Special Features
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dipterocarpaceae)
DNA Sequence-Based Identification and Molecular Phylogeny Within Subfamily Dipterocarpoideae (Dipterocarpaceae) Dissertation Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) at Forest Genetics and Forest Tree Breeding, Büsgen Institute Faculty of Forest Sciences and Forest Ecology Georg-August-Universität Göttingen By Essy Harnelly (Born in Banda Aceh, Indonesia) Göttingen, 2013 Supervisor : Prof. Dr. Reiner Finkeldey Referee : Prof. Dr. Reiner Finkeldey Co-referee : Prof. Dr. Holger Kreft Date of Disputation : 09.01.2013 2 To My Family 3 Acknowledgments First of all, I would like to express my deepest gratitude to Prof. Dr. Reiner Finkeldey for accepting me as his PhD student, for his support, helpful advice and guidance throughout my study. I am very grateful that he gave me this valuable chance to join his highly motivated international working group. I would like to thank Prof. Dr. Holger Kreft and Prof. Dr. Raphl Mitlöhner, who agreed to be my co-referee and member of examination team. I am grateful to Dr. Kathleen Prinz for her guidance, advice and support throughout my research as well as during the writing process. My deepest thankfulness goes to Dr. Sarah Seifert (in memoriam) for valuable discussion of my topic, summary translation and proof reading. I would also acknowledge Dr. Barbara Vornam for her guidance and numerous valuable discussions about my research topic. I would present my deep appreciation to Dr. Amarylis Vidalis, for her brilliant ideas to improve my understanding of my project. My sincere thanks are to Prof. Dr. Elizabeth Gillet for various enlightening discussions not only about the statistical matter, but also my health issues. -
<I>Trichilia Emetica
https://doi.org/10.30799/jnpr.062.18040201 J. Nat. Prod. Resour. - Volume 4 Issue 2 (2018) 179–181 ISSN: 2455-0299 Share Your Innovations through JACS Directory Journal of Natural Products and Resources Visit Journal at http://www.jacsdirectory.com/jnpr Isolation and Identification of Flavonoids Components from Trichilia emetica Whole Seeds Abdullahi Usman1,2,*, Vera Thoss1, Mohammad Nur-e-Alam3 1School of Chemistry, Bangor University, Bangor LL 57 2UW, United Kingdom. 2Department of Chemistry, Faculty of Natural and Applied Sciences, Nasarawa State University, P.M.B. 1022 Keffi, Nigeria. 3Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O.Box 2457, Riyadh 11451, Saudi Arabia. A R T I C L E D E T A I L S A B S T R A C T Article history: Five known flavonoids were isolated from the ethyl acetate soluble fraction of aqueous extract of T. Received 24 May 2018 emetica whole seeds. On the basis of 1D and 2D-NMR experiments and MS data analyses, these Accepted 09 June 2018 compounds were identified as naringenin (B), taxifolin 4’-O-β-D-glucopyranoside (C), elephantorrhizol Available online 13 June 2018 (D), catechin 3-O-β-D-glucopyranoside (E) and eriodictyol 3-O-β-D-glucopyranoside (F). DPPH radical scavenging activity was used to estimate the antioxidant capacity of each of these compounds. The result shows that elephantorrhizol has stronger DPPH scavenging activity than other isolated flavonoids. Keywords: Trichilia emetica Naringenin Elephantorrhizol 1. Introduction plates 20 × 20 cm, E. Merck, Germany). Visualization of the compound was done using UV lamp UVL-14 EL hand held 220 V 50 Hz 4 W 254 nm white The genus Trichilia belongs to the Meliaceae (Mahogany family), it light by UVP. -
Natural Cosmetic Ingredients Exotic Butters & Oleins
www.icsc.dk Natural Cosmetic Ingredients Exotic Butters & Oleins Conventional, Organic and Internal Stabilized Exotic Butters & Oleins Exotic Oils and butters are derived from uncontrolled plantations or jungles of Asia, Africa and South – Central America. The word exotic is used to define clearly that these crops are dependent on geographical and seasonal variations, which has an impact on their yearly production capacity. Our selection of natural exotic butters and oils are great to be used in the following applications: Anti-aging and anti-wrinkle creams Sun Protection Factor SPF Softening and hydration creams Skin brightening applications General skin care products Internal Stabilization I.S. extends the lifecycle of the products 20-30 times as compare to conventional. www.icsc.dk COCOA BUTTER Theobroma Cacao • Emollient • Stable emulsions and exceptionally good oxidative stability • Reduce degeneration and restores flexibility of the skin • Fine softening effect • Skincare, massage, cream, make-up, sunscreens CONVENTIONAL ORGANIC STABILIZED AVOCADO BUTTER Persea Gratissima • Skincare, massage, cream, make-up • Gives stables emulsions • Rapid absorption into skin • Good oxidative stability • High Oleic acid content • Protective effect against sunlight • Used as a remedy against rheumatism and epidermal pains • Emollient CONVENTIONAL ORGANIC STABILIZED ILLIPE BUTTER Shorea Stenoptera • Emollient • Fine softening effect and good spreadability on the skin • Stable emulsions and exceptionally good oxidative stability • Creams, stick -
Ipn=Aah-638Bbi Cohtrol Number S
BIBLIOGRAPHIC DATA SHEET IPN=AAH-638BBI COHTROL NUMBER S. AE30-C300=G310SUBJECT CLASSIFICATION (695) (240) 3. TITLE AND SUBTITLE NAS participation in Second Caribbean Commonwealth Meeting on Utilization of Natural Products, Port-of-Spain, Trinidad, 1979; staff summary report 4. PERSONAL AUTHORS (10G) 5. CORPORATE AUTHORS (101) National Research Council. Board on Science and Technology for Int. Development 6.DOCUMENT DATE (110) 7.NUMBER OF PAGES (120) 8. ARC NUMBER (170) 1979 7lp. LAT630.9729.N277 9.REFERENCE ORGANIZATION (130) NAS 10. SUPPLEMENTARY NOTES (500) 11. ABSTRACT (950) 12. DESCRIPTORS (920) 13. PROJECT NUMBER (150) Caribbean Agricultural production Plants 931122300 Medicinal plants 14. CONTRACT NO.(140.) 15. CONTRACT Natural products TYPE (140) Meetings AID/ta-C-1433 16. TYPE OF DOCUMENT (160) AID 590-7 (10-79) /IN STAFF SUMMARY REPORT: NAS PARTICIPATION IN SECOND CARIBBEAN COMMONWEALTH MEETING ON UTILIZATION OF NATURAL PRODUCTS Port-of-Spain, Trinidad April 22-27, 1979 NATIONAL ACADEMY OF SCIENCES Washington, D.C. This report is a staff prepared summary of NAS participation in the Second Caribbean Commonwealth Meeting on Utilization of Natural Products, organized by the Commonwealth Science Council. Participation by the National Academy of Sciences was made possible through funds provided by the Office of Science and Technology, Bureau for Development Support, Agency for International Development under Contract AID/ta-C-1433. Table of Contents SUMMARY REPORT 1 APPENDIX I: Opening Remarks 6 APPENDIX II. Underutilized Food Crops 11 APPENDIX III: Plant-Derived Industrial Products 24 APPENDIa IV: Fast-Growing Trees 31 APPENDIX V: Medicinal Plants of the West Irdies 38 APPENDIX VI: Plant-Derived Pharmaceuticals 42 APPENDIX VII: Medicinal and Toxic Plant Products 47 APPENDIX VII: Underutilized Southeast Asian Plants 58 with Promise for the Carbbean APPENDIX IX: The Utilization of Lowland Tropical. -
Nazrin Full Phd Thesis (150246576
Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities. -
The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics As Indicated by Database Mining
The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass LIMITED CIRCULATION Correct citation: Kindt R, Dawson IK, Lillesø J-PB, Muchugi A, Pedercini F, Roshetko JM, van Noordwijk M, Graudal L, Jamnadass R. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. Working Paper No. 312. World Agroforestry, Nairobi, Kenya. DOI http://dx.doi.org/10.5716/WP21001.PDF The titles of the Working Paper Series are intended to disseminate provisional results of agroforestry research and practices and to stimulate feedback from the scientific community. Other World Agroforestry publication series include Technical Manuals, Occasional Papers and the Trees for Change Series. Published by World Agroforestry (ICRAF) PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 7224000, via USA +1 650 833 6645 Fax: +254(0)20 7224001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org © World Agroforestry 2021 Working Paper No. 312 The views expressed in this publication are those of the authors and not necessarily those of World Agroforestry. Articles appearing in this publication series may be quoted or reproduced without charge, provided the source is acknowledged. -
Trichilia Emetica to Different Dehydration and Storage Conditions
South African Journal of Botany 72 (2006) 167 – 176 www.elsevier.com/locate/sajb Viability and ultrastructural responses of seeds and embryonic axes of Trichilia emetica to different dehydration and storage conditions J.I. Kioko *, P. Berjak, N.W. Pammenter School of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban 4041, South Africa Received 16 June 2005; accepted 1 July 2005 Abstract The seeds of Trichilia emetica, a multi-purpose tropical forest species, displayed typical recalcitrant behaviour, being shed at an average axis water concentration of 2.82 g per g dry matter (g gÀ 1), and losing viability when dehydrated to axis water concentrations below 0.42 and 0.26 g gÀ 1, when dried slowly or rapidly, respectively. The ultrastructure at shedding was indicative of active metabolism, as would be expected of mature recalcitrant seeds which grade into germinative metabolism after shedding. Rapid dehydration enabled the maintenance of ultrastructural integrity to water concentrations as low as 0.3 g gÀ 1, while cells of axes dried slowly to similar water concentrations displayed total subcellular destruction. In the fully hydrated state, the storage lifespan of the seeds was limited to 60 days at 16 -C, after which all the seeds had germinated in storage. Ultrastructural examination, however, indicated that prolonged mild water stress had occurred, which the seeds are suggested to have suffered as germination proceeded in storage. When stored at 6 -C, the seeds showed extensive ultrastructural derangement, which was accompanied by loss of viability after 20 days, presumably as a result of chilling injury, while storage at 25 -C resulted in all seeds germinating in storage in 35–40 days. -
Plant Species Yielding Vegetable Oils Used in Cosmetics and Skin Care Products
African Journal of Biotechnology Vol. 4 (1), pp. 36-44, January 2005 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2004 Academic Journals Full Length Research Paper Taxonomic perspective of plant species yielding vegetable oils used in cosmetics and skin care products Mohammad Athar1*and Syed Mahmood Nasir2 1California Department of Food and Agriculture, 2014 Capitol Avenue, Suite 109, Sacramento, CA 95814, USA. 2Ministry of Environment, Capitol Development Authority, Block IV, Islamabad, PAKISTAN. Accepted 17 November, 2004 A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetics and skin care products. These species belonged to 74 genera and 45 plant families and yielded 79 vegetable oils. Family Rosaceae had highest number of vegetable oil yielding species (five species). Most of the species were distributed in two families (Anacardiaceae and Asteraceae) containing four species each, followed by seven families (Boraginaceae, Brassicaceae, Clausiaceae, Cucurbitaceae, Euphorbiaceae, Fabaceae and Lamaceae) containing three species each of oil yielding plants. Five families (Apiaceae, Dipterocarpaceae, Malvaceae, Rubiaceae and Sapotaceae) have two species each of vegetable oil yielding plants. Two monocotyledonous families Arecaceae and Poaceae contained three species each of oil yielding plants. Remaining 28 vegetable oil yielding species were distributed in 28 plant families, which included two species of gymnosperms distributed in family Cupressaceae and Pinaceae. These vegetable oils are natural and can be used as the base for mixing ones own aromatherapy massage or bath oil, or if preferred can be used as ready blended massage oils or bath oils. -
The Illipe Nut (Shorea Spp.) As Additional Resource in Plantation Forestry
2013 The Illipe nut (Shorea spp.) as additional resource in plantation forestry Case Study in Sarawak, Malaysia Quirijn Coolen Van Hall Larenstein, University of Applied Sciences Bachelor Thesis 0 Student nr. 890102002 1 The Illipe nut (Shorea spp.) as additional resource in plantation forestry Case study in Sarawak, Malaysia Quirijn T. Coolen Bachelor Final Thesis 2013 Course: Tropical Forestry Student number: 890102002 January 1, 2014 Project supervisor Sarawak Forestry Department: Mr. Malcom Demies Cover photo: Nut, Shorea macrophylla (Connell, 1968) 2 “One, and only one incentive sends Sarawak Malay women deeply into the jungle. Not regularly, - but otherwise unique, is either one of two kinds of nut which fruit irregularly – but when they do in such profusion that every man, woman and child can usefully turn out to help reap these strictly “cash crops” in the coastal fringe.” (Harrisson & Salleh, 1960) 3 Acknowledgments I would like to acknowledge the support of the Van Hall Larenstein University, the Sarawak Forestry Department and the Sarawak Forestry Corporation for their approval and help on the completion of my Thesis study under their supervision. This report could not have been completed without the help of the following people in particular, to whom I want to express my greatest thanks; Dr. Peter van de Meer, who initiated the contact between the Sarawak Forestry Department and the Van Hall Larenstein University and was my personal supervisor from the latter, encouraging me to broaden my perspective on the subject and improve when necessary. Special thanks to my study and project partner, Jorn Dallinga, who traveled with me to Malaysia and with whom I shared the experience and work in the tropical Sarawak forests. -
Show Ethnoactivity
U Emetic Plant Abrus precatorius (Paternoster; Rakat; Reglisse; Pois Rouge; Weesboontje; Ma Liao Tou; Jequerit; Hung Tou; Graines Reglisse; Peonia De St Tomas; Paratella; Peonia; Hint Meyankoku; Liane Reglisse; Gunchi; Rosary Pea; To-Azuki; Cain Ghe) Acacia farnesiana (Tusca; Kembang bandira; Cuji; Esponjeira; Kambang japun; Kembang nagasiri) Acalypha indica (Lelatang) Achyranthes aspera (Apamarga; Rarai; Feuilles La Fievre; Rabo De Gato; Chaff Tree; Jarongan; Santypite) Acorus calamus (Jerangau; Calomo Aromatico; Sweet Flag; Vacha; Ganoeak; Doringo; Seki-Sho; Jeringau; Bach; Djerango; Shui Ch'Ang Pu; Acoro Aromatico; Vaj; Kalmus; Calamus; Ch'Ang P'U Chiu; Agri Turki; Kalmoes; Calmus; Acore Vrai; Acorus; Sarango; Jariangau; Calamo Aromatico; Azakegeri; Kalmos; Kaliraga; Sho-Bu) Adenocalymna alliaceum Aesculus argutus Ageratum conyzoides (Rompesaraguelo; Rumput tahi ayam; Wedusan; Berokan; Aru batu; Bandotan) Ailanthus altissima (Gok Aghaji; Ch'Ou Ch'Uang Shu Ken; Ch'U; Lisan At Tair; Niwa-Urusi) Ailanthus glandsulosa (Kokar Agac) Alangium salviifolium Alchornea cordifolia Aletris farinosa (Sterwortel; Unicorne; Sternwurzel; Star Grass; Blazing Star; True Unicorn) Aleurites fordii (Jabilla Extranjera; Tung) Allamanda blanchetii Allamanda cathartica (Yellow Allamanda) Alnus rubra (Rode Els; Aune Rouge; Red Alder; Rote Erle) Alnus rugosa Alpinia malaccensis Amaranthus dubius (Zepina; Epinard Marron; Bledo) Ammi visnaga (Khellakraut; Khillah; Busnaga; Pick Toothh; Viznaga; Khaizaran; Biznaga; Anmi; Bisnaga Das Searas) Anagyris foetida (Domuzdikeni; -
Trichilia Dregeana | Plantz Africa About:Reader?Url=
Trichilia dregeana | Plantz Africa about:reader?url=http://pza.sanbi.org/trichilia-dregeana pza.sanbi.org Trichilia dregeana | Plantz Africa Introduction Trichilia dregeana is a lovely large tree that inhabits evergreen forests in high rainfall areas. It is a highly ornamental species with considerable cultural and ecological value to match. Description Description A significant feature of the forest mahogany, particularly evident in those growing in open situations, is the beautiful dark foliage and large rounded crown. Impressive heights of up to 35 m have been recorded, the tall main stem assuming a relatively straight and sometimes buttressed habit, up to 1.8 m in diameter. The grey bark is smooth in texture, but often rough and segmented around the base of the main stem on older specimens. 1 of 5 2016/12/15 01:48 PM Trichilia dregeana | Plantz Africa about:reader?url=http://pza.sanbi.org/trichilia-dregeana The compound leaves can reach lengths of 70 cm and are imparipinnate with 3-5 pairs of leaflets and a terminal one, the petiole being 8-10 cm in length. The leaflets are entire, opposite to alternate, glossy and dark green in colour, and can attain a size of 21 cm in length and 8.5 cm in width. They exhibit 8-12 pairs of side veins, petiolules around 1 cm in length, and an undersurface that is hairless to slightly hairy and notably paler than above. The creamy-white flowers, produced from October to December, are borne in dense, branched axillary inflorescences, with petals that are velvety on both surfaces and 1.4 cm-2.4 cm in length. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.