their use as biocontrol agents, and are the subject of many ecological studies. However, little Revised 15 October 2009 is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is Accepted 16 October 2009 needed for the family. This paper provides the first phylogenetic reconstruction of the relationships Available online 10 November 2009 within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relation- Keywords: ships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), Phylogeny and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference Coccinellidae Partitioned analyses with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae Evolution is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic. The Food preference tribe Chilocorini is identified as the sister-group of the Coccinellinae for the first time. Ó 2009 Elsevier Inc. All rights reserved. 1. Introduction 2007) and two myrmecophagous (Harris, 1921; Pope and Lawrence, 1990). The Coccinellidae, commonly called Ladybirds or Ladybugs, be- Ladybirds’ predatory habits make them well-known biocontrol long to the superfamily Cucujoidea and the Coleoptera suborder agents, mainly as a result of the success of the Australian ladybird Polyphaga (Kovárˇ, 1996; Hunt et al., 2007). This family comprises Rodolia cardinalis (Mulsant) in controlling citrus infestation by the about 360 genera and nearly 6000 species (Vandenberg, 2002). It cottony-cushion scale Icerya purchasi (Maskell), at the end of the displays several characteristics which make it an interesting mod- 19th century. Although there are many cases of successful control, el, from a biological as well as economical point of view. Found mainly involving coccidophagous ladybirds (Dixon and Kindlmann, worldwide, they are present in many diverse habitats and range 1998), some of the introduced species have become invasive and widely from stenotopic to eurytopic species (Honk and Hodek, are seen as a threat to native species. For example, Coccinella sep- 1996). Food relationships are also highly diverse in the group: tempunctata L. and Harmonia axyridis (Pallas), both introduced in ladybirds are mainly predators but there is also a group of phy- North America to control aphids, became extremely abundant tophagous species, including serious pests of economically impor- and conspicuous in their new range, which has raised concern over tant crops (Shaefer, 1983) and even some mycophagous species. their potential effects on local biological diversity (Horn, 1991; The predatory species mainly eat either coccids (Coccoidea) or Howarth, 1991; Simberloff and Stiling, 1996; Koch et al., 2003, aphids (Aphidoidea), but some are predators of aleyrods (Aleyro- 2005). A growing number of studies on life history strategies, doidea), psyllids (Psylloidea), chrysomelids (Chrysomeloidea) or chemical defense, reproductive behavior, species interactions and mites (Acari). The fact they mostly prey on Hemiptera often brings other aspects of the ecology of ladybirds suffer from a lack of an them into contact with ants, which exploit the same resources: evolutionary framework (e.g. Dixon, 2000). Such a framework will some species are myrmecophilous (review in Majerus et al., facilitate a more rigorous interpretation of ecological data and testing of hypotheses about Coccinellidae biology, including bioge- ography and the evolution of their morphology and food relation- * Corresponding author. Address: Université de Toulouse, UPS, UMR 5174, ships. Therefore, a robust and comprehensive phylogeny of Evolution et Diversité Biologique, 118 route de Narbonne Bat 4R3-b2, 31062 relationships within the family is needed. Toulouse cedex 9, France. Fax: +33 05 61 55 73 27. E-mail address: [email protected] (E. Lecompte). Historically, the comparative studies of Coleoptera morphology 1 These authors have equally contributed. placed the Coccinellidae among the Polyphaga (Cucujoidea) 1055-7903/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2009.10.022 834 A. Magro et al. / Molecular Phylogenetics and Evolution 54 (2010) 833–848 (Crowson, 1981). A recent large-scale molecular phylogeny con- the subfamilies of Coccinellidae; (2) assess phylogenetic relation- firms previous morphological studies: Coccinellidae were placed ships at the inter- and intra-subfamily level; (3) test the current among the Cucujiformia in the Cerylonid series (Hunt et al., higher classification of the family and (4) analyse patterns of evo- 2007). Moreover, together with a great number of morphological lution for food preference. traits, a molecular phylogeny of the Cerylonid series (Robertson et al., 2008) confirms the monophyly of the Coccinellidae and sug- 2. Materials and methods gests that the sister-group is a member of the current Endomychi- dae or Corylophidae. Thus, at present, the uncertainty is not about 2.1. Taxon sampling and laboratory procedures the position of the family among the Coleoptera but the phyloge- netic relationships within the family, for which molecular analyses We obtained samples of species belonging to all the subfamilies are lacking and classical morphological analyses are inconclusive. of Coccinellidae: Coccinellinae, Scymninae, Coccidulinae, Chiloc- Since Latreille (1807) first coined the family name ‘‘Coccinelli- horinae, Epilachninae, Ortaliinae and Sticholotidinae (present tax- dae” (Watt, 1975), the systematics of the whole group has been onomic position from Kovárˇ, 1996). A total of 37 genera and 61 unstable: authors have suggested new classifications, created or species of Coccinellidae were analyzed (Tables 1 and 2). It should redefined the subdivisions, transferred genera or tribes from one be noted however, that not all the tribes were included in the anal- subfamily to another (review in Sasaji, 1968; Chazeau et al., ysis (Supplementary Table 1). Other taxa of the infraorder Cucuji- 1989; Kovárˇ, 1996; Fürsch, 1990, 1996; S´lipin´ ski, 2007, this later formia (Chrysomelidae, Cucujidae, Endomychidae, Cerylonidae, only for Australian species) (see Supplementary Table 1). To date, Oedemeridae and Cleroidea), to which Coccinellidae belong, were few studies have attempted to reconstruct the phylogeny of the included as outgroups (Table 2). The choice of these latter taxa as whole group rather than make intuitive reconstructions (Sasaji, valid outgroups was based on the results of a recent phylogenetic 1968; Kovárˇ, 1996: Fig. 1) or preliminary morphological cladistic study of Coleoptera (Hunt et al., 2007). analyses (Guoyue, 1994). The intuitive trees differ in the number Sequences were obtained from two specimens per species with of recognized subfamilies (six or seven) and the tribal or generic the exception of Subcoccinella, for which only one individual was component of each subfamily, but agree about the relationships available. Most taxa are represented by sequences from a mini- between the subfamilies Chilocorinae and Scymninae, and Cocci- mum of three or four genes. Chimeric data (i.e. different sequences nellinae and Epilachninae. Guoyue (1994) suggests, based on mor- derived from more than one species of a genus) were used only for phological characters, the paraphyly of the Coccidulinae and the outgroup taxa and the Coccinellidae taxa that were only repre- Scymninae. sented by sequences from Genbank (Table 2). The taxonomy of A recent molecular phylogeny of the family Coccinellidae (20 coccinellids suggested by Kovárˇ (1996) was used, with three species), based on the 18S and 28S rDNA genes, indicated that exceptions: we recognize the Noviini as belonging to the Coccidu- the Scymninae and Chilocorinae are paraphyletic, although there linae, the Diomini as one of tribes of the Scymninae, and the genus is incongruence between analyses and low statistical support (Rob- Crypolaemus in the Scymnini (as Vandenberg, 2002). For the names ertson et al., 2008). Among the subfamilies, only the phytophagous of species we use those cited by Hodek and Honk (1996). Epilachninae have been subject to a molecular phylogenetic study The specimens were field-collected mostly in the western part (e.g. Ohta et al., 2004; Kobayashi et al., 1998). However, these anal- of the Paleartic region, either by the authors or numerous collabo- yses were done on beetles from a restricted geographical area and rators
Recommended publications
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1.
    [Show full text]
  • Coleoptera: Endomychidae: Leiestinae) with a Checklist and Nomenclatural Notes Regarding Fossil Endomychidae
    Zootaxa 3755 (4): 391–400 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3755.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:13446D49-76A1-4C12-975E-F59106AF4BD3 Glesirhanis bercioi, a new genus and species from Baltic amber (Coleoptera: Endomychidae: Leiestinae) with a checklist and nomenclatural notes regarding fossil Endomychidae FLOYD W. SHOCKLEY1& VITALY I. ALEKSEEV2 1Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 165, Washington, DC 20013-7012, U.S.A. Email: [email protected] 2Department of Zootechny, Kaliningrad State Technical University, Sovetsky av. 1. 236000, Kaliningrad, Russia. E-mail: [email protected] Abstract A new genus and species of handsome fungus beetle, Glesirhanis bercioi gen. nov., sp. nov. (Coleoptera: Endomychidae: Leiestinae) is described from Baltic amber. The newly described genus is compared with all known extant and extinct genera of the subfamily. A key to the genera of Leiestinae including fossils and a checklist of fossil Endomychidae are provided. The status of two taxa previously placed in Endomychidae, Palaeoendomychus gymnus Zhang and Tetrameropsis mesozoica Kirejtshuk & Azar, is discussed, and a new status for the latter, elevating it to the family-level as Tetrameropseidae status nov., is proposed. Key words: new genus, new species, new status, Coleoptera, Endomychidae, Leiestinae, Baltic amber, Tertiary, Eocene, key, checklist, fossil Introduction Baltic amber (succinite) constitutes the largest known deposit of fossil plant resin and the richest repository of fossil insects of any age. Unfortunately, most references to Coleoptera in Baltic amber are only determined to family or generic levels.
    [Show full text]
  • Torix Rickettsia Are Widespread in Arthropods and Reflect a Neglected Symbiosis
    GigaScience, 10, 2021, 1–19 doi: 10.1093/gigascience/giab021 RESEARCH RESEARCH Torix Rickettsia are widespread in arthropods and Downloaded from https://academic.oup.com/gigascience/article/10/3/giab021/6187866 by guest on 05 August 2021 reflect a neglected symbiosis Jack Pilgrim 1,*, Panupong Thongprem 1, Helen R. Davison 1, Stefanos Siozios 1, Matthew Baylis1,2, Evgeny V. Zakharov3, Sujeevan Ratnasingham 3, Jeremy R. deWaard3, Craig R. Macadam4,M. Alex Smith5 and Gregory D. D. Hurst 1 1Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK; 2Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; 3Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; 4Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK and 5Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada ∗Correspondence address. Jack Pilgrim, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. E-mail: [email protected] http://orcid.org/0000-0002-2941-1482 Abstract Background: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia.
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • A03v24n3.Pdf
    Revista peruana de biología 24(3): 243 - 248 (2017) ISSN-L 1561-0837 A New Species of DODECACIUS (Coleoptera: Elateridae) from Madre de Dios, Peru doi: http://dx.doi.org/10.15381/rpb.v24i3.13903 Facultad de Ciencias Biológicas UNMSM TRABAJOS ORIGINALES A New Species of Dodecacius Schwarz (Coleoptera: Elateridae) from Madre de Dios, Peru Una nueva especie de Dodecacius Schwarz (Coleoptera: Elateridae) de Madre de Dios, Perú Paul J. Johnson Insect Biodiversity Lab, Box 2207A, South Dakota State University, Brookings, South Dakota 57007, U.S.A. Email: [email protected] Abstract Dodecacius Schwarz is reviewed, it includes two species known only from the eastern lower slopes of the Andes and adjacent Amazonia in southeastern Peru. Dodecacius paititi new species is described. Dodecacius testaceus Schwarz is treated as a new synonym of D. nigricollis Schwarz. Keywords: taxonomy; endemic; Andes; Amazonia; species discovery. Resumen El género Dodecacius Schwarz es revisado, incluye dos especies conocidas solamente de las laderas orientales bajas de los Andes y la Amazonia adyacente en el sureste de Perú. Se describe la nueva especie Dodecacius paititi y Dodecacius testaceus Schwarz es considerado como un nuevo sinónimo de D. nigricollis Schwarz. Palabras clave: taxonomía; endemismo; Andes; Amazonia; descubrimiento de especies. Publicación registrada en Zoobank/ZooBank article registered: urn:lsid:zoobank.org:pub:CF42CC9C-F496-4B4F-9C1A-FBB413A43E02 Acto nomenclatural/nomenclatural act: urn:lsid:zoobank.org:act:84A545F1-FAF8-42C1-83DA-C9D90CA0CA39 Citation: Johnson P.J. 2017. A New Species of Dodecacius Schwarz (Coleoptera: Elateridae) from Madre de Dios, Peru. Revista peruana de biología 24(3): 243 - 248 (octubre 2017).
    [Show full text]
  • Survey of Predatory Coccinellids (Coleoptera
    Survey of Predatory Coccinellids (Coleoptera: Coccinellidae) in the Chitral District, Pakistan Author(s): Inamullah Khan, Sadrud Din, Said Khan Khalil and Muhammad Ather Rafi Source: Journal of Insect Science, 7(7):1-6. 2007. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1673/031.007.0701 URL: http://www.bioone.org/doi/full/10.1673/031.007.0701 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Insect Science | www.insectscience.org ISSN: 1536-2442 Survey of predatory Coccinellids (Coleoptera: Coccinellidae) in the Chitral District, Pakistan Inamullah Khan, Sadrud Din, Said Khan Khalil and Muhammad Ather Rafi1 Department of Plant Protection, NWFP Agricultural University, Peshawar, Pakistan 1 National Agricultural Research Council, Islamabad, Pakistan Abstract An extensive survey of predatory Coccinellid beetles (Coleoptera: Coccinellidae) was conducted in the Chitral District, Pakistan, over a period of 7 months (April through October, 2001).
    [Show full text]
  • Chrysomela 43.10-8-04
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion.
    [Show full text]
  • Bionomics of Chilocorus Infernalis Mulsant, 1853 (Coleoptera
    doi:10.14720/aas.2019.113.1.07 Original research article / izvirni znanstveni članek Bionomics of Chilocorus infernalis Mulsant, 1853 (Coleoptera: Coccinellidae), a predator of San Jose scale, Diaspidiotus perniciosus (Comstock, 1881) under laboratory conditions Razia RASHEED1*, A.A. BUHROO1 and Shaziya GULL1 Received July 23, 2018; accepted January 03, 2019. Delo je prispelo 23. julija 2018, sprejeto 03. januarja 2019. ABSTRACT IZVLEČEK The bionomics of Chilocorus infernalis Mulsant, 1853, a BIONOMIJA VRSTE Chilocorus infernalis Mulsant, 1853 natural enemy of San Jose scale, was studied under laboratory (Coleoptera: Coccinellidae), PLENILCA AMERIŠKEGA conditions (26 ± 2˚C, and 65 ± 5% relative humidity). The KAPARJA (Diaspidiotus perniciosus (Comstock, 1881)) V eggs were deposited in groups and on average 45.68 ± 24.70 LABORATORIJSKIH RAZMERAH eggs were laid by female. Mean observed incubation period was 6.33 ± 1.52 days. Four instar grubs were observed, and Bionomija vrste Chilocorus infernalis Mulsant, 1853, mean duration of all four grubs was found to be 19.98 days. naravnega sovražnika ameriškega kaparja, je bila preučevana The pupal stage lasted for 8.00 ± 0.50 days and after adults v laboratorijskih razmerah (26 ± 2˚C in 65 ± 5 % relativne emerged out. zračne vlažnosti). Samice plenilca so jajčeca odlagale v skupinah, v poprečju 45,68 ± 24,70 jajčec na samico. V Key words: bionomics; natural enemies; San Jose scale; povprečju so se ličinke razvile iz jajčec v 6,33 ± 1,52 dneh. incubation period; larval instars Ugotovljene so bile štiri larvalne stopnje, katerih povprečna življenska doba je bila 19,98 dni. Razvojni štadij bube je trajal 8,00 ± 0,50 dni, nakar so se izlegli imagi.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • The Multicoloured Asian Ladybird Beetle, Harmonia Axyridis
    Research in Action South African Journal of Science 103, March/April 2007 123 adults and larvae of an unfamiliar lady- Discovery of an alien invasive, bird beetle species were collected from wheat. These beetles attracted attention predatory insect in South Africa: the as both larvae and adults were numerous and were clearly efficient predators of all multicoloured Asian ladybird beetle, the aphid species on wheat at the time. The beetles were positively identified as Harmonia axyridis (Pallas) HA at the South African National Collec- (Coleoptera: Coccinellidae) tion of Insects (SANC), Pretoria. Voucher specimens have been deposited in the SANC, the Transvaal Museum (TMSA), Riaan Stalsa* and Goddy Prinsloob Pretoria, and the Iziko South African Museum (SAMC), Cape Town. This species was previously observed, HE ASIAN LADYBIRD BEETLE, HARMONIA because it preys voraciously on diverse but not collected, at Tygerhoek in Sep- axyridis (HA) (Insecta: Coleoptera: pestiferous aphids and other soft-bodied tember/October 2004, when fairly large TCoccinellidae), is a generalist predator long arthropod pests on various cultivated numbers of aphids were present on valued as a biocontrol agent of pestiferous crops.6–9 Recently, it began ‘changing’ its aphids and other invertebrates. However, HA wheat. They were not detected during has become highly invasive in North America spots to emerge as a potentially invasive 2005, when aphid infestations were very 6,7,9,10 and Europe. The beetle is eurytopic, broadly and harmful organism. low. In October 2006, adults, larvae and polyphagous, very dispersive and pheno- The main aim of this paper is to record eggs (field-collected and positively associ- typically highly plastic.
    [Show full text]
  • Morphology of the Male Reproductive Tract in the Water Scavenger Beetle Tropisternus Collaris Fabricius, 1775 (Coleoptera: Hydrophilidae)
    Revista Brasileira de Entomologia 65(2):e20210012, 2021 Morphology of the male reproductive tract in the water scavenger beetle Tropisternus collaris Fabricius, 1775 (Coleoptera: Hydrophilidae) Vinícius Albano Araújo1* , Igor Luiz Araújo Munhoz2, José Eduardo Serrão3 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brasil. 2Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 3Universidade Federal de Viçosa, Departamento de Biologia Geral, Viçosa, MG, Brasil. ARTICLE INFO ABSTRACT Article history: Members of the Hydrophilidae, one of the largest families of aquatic insects, are potential models for the Received 07 February 2021 biomonitoring of freshwater habitats and global climate change. In this study, we describe the morphology of Accepted 19 April 2021 the male reproductive tract in the water scavenger beetle Tropisternus collaris. The reproductive tract in sexually Available online 12 May 2021 mature males comprised a pair of testes, each with at least 30 follicles, vasa efferentia, vasa deferentia, seminal Associate Editor: Marcela Monné vesicles, two pairs of accessory glands (a bean-shaped pair and a tubular pair with a forked end), and an ejaculatory duct. Characters such as the number of testicular follicles and accessory glands, as well as their shape, origin, and type of secretion, differ between Coleoptera taxa and have potential to help elucidate reproductive strategies and Keywords: the evolutionary history of the group. Accessory glands Hydrophilid Polyphaga Reproductive system Introduction Coleoptera is the most diverse group of insects in the current fauna, The evolutionary history of Coleoptera diversity (Lawrence et al., with about 400,000 described species and still thousands of new species 1995; Lawrence, 2016) has been grounded in phylogenies with waiting to be discovered (Slipinski et al., 2011; Kundrata et al., 2019).
    [Show full text]