E0020 Common Beneficial Arthropods Found in Field Crops

Total Page:16

File Type:pdf, Size:1020Kb

E0020 Common Beneficial Arthropods Found in Field Crops Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents. usually smaller. PREDATORY INSECTS AND SPIDERS Prey Assassin Bugs Assassin bugs are generalist predators that feed on caterpillar eggs and larvae, plant bugs, and other pests and beneficial insects. Bigger species can tackle the largest insect pests found in cotton and other crops. Big-eyed Bugs (Geocoris spp.) These insects are a primarily preda- tory group of Hemiptera (“true bugs”) belonging to the family Reduviidae. Some representative members of this family include thread-legged bugs, ambush bugs, and wheel bugs. Although they are seldom present in large numbers, several species can be important predators of caterpillar This is one of the more abundant and easily pests found in many crops. Wheel bugs can grow detected predators. It is an important predator in to a length of 1½ inch. Assassin bugs are highly cotton, corn, and soybeans. These insects are susceptible to insecticides, so they are more com- commonly found in pre-blooming cotton or in young corn or soybean fields after flying in as Insidious Flower Bug (Orius insidiosus) adults from surrounding vegetation. In the absence of insecticide sprays, they will remain in the field for the remainder of the season. In cot- ton, populations of 20–40 per 100 sweeps can sometimes be found, especially in fields that have not had many early insecticide treatments. Higher populations of tobacco budworms and bollworms can be tolerated if many big-eyed bugs are present. Despite their distinctive appear- ance, they are sometimes mistaken for plant bugs. There are several species of big-eyed bugs, so they are sometimes referred to by their genus name, Geocoris. Geocoris punctipes is the most com- mon species encountered and is the one This insect is often a very important predator in described here. field crops. However, because of its small size, it is commonly overlooked. Orius occurs in all Description major row crops, and it is present throughout the Both the nymphs and adults are well described season. It is an important predator of thrips and by their common name. The head is as wide as often appears in fields shortly after emergence. the body, and the eyes are notably large. Adults Quite often, it is the smaller, less noticeable pred- are about three-sixteenths of an inch long and ators that provide the greatest benefit, and this is are dull gray with transparent, shiny wings. The definitely the case with Orius. This is one preda- nymphs resemble the adults in general body tor that all scouts need to learn to recognize and shape, but they are a distinctive metallic silver- appreciate. They often build to relatively high gray. The eggs are white to pink and shaped like numbers on early-season populations of thrips hotdogs, but they are only one-twenty-fifth of an and mites. When this occurs, they can be of real inch long. These eggs are often found in cotton benefit in “buffering” populations of many cater- terminals and are often mistaken for plant bug pillar pests during mid- and late-seasons. eggs. However, plant bug eggs are almost always inserted into plant tissue and are rarely Description seen by scouts. Like the tarnished plant bug and big-eyed bugs, Orius is a true bug and belongs to the order Prey Hemiptera. The adults are sometimes mistaken Both the nymphs and adults feed on aphids, for chinch bugs, but although they resemble whiteflies, mites, and the eggs and larvae of chinch bugs superficially, the adults are much caterpillars, such as tobacco budworms, boll- smaller (about one-sixteenth of an inch long). The worms, and soybean loopers. They are also pred- adult Orius is black with a white band across its ators of plant bugs, especially the younger back and a white area over the end of its nymphs. In one laboratory study, big-eyed bug abdomen. The nymphs are elongate and yellow- nymphs consumed an average of 151 tobacco ish or yellow-orange. They are often mistaken for budworm eggs or 76 first instar larvae during the thrips, one of their primary prey items. 21–31 days required to complete all five nymphal instars. Late instar nymphs consumed approxi- Prey mately 10 eggs per day. Like many predatory Insidious flower bugs feed primarily on thrips insects in this order, big-eyed bugs also feed on and spider mites, and when these pests are nectar and directly on plants, causing little or no numerous, Orius can build to notably high num- damage. In-furrow systemic insecticides may bers. One reference reports that nymphs are capa- affect their populations. ble of eating an average of 33 mites per day. Eggs of caterpillars, such as bollworms and tobacco budworms, also are favored prey, along with angle downward at the back third of the newly hatched larvae. This predator is common abdomen. Nymphs resemble adults, except for in corn, where it is often found searching for boll- the lack of wings. worm eggs on the silks, and it has been reported to consume as much as 54 percent of the eggs. It Prey is also an important predator of eggs and small Both the nymphs and adults are predatory and caterpillars in soybeans. In cotton, Orius are often feed on a variety of prey. Almost any insect that found in the blooms, where their primary prey is is smaller or slower is subject to attack, including flower thrips. They will also readily attack the other predators. In addition to aphids and white- small larvae of various pest species that they flies, they commonly feed on eggs and larvae of encounter. This makes them an important preda- caterpillar pests such as tobacco budworms and tor of bollworm and fall armyworm larvae. bollworms. They will also attack plant bug nymphs. They occasionally bite scouts as well. Damsel Bugs (Nabis spp.) Spined Soldier Bug (Podisus maculaventris) Like the insidious flower bug and the big-eyed bug, damsel bugs belong to the order Hemiptera and are considered true bugs. They are predators with piercing–sucking mouthparts. Damsel bugs are usually much less numerous than insidious The spined soldier bug is a predatory stink bug flower bugs and big-eyed bugs, but it is not that is sometimes found in cotton, soybeans, and uncommon to find numbers in the range of 2–6 other crops. These predators can easily be con- per 100 sweeps in pre-blooming cotton. They also fused with plant-feeding stink bugs, such as the are important predators in corn and soybeans. brown stink bug. So it is important that scouts Damsel bugs are sometimes mistaken for plant learn to recognize this as a beneficial insect rather bugs, so it’s important that scouts know the dif- than a pest. ference. Damsel bugs belong to the family Nabidae and are also referred to as Nabids. Description Adult spined soldier bugs are medium-sized Description (three-sixteenths to one-half of an inch long) and There are several species of damsel bugs that can brown. They are shield-shaped with a prominent be found in cotton. Most adults are gray to light spine extending outward from each “shoulder.” brown and are about three-eighths to one-half of Unlike plant-feeding species, the tips of the wings an inch long. Adult damsel bugs resemble plant extend past the tip of the abdomen, and there is bugs somewhat in general body shape, but their often a dark line at the wing tips when they over- bodies and legs are longer and more slender. lap. These predators have a strong, stout beak Also, the wings are flat over the entire length of compared to plant-feeding stink bugs, which the abdomen; this distinguishes them from tar- have more slender beaks. The beak is kept folded nished plant bug adults, which have wings that under the body unless feeding. The eggs of spined soldier bugs are laid in a loose mass of age in trees, although it can be found in row 17–70 eggs. Each egg has a characteristic crown of crops as well. This predator has become well- “spines” that rings its top.
Recommended publications
  • Research Article Ecological Observations of Native Geocoris Pallens and G
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 465108, 11 pages http://dx.doi.org/10.1155/2013/465108 Research Article Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah Meredith C. Schuman, Danny Kessler, and Ian T. Baldwin Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany Correspondence should be addressed to Ian T. Baldwin; [email protected] Received 5 November 2012; Accepted 16 April 2013 Academic Editor: David G. James Copyright © 2013 Meredith C. Schuman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Big-eyed bugs (Geocoris spp. Fallen,´ Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stal˚ and G.
    [Show full text]
  • The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae)
    The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae) Ralph A. Bram and William E. Bickley Department of Entomology INTRODUCTION Tlw green lacewings which are members of the genus Chrysopa are extreme- ly lwndicia1 insects. The larvae are commonly called aphislions and are well known as predators of aphids and other injurious insects. They play an important part in the regulation of populations of pests under natural conditions, and in California they have been cultured in mass and released for the control of mealy- bugs ( Finney, 1948 and 1950) . The positive identification of members of the genus is desirable for the use of biological-control workers and entomologists in general. Descriptions of most of the Nearctic species of Chrysopidae have relied heavily on body pigmentation and to a lesser extent on wing shape, venational patterns and coloration. Specimens fade when preserved in alcohol or on pins, and natural variation in color patterns occurs in many species ( Smith 1922, Bickley 1952). It is partly for these reasons that some of the most common and relatively abundant representatives of the family are not easily recognized. The chrysopid fauna of North America was treated comprehensively by Banks ( 1903). Smith ( 1922) contributed valuable information about the biology of the green lacewings and about the morphology and taxonomy of the larvae. He also pro- vided k<'ys and other help for the identification of species from Kansas ( 1925, 1934) and Canada ( 1932). Froeschner ( 194 7) similarly dealt with Missouri species. Bickley and MacLeod ( 1956) presented a review of the family as known to occur in the N earctic region north of Mexico.
    [Show full text]
  • Coleomegilla Maculata (Degeer) Predation on Eggs of Colorado Potato Beetle, Leptinotarsa Decemlineata (Say)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1989 Coleomegilla maculata (DeGeer) predation on eggs of Colorado potato beetle, Leptinotarsa decemlineata (Say). Ruth V. Hazzard University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Hazzard, Ruth V., "Coleomegilla maculata (DeGeer) predation on eggs of Colorado potato beetle, Leptinotarsa decemlineata (Say)." (1989). Masters Theses 1911 - February 2014. 3055. Retrieved from https://scholarworks.umass.edu/theses/3055 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. COLEOMEGILLA MACULATA (DEGEER) PREDATION ON EGGS OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY) A Thesis Presented by RUTH V. HAZZARD Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE May 1989 Department of Entomology COLEOMEGILLA MACULATA (DEGEER) PREDATION ON EGGS OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY) A Thesis Presented by RUTH V. HAZZARD Approved as to style and content by: David N. Ferro, Chairperson of Committee Jo^epl/ S. Elkinton, Member ACKNOWLEDGMENTS I am grateful to Dave Ferro for keeping the door to his office always open for me, and thereby opening the door to the profession of Entomology. Special thanks to Roy Van Driesche and Joe Elkinton for their assistance in this work, and to all of my professors for their generosity in teaching. I appreciate the help of Buddy, Tuan and Jennifer in counting eggs and feeding beetles, which made these experiments possible.
    [Show full text]
  • A Comparative Study of Two Seed Bugs, Geocoris
    A COMPARATIVE STUDY OF TWO SEED BUGS, GEOCORIS BULLATUS (SAY) AND G. DISCOPTERUS STAL (HEMIPTERA: LYGAEIDAE) IN THE YUKON. By JENNIFER J. ROBINSON B.Sc. Trent University, 1980 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF ZOOLOGY We accept this thesis as conforming te trie required standard June, 1985 (c) Jennifer J. Robinson, 1985 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 )E-6 C3/81) Abstract Geocoris bullatus (Say 1831), (Henriptera: Lygaeidae) has been collected and studied across North America but the present work is the o first detailed study of western North American CL discopterus Stal 1874. In fact, it has been claimed that 6^. discopterus is solely a species of the east. As the two species are taxonomically difficult to separate, when they were apparently discovered together at several localities in the southwestern Yukon, a detailed investigation of their systematics and distribution seemed necessary. Species status of Yukon Q. bullatus and iG.
    [Show full text]
  • Resistance Management of the Western Corn Rootworm (Diabrotica Virgifera Virgifera)
    Resistance management of the western corn rootworm (Diabrotica virgifera virgifera): behavior, survival and the potential for cross resistance on Bt corn in the field, greenhouse and laboratory A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctorate of Plant, Insect & Microbial Science By SARAH N. ZUKOFF Bruce Hibbard, Dissertation Supervisor May 2013 The undersigned, appointed by the dean of the Graduate School, have examined the Dissertation entitled RESISTANCE MANAGEMENT OF THE WESTERN CORN ROOTWORM (DIABROTICA VIRGIFERA VIRGIFERA): BEHAVIOR, SURVIVAL AND THE POTENTIAL FOR CROSS RESISTANCE ON BT CORN IN THE FIELD, GREENHOUSE AND LABORATORY Presented by Sarah N. Zukoff A candidate for the degree of Doctorate of Plant, Insect & Microbial Science And hereby certify that, in their opinion, it is worthy of acceptance. [Dr. Bruce E. Hibbard, Co-Advisor, Division of Plant Sciences] [Dr. Wayne C. Bailey, Co-Advisor, Division of Plant Sciences] [Dr. Deborah L. Finke, Division of Plant Sciences] [Dr. Richard M. Houseman, Division of Plant Sciences] [Dr. Mark R. Ellersieck, Department of Statistics] ACKNOWLEDGEMENTS I would like to thank my advisors Bruce Hibbard and Wayne Bailey for their guidance and support over the last four years. Their influence on my scientific abilities has been tremendous and has enabled me to go further than I ever thought possible. I would like to thank Deborah Finke for her helpful advice and her willingness to lend a listening ear. Also, I would like to thank her for her excellent teaching abilities and the effort that she puts into her classes and her students which has had a great influence on me.
    [Show full text]
  • Insect Pest Management in Soybeans 12 by G
    Chapter Insect Pest Management in Soybeans 12 by G. Lorenz, D. Johnson, G. Studebaker, C. Allen and S. Young, III he importance of insect pests in Arkansas Finally, it is important to determine what soybeans is extremely variable from year to management tactics are available and whether or year due in large part to environmental not they are economically feasible. T conditions. For example, hot, dry years favor many lepidopterous pests such as the soybean Insect Identification podworm and the beet armyworm; and when drought conditions occur, these pests usually are The three types of insect pests found in soybeans abundant. Many other lepidopterous pests, such as in Arkansas are: the velvetbean caterpillar and the soybean looper, 1. Foliage feeders, which comprise the biggest may cause problems following migrations from group of insect pests, southern areas, particularly in concurrence with winds out of the Gulf region where they are a 2. Pod feeders, which are probably the most common problem. Generally, insect pressure is detrimental to yield, and greater in the southern part of the state compared to 3. Stem, root and seedling feeders, which are northern Arkansas due to warmer temperatures and often the hardest to sample and are not detected closeness to the aforementioned migration sources. until after they have caused damage. Production practices also have an impact on the Some insects, such as the bean leaf beetle, may feed GEMENT occurrence of pest insects in soybeans. For example, on both foliage and pods but are primarily insects such as the Dectes stem borer and grape considered foliage feeders.
    [Show full text]
  • Hymenoptera: Braconidae), Parasitoids of Gramineous Stemborers in Africa
    Eur. J. Entomol. 107: 169–176, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1524 ISSN 1210-5759 (print), 1802-8829 (online) Host recognition and acceptance behaviour in Cotesia sesamiae and C. flavipes (Hymenoptera: Braconidae), parasitoids of gramineous stemborers in Africa MESHACK OBONYO1, 2, FRITZ SCHULTHESS3, BRUNO LE RU 2, JOHNNIE VAN DEN BERG1 and PAUL-ANDRÉ CALATAYUD2* 1School of Environmental Science and Development, North-West University, Potchefstroom, 2520, South Africa 2Institut de Recherche pour le Développement (IRD), UR 072, c/o International Centre of Insect Physiology and Ecology ( ICIPE), Noctuid Stemborer Biodiversity (NSBB) Project, PO Box 30772-00100, Nairobi, Kenya and Université Paris-Sud 11, 91405 Orsay, France 3ICIPE, Stemborer Biocontrol Program, PO Box 30772-00100, Nairobi, Kenya Key words. Hymenoptera, Braconidae, Cotesia sesamiae, C. flavipes, Lepidoptera, Pyralidae, Eldana saccharina, Noctuidae, Busseola fusca, Chilo partellus, parasitoids, host recognition, host acceptance, stemborers, Africa Abstract. The host recognition and acceptance behaviour of two braconid larval parasitoids (Cotesia sesamiae and C. flavipes) were studied using natural stemborer hosts (i.e., the noctuid Busseola fusca for C. sesamiae, and the crambid Chilo partellus for C. flavi- pes) and a non-host (the pyralid Eldana saccharina). A single larva was introduced into an arena together with a female parasitoid and the behaviour of the wasp recorded until it either stung the larva or for a maximum of 5 min if it did not sting the larva. There was a clear hierarchy of behavioural steps, which was similar for both parasitoid species. In the presence of suitable host larvae, after a latency period of 16–17 s, the wasp walked rapidly drumming the surface with its antennae until it located the larva.
    [Show full text]
  • Investigating the Use of Buckwheat Strips for the Management of Colorado Potato Beetles in Potato Production and As an Attractan
    Investigating the Use of Buckwheat Strips for the Management of Colorado Potato Beetles in Potato Production and as an Attractant of Native Pollinators for Vine Crops 1. Project Summary This project consisted of two parts. The first was to see if buckwheat strips would attract beneficial predatory insects over to adjacent planted potato rows. My hypothesis was that Colorado potato beetle larvae would have reduced numbers due to the predation by beneficial insect predators attracted by the nearby buckwheat. Compared to the control plot where no buckwheat was planted, the treatment plots showed a significant increase in larvae reduction and predation by four species of predators. The second part of the project was to see if strips of buckwheat planted next to rows of cucumbers would attract native pollinators over to the vine crops to help improve pollination (and increase marketable fruit). Compared to the control plot where no buckwheat was planted, the treatment plots had greater numbers of native bees and wasps. There also was a significant difference between the number of marketable cucumbers and those that were misshapen due to poor pollination. 2. Introduction to Topic Cover crops have great benefits for vegetable production. The cover crops can suppress weeds, reduce erosion, act as a green manure providing nutrients, and adds organic matter back to the soil. Still with all of these fine properties, cover crops still are not as commonplace on an organic farm as they should be. Many small growers have land restrictions so that every piece is needed for production. Having some tied up in cover crops means reduced sales potential in the short run.
    [Show full text]
  • The Gypsy Moth and Its Natural Enemies Agriculture Information Bulletin No
    THE GYPSY MOTH AND ITS NATURAL ENEMIES AGRICULTURE INFORMATION BULLETIN NO. 381 U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE i^Q^^áh nú'3^1 '/■*X. -//' ■*iS3l^ THE AUTHOR ROBERT W. CAMPBELL is principal ecologist at the North- eastern Forest Experiment Station's research unit maintained at Syracuse, N. Y., in cooperation with the State University of New York College of Environmental Science and Forestry at Syracuse University. He received his bachelor's degree in forestry from the State University of New York College of Forestry in 1953 and his master's and Ph.D. degrees in forestry from the University of Michigan in 1959 and 1961. He joined the USDA Forest Service's Northeastern Forest Experiment Station in 1961. ACKNOWLEDGMENTS My thanks to both Wayne Trimm and Robert W. Brown, whose beautiful illustrations reflect careful study of their sub- jects. I also thank the many gypsy moth watchers who have shared their observations and experiences with me. Issued February 1975 11 THE GYPSY MOTH AND ITS NATURAL ENEMIES by Robert W. Campbell CONTENTS BEHAVIOR 2 Hatch and dispersal 2 Young larvae 2 Older larvae 4 Pre-pupae and pupae 4 Adults 6 Eggs 6 MORTALITY 8 Young larvae 8 Older larvae 11 Pre-pupae 18 Pupae 18 Adults 21 Eggs 21 AGENTS THAT KILL THE SEXES DIFFERENTIALLY 22 CHANGES IN GYPSY MOTH POPULATION DENSITY 23 A FEW LAST WORDS 27 111 CAMPBELL, ROBERT W. 1974. The Gypsy Moth and its Natural Enemies. Agr. Inf. Bull. No. 381,27 p., illus. Patterns of gypsy moth behavior are described, especially those related to population density.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, LAMBDA 13% INSECTICIDE, 04/24
    EPA Reg. Number: Date of Issuance: US. ENVIRONMENTAI.PR<lTECTION AGENCY 71532-20 Office of Pesticide Programs APR 2 4 20D7 Registration Division (H7505C) 1200 Pl:nnsylvania Avenue, N.W. Washington, D.c' 20460 NOTICE OF PESTICIDE: L Registration _ Reregistration (Under FrFRA as amended) Name LG Life Sciences, Ltd. c/o Biologic Inc. 115 Obtuse Hill Road and Rodenticide Act. Registration is in no way to bc construed as an endorsement or recommendation of this product by the Agency. In order to prot~t health and the : environment, the Administrator, on his motion, may at any time suspend or cancel the registratIOn of a pesticide in accordance with the Act. The acceptance , of any name in conneCtion with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is conditionally registercd in accordance with PIFRA sec. 3(c)(7)(A), subject to the following provisions: 1. You will submit andlor cite all data required for registration/reregistration of your pmduct under FIFRA sec. 3( c)(5) when the Agency requires all registrants of similar products to submit su;h data; and submit acceptable responses required for reregistration of your product under FIFRA sectior 4. 2. You will make the following label changes before you release the product for shipmmt: a) Revise the EPA Registration Number to read "EPA Reg. No.71532-20." b) Add "Contains petroleum distillates" immediately below the ingredient statement as a footnote below the term "Inert ingredients." c) Under First Aid list the statcments in the following order: "If on skin or clothing, Ifin eyes, If swallowed, If inhaled." d) Revise the 2"d bullet of the "If Swallowed" first aid statements to read "Do not give any liquid to the person." e) Add H(PPE)" after the Personal Protective Equipment headi!lg on page 3.
    [Show full text]
  • Common Beneficial Insects and Their Habitat Plant Materials Technical Note
    Natural Resources Conservation Service Technical Note No: TX-PM-14-02 April 2014 Common Beneficial Insects and their Habitat Plant Materials Technical Note Background: Insects are commonly viewed as pests. However, without insects earth would be a very different place. Webster’s dictionary defines pest as an animal or insect that causes problems for people, especially by damaging crops. Most insects encountered daily are not pest rather they are harmless or beneficial. Beneficial insects are any of a number of species of insects that perform vital ecological functions such as pollination, pest control, decomposition and maintenance of wildlife species. These ecological services provide an estimated annual economic value $57 billion in the United States of America. Considering the ecological and economic values, greater effort and investments should be spent in conserving these insects. NRCS-Texas Technical Note: TX-PM-14-02 Purpose: The purpose of this technical note is to provide general beneficial insect information and identify common beneficial insects and habitat that supports the occurrence of these species. Previous technical notes have addressed the value, benefit and habitat of pollinators. This technical note concentrates on insects that assist with pest management. Types of Beneficial Insects: In general, there are two kinds of pest management beneficial insects: predators and parasitoids. Predators feed directly on other insects by chewing with their mandibles or by piercing the predators and consuming the body liquids. Predators must kill and consume more than one prey to complete their development, and are free-living as immature and as adults. The action of predators is often obscure.
    [Show full text]
  • Natural Pest Control Using Beneficial Insects to Control Landscape Pests
    Common beneficial insects found in Beneficial insects: FS930 New Jersey Nature’s alternative to pesticides Fact sheet For a comprehensive list of our publications visit www.rce.rutgers.edu LADY BEETLE Many property owners assume that spraying pesticides is the only reliable method to kill lawn and garden Feeds on: aphids, scales, mites, pests. There is a safer and more effective way, how- and mealybugs. ever, to prevent or reduce pest damage—by promot- Natural ing natural populations of insects that feed on harm- To attract lady beetles, plant: yarrow, golden-rod, and ful pests. morning glory. Beneficial insects used in place of traditional chemi- Pest Control SPIDER cal pesticides will: Using beneficial insects to control landscape pests Feeds on: fleas, lace-bugs, and • Improve the long-term health of your plants the eggs of the Japanese beetle • Save you money by reducing your reliance on Deborah Smith-Fiola and sod webworm. costly pesticides Former, Ocean County Agricultural Agent • Help protect the environment Provide shade to draw spiders. Read this brochure to learn more about beneficial insects. GROUND BEETLE Feeds on: gypsy moths, caterpillars, weevils, and ants. Low plants, groundcovers, and camphor weed will lure ground beetles. GREEN LACEWING Feeds on: aphids, white- flies, scales, mites, and lacebugs. © 2004 by Rutgers Cooperative Research & Extension, NJAES, Rutgers, The State University of New Jersey. This beneficial insect is attracted to yarrow and wild Desktop publishing by Rutgers-Cook College Resource Center carrot. Revised: August 2003 RUTGERS COOPERATIVE RESEARCH & EXTENSION HOVER FLY N.J. AGRICULTURAL EXPERIMENT STATION RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY Feeds on: aphids, leafhoppers, NEW BRUNSWICK Distributed in cooperation with U.S.
    [Show full text]