Modelling and Simulation of a Simple Homopolar Motor of Faraday's Type
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
N O T I C E This Document Has Been Reproduced From
N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE gg50- y-^ 3 (NASA-CH-163584) A STUDY OF TdE N80 -32856 APPLICABILITY/COMPATIbIL1TY OF INERTIAL ENERGY STURAGE SYSTEMS TU FU'IUAE SPACE MISSIONS Firnal C.eport (Texas Univ.) 139 p Unclas HC A07/MF AJ1 CSCL 10C G3/44 28665 CENTER FOR ELECTROMECHANICS OLD ^ l ^:' ^sA sit ^AC^utY OEM a^ 7//oo^6^^, THE UNIVERSITY OF TEXT COLLEGE OF ENGINEERING TAYLOR NAIL 167 AUSTIN, TEXAS, 71712 512/471-4496 4l3 Final Report for A Study of the Applicability/Compatibility of Inertial Energy Storage Systems to Future Space Missions Jet Propulsion Laboratory ... Contract No. 955619 This work was {performed for the Jet Propulsion Laboratory, California Institute of Technology Sponsored by The National Aeronautics and Space Administration under Contract NAS7-100 by William F. Weldon r Technical Director Center for Electromechanics The University of Texas at Austin Taylor Hall 167 Austin, Texas 18712 (512) 471-4496 August, 1980 t c This document contains information prepared by the Center for Electromechanics of The University of Texas at Austin under JPL sub- contract. Its content is not necessarily endorsed by the Jet Propulsion Laboratory, California Institute of Technology, or its sponsors. QpIrS r^r^..++r•^vT.+... .. ...^r..e.^^..^..-.^...^^.-Tw—.mss--rn ^s^w . ^A^^v^T'^'1^^w'aw^.^^'^.R!^'^rT-.. _ ..,^.wa^^.-.-.^.w r^.-,- www^w^^ -- r f Si i ABSTRACT The applicability/compatibility of inertial energy storage systems, i.e. -
Arxiv:1701.07063V2 [Physics.Ins-Det] 23 Mar 2017 ACCEPTED by IEEE TRANSACTIONS on PLASMA SCIENCE, MARCH 2017 1
This work has been accepted for publication by IEEE Transactions on Plasma Science. The published version of the paper will be available online at http://ieeexplore.ieee.org. It can be accessed by using the following Digital Object Identifier: 10.1109/TPS.2017.2686648. c 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv:1701.07063v2 [physics.ins-det] 23 Mar 2017 ACCEPTED BY IEEE TRANSACTIONS ON PLASMA SCIENCE, MARCH 2017 1 Review of Inductive Pulsed Power Generators for Railguns Oliver Liebfried Abstract—This literature review addresses inductive pulsed the inductor. Therefore, a coil can be regarded as a pressure power generators and their major components. Different induc- vessel with the magnetic field B as a pressurized medium. tive storage designs like solenoids, toroids and force-balanced The corresponding pressure p is related by p = 1 B2 to the coils are briefly presented and their advantages and disadvan- 2µ tages are mentioned. Special emphasis is given to inductive circuit magnetic field B with the permeability µ. The energy density topologies which have been investigated in railgun research such of the inductor is directly linked to the magnetic field and as the XRAM, meat grinder or pulse transformer topologies. One therefore, its maximum depends on the tensile strength of the section deals with opening switches as they are indispensable for windings and the mechanical support. -
Inexpensive Inertial Energy Storage Utilizing Homopolar Motor- Generators
Missouri University of Science and Technology Scholars' Mine UMR-MEC Conference on Energy 09 Oct 1975 Inexpensive Inertial Energy Storage Utilizing Homopolar Motor- Generators W. F. Weldon H. H. Woodson H. G. Rylander M. D. Driga Follow this and additional works at: https://scholarsmine.mst.edu/umr-mec Part of the Electrical and Computer Engineering Commons, Mechanical Engineering Commons, Mining Engineering Commons, Nuclear Engineering Commons, and the Petroleum Engineering Commons Recommended Citation Weldon, W. F.; Woodson, H. H.; Rylander, H. G.; and Driga, M. D., "Inexpensive Inertial Energy Storage Utilizing Homopolar Motor-Generators" (1975). UMR-MEC Conference on Energy. 88. https://scholarsmine.mst.edu/umr-mec/88 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in UMR-MEC Conference on Energy by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. INEXPENSIVE INERTIAL ENERGY STORAGE UTILIZING HOMOPOLAR MOTOR-GENERATORS W.F. Weldon, H.H. Woodson, H.G. Rylander, M.D. Driga Energy Storage Group 167 Taylor Hall The University of Texas at Austin Austin, Texas 78712 Abstract The pulsed power demands of the current generation of controlled thermonuclear fusion experiments have prompted a great interest in reliable, low cost, pulsed power systems. The Energy Storage Group at the University of Texas at Austin was created in response to this need and has worked for the past three years in developing inertial energy storage systems. -
Electrification and the Ideological Origins of Energy
A Dissertation entitled “Keep Your Dirty Lights On:” Electrification and the Ideological Origins of Energy Exceptionalism in American Society by Daniel A. French Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in History _________________________________________ Dr. Diane F. Britton, Committee Chairperson _________________________________________ Dr. Peter Linebaugh, Committee Member _________________________________________ Dr. Daryl Moorhead, Committee Member _________________________________________ Dr. Kim E. Nielsen, Committee Member _________________________________________ Dr. Patricia Komuniecki Dean College of Graduate Studies The University of Toledo December 2014 Copyright 2014, Daniel A. French This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the express permission of the author. An Abstract of “Keep Your Dirty Lights On:” Electrification and the Ideological Origins of Energy Exceptionalism in American Society by Daniel A. French Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in History The University of Toledo December 2014 Electricity has been defined by American society as a modern and clean form of energy since it came into practical use at the end of the nineteenth century, yet no comprehensive study exists which examines the roots of these definitions. This dissertation considers the social meanings of electricity as an energy technology that became adopted between the mid- nineteenth and early decades of the twentieth centuries. Arguing that both technical and cultural factors played a role, this study shows how electricity became an abstracted form of energy in the minds of Americans. As technological advancements allowed for an increasing physical distance between power generation and power consumption, the commodity of electricity became consciously detached from the steam and coal that produced it. -
Resolution of the Faraday Paradox
Resolution of the Faraday Paradox Sokolov Gennady, Babin Walter, Chubukin Anatoly, Sokolov Vitaly, Loydap Valery More than 150 years ago, Michael Faraday discovered that in a unipolar generator with a simultaneous rotation of a magnet and a disk, a voltmeter in a fixed measuring circuit shows an EMF. The question arose whether the field rotates with the magnet or remains stationary. Numerous researchers are still unsuccessfully trying to answer this question, and it is generally accepted that direct measurement of emf is impossible. Einstein begins the article “On the Electrodynamics of Moving Bodies” with the statement that “the electrodynamic interaction between a magnet and a conductor with current ... depends only on the relative motion of the conductor and magnet” [1] Supporters of the SRT still claim that unipolar induction is a relativistic Effect. This paper presents the results of our study of the Faraday paradox. It is shown that conventional measurement methods in principle do not allow to experimentally solve the problem of field rotation. The method of measuring the emf we developed, allowed us to prove that the rotation of the magnet is not equivalent to the rotation of the conductor around the magnet, while simultaneously rotating the disk and the magnet, the field does not rotate and EMF is induced only in the disk. Essence of the Faraday Paradox The Faraday paradox arose from the fact that conventional measuring devices do not allow us to determine where the emf is induced in the disk of a unipolar generator or in a measuring circuit. The problem is that to measure the induced emf, a voltmeter is connected to the disk with two wires, as a result of which the rotating disk and the fixed wires form a closed loop in which the same emf is induced both in case the field rotates and in case the field is stationary. -
130 Electrical Energy Innovations
130 Electrical Energy Innovations Gary Vesperman (Author) Advisor to Sky Train Corporation www.skytraincorp.com 588 Lake Huron Lane Boulder City, NV 89005-1018 702-435-7947 [email protected] www.padrak.com/vesperman TABLE OF CONTENTS Title Page INTRODUCTION ............................................................................................................. 1 BRIEF SUMMARIES ....................................................................................................... 2 LARGE GENERATORS ............................................................................................... 13 Hydro-Magnetic Dynamo ............................................................................................ 13 Focus Fusion ............................................................................................................... 19 BlackLight Power’s Hydrino Generator ..................................................................... 19 IPMS Thorium Energy Accumulator .......................................................................... 22 Thorium Power Pack ................................................................................................... 22 Magneto-Gravitational Converter (Searl Effect Generator) ..................................... 23 Davis Tidal Turbine ..................................................................................................... 25 Magnatron – Light-Activated Cold Fusion Magnetic Motor ..................................... 26 Wireless Power and Free Energy from Ambient -
Parameter Study of an Inductively Powered Railgun Oliver Liebfried, Paul Frings
18TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC LAUNCH TECHNOLOGY, OCTOBER 24-28, WUHAN, CHINA 1 Parameter study of an inductively powered railgun Oliver Liebfried, Paul Frings Abstract—This article deals with the numerical simulation parameter optimization. Richard T. Meyer et al. maximize of an inductively powered railgun in order to determine the efficiency for a given railgun system in dependance of a electrical parameters of the inductive storage of the pulsed variable muzzle velocity by means of variable charging voltage power supply. A numerical model was set up and validated by experimental results. A parameter sweep was performed by and trigger times of a given capacitive pulse forming network. varying the time constant of the coil, the initial current and The optimization was performed by using MATLAB’s fmin- the initially stored energy. The results show that the generated con function [8]. Hundertmark et al. simulated a capacitive pulse shape, and thus the transfer efficiency and electromagnetic power supply for the same railgun artillery scenario as used forces, strongly depend on the inductance of the storage coil. On in this paper [9]. A Pspice circuit to determine the size and the contrary, the dependency on the coil time constant, and thus on the coil volume for a given coil shape and conductor material, trigger times of the PFN was used. The influence of the is small and can be neglected for high time constants. series resistance of the current conducting path on the railgun performance was shown. Many more paper are dealing with the parameter opti- I. INTRODUCTION mization of railgun systems. -
Physics Celebrity
Born 22 September 1791 Newington Butts, Surrey, England Died 25 August 1867 (aged 75) Hampton Court, Surrey, England Residence: England Fields Physics and Chemistry Known for Faraday's law of induction, Electrochemistry, Faraday effect, Faraday cage, Faraday constant, Faraday cup Faraday's laws of electrolysis, Faraday paradox, Faraday rotator Faraday-efficiency effect, Faraday wave, Faraday wheel, Lines of force Influenced by: Humphry Davy , William Thomas Brande Notable awards Royal Medal (1835 & 1846) Religious stance Sandemanian Michael Faraday was an English chemist and physicist (or natural philosopher, in the terminology of the time) who contributed to the fields of electromagnetism and electrochemistry. Faraday studied the magnetic field around a conductor carrying a DC electric current, and established the basis for the magnetic field concept in physics. He discovered electromagnetic induction, diamagnetism, and laws of electrolysis. He established that magnetism could affect rays of light and that there was an underlying relationship between the two phenomena. His inventions of electromagnetic rotary devices formed the foundation of electric motor technology, and it was largely due to his efforts that electricity became viable for use in technology. As a chemist, Faraday discovered benzene, investigated the clathrate hydrate of chlorine, invented an early form of the bunsen burner and the system of oxidation numbers, and popularized terminology such as anode, cathode, electrode, and ion. Although Faraday received little formal education and knew little of higher mathematics, such as calculus, he was one of the most influential scientists in history. Some historians of science refer to him as the best experimentalist in the history of science. -
The Faraday Paradox Experiment
THE FARADAY PARADOX EXPERIMENT Duncan G. Cumming, Ph.D. (Camb.) Feb 28, 2018 1 OBJECTIVE To investigate the emf produced by a disc rotating in front of a bar magnet, as a function of rotation of the magnet itself and routing of the brush connecting wires. INTRODUCTION Michael Faraday did a series of experiments in 1851 where he rotated a disc in front of a bar magnet, and found that it produced an emf because of the motion of a conductor in a magnetic field. Paradoxically, he found that the same emf was produced even if the magnet and the disc were fastened together and co‐rotated. He explained this by saying that the magnetic field should be regarded as being “fixed in space”, notwithstanding the rotation of the magnet itself. Faraday did not report any effects based on the precise routing of the wire connecting the pick‐up brush to the galvanometer, presumably because he did not observe any such effects. In 1998 a paper was published by A.G. Kelly1, where he reported no effect from re‐routing the pickup wire when the magnet was stationary. However, he reported a substantial effect when using a co‐ rotating magnet. In fact, by careful routing of the wire, he was able to reduce the emf to zero within the accuracy of his galvanometer. Such a finding would have some very profound implications. Two different emfs from the same brush could be used to drive a current through a load, even though the brush itself were removed from the experiment. This would lead to a brushless homopolar machine, a device of substantial commercial value. -
The Relativistic Electrodynamics Turbine. Experimentum Crucis of New Induction Law
The Relativistic Electrodynamics Turbine. Experimentum Crucis of New Induction Law. Albert Serra1, ∗, Carles Paul2, ∗ ,Ramón Serra3, ∗ 1Departamento de Física, Facultad de Ciencias, Universidad de los Andes, Venezuela. 2Departamento de Mecatrónica, Sección de Física, ESUP, 08302, Mataró, España. 3Innovem, Tecnocampus TCM2, 08302, Mataró, España. ABSTRACT Easy experiments carried out in the dawn of electromagnetism are still being a reason for scientific articles, because its functioning contradicts some laws and rules of electromagnetic theory. Although these experiments led Einstein to discover the relativistic electrodynamics and explained its working, the scientific community had not understood this. They see in these experiments a proof against relativity and prefer to look for the solution in the electromagnetics’ theory or accept that their are an exception. By means of a long and detailed experimental study with a new design in electromagnetic engines and improvements of these experiments that we call relativistic electrodynamics turbine, we managed to explain its working using relativistic electrodynamics. The revision of these experiments had taken us to discover the real law of induction, which does not have any exceptions. The explanation of the relativistic electrodynamics turbine led us to discard the Faraday induction law and argue that the true law of induction is a consequence of the conservation of the angular momentum of the charges as the conservation of the angular momentum of the mass. Thus Einstein’s idea to unify electromagnetism and mechanics is now clear and also opens the way for new research in science. ∗ Albert Serra Valls. Tel.: +34-638-922-843; e-mail: [email protected] ∗ Carles Paul Recarens. -
Projectile 45
4%.* A FEASIBILITY STUDY OF A HYPERSONIC REAL-GAS FACILITY FINAL REPORT Submitted To: Grants Officer NASA Langley Research Center Office of Grants and University Affairs Hampton, VA 23665 Grant d NAG1-721 January 1, 1987 to May 31, 1987 Submitted by: J. H. Gully Co-principal Investigator M. D. Driga Co-principal Investigator W. F. Weldon Co-principal Investigator (NBSA-CR-180423) A FEASIBILITY STUDY OF A N88-10043 HYPEBSOUIC RBAL-SAS FACILITY Final Report (Texas tJniv.1 154 p Avail: NTIS AC A08/tlP A01 CSCL 14s Uacl as G3/09 0 103727 Center for Electromechanico The University of Texas at Austin Balcones Research Center EME 1.100, Building 133 Austin, TX 78758-4497 (512)471-4496 CONTENTS Page INTRODUCTION 1 Discu ssion 2 HIGH ENERGY LAUNCHER FOR BALLISTIC RANGE 5 Introduction 5 Launch Concepts and Theory 6 COAXIAL ACCELERATOR 9 Introduction 9 System Description 10 System Analysis 13 Main Parameters 13 Launcher Configurations 15 Electromechanical Considerations 17 Power Supplies 22 Electromagnetic Principles 25 STATOR WINDING DESIGN 31 Starter Coil (Secondary Current Initiation) 35 Power Supply Characteristics 41 Projectile 45 RAILGUN ACCELERATOR 50 Introduction 50 Background 50 Railgun Construction 53 Synchronous Switching of Energy Store 58 Initial Acceleration 58 Method for Decelerating Sabot 60 Power Source 60 Inductor Design 69 Railgun Performance 75 Sa bot De sign 75 Plasma Bearings 78 Armature Consideration 80 Maintenance 82 Model Design 82 INSTRUMENTATION 84 Electromagnetic Launch Model Electronics 84 Data Acquisition 85 Circuit -
The Construction of the Pure Homopolar Generator Reveals Physical Problem of Maxwell’S Equations
The construction of the Pure homopolar generator reveals physical problem of Maxwell’s equations. Pavol Ivana1,2,*, Ivan Vlcek2, and Marika Ivanova3 1Supratech s.r.o. scientific-technical laboratory, Mokra 314, Zlin, 76001, Czech Republic 21. Internetova Komercni, spol. s r.o., SNP 1178, Otrokovice, 76502, Czech Republic 3University of Bergen Faculty of Mathematics and Natural Sciences, PO Box 7803, Bergen, 5020, Norway *[email protected] ABSTRAKT In this article, we present a part of the research results during 2012-2015, which shows that there must exist another description of Faraday’s homopolar generator than the generally acknowledged one. For example, as a device that simulates necessary and sufficient condition for induction. This paper presents the experimental pure homopolar generator (PHG, defined as a generator that does not need any brushes, electronics or semiconductor to ensure the generation of direct current) as a proof that the movement of an electrically neutral conductor in homogeneous circles of magnetic field does not induce any voltage. It is happening in spite of all physical/technological alterations for the sake of theoretical functionality. In the experiment described here, these theoretical requirements are achieved through an effective shielding by high-temperature superconductors. The reason for this negative result may be the fact that PHG only complies the necessary but not sufficient condition. In contrast, the relativistic explanation of Faraday homopolar generator (hereinafter referred to as FHG) seems to be misleading and unrealistic in the context of the article on the experiment described. If we still insisted on the correctness of Maxwell’s concept, we would have to admit that the heterogenous field can be shielded from a perspective of any outer system of reference, but such a system of reference for homogenous circles of magnetic field would not exist.