Projectile 45
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cahier Technique No. 207
Collection Technique .......................................................................... Cahier technique no. 207 Electric motors ... and how to improve their control and protection E. Gaucheron Building a New Electric World "Cahiers Techniques" is a collection of documents intended for engineers and technicians, people in the industry who are looking for more in-depth information in order to complement that given in product catalogues. Furthermore, these "Cahiers Techniques" are often considered as helpful "tools" for training courses. They provide knowledge on new technical and technological developments in the electrotechnical field and electronics. They also provide better understanding of various phenomena observed in electrical installations, systems and equipments. Each "Cahier Technique" provides an in-depth study of a precise subject in the fields of electrical networks, protection devices, monitoring and control and industrial automation systems. The latest publications can be downloaded from the Schneider Electric internet web site. Code: http://www.schneider-electric.com Section: Press Please contact your Schneider Electric representative if you want either a "Cahier Technique" or the list of available titles. The "Cahiers Techniques" collection is part of the Schneider Electric’s "Collection technique". Foreword The author disclaims all responsibility subsequent to incorrect use of information or diagrams reproduced in this document, and cannot be held responsible for any errors or oversights, or for the consequences of using information and diagrams contained in this document. Reproduction of all or part of a "Cahier Technique" is authorised with the compulsory mention: "Extracted from Schneider Electric "Cahier Technique" no. ....." (please specify). no. 207 Electric motors ... and how to improve their control and protection Etienne Gaucheron Graduate electronics engineer by training. -
The University of Texas at Austin
The University of Texas at Austin Institute for Advanced Technology, The University of Texas at Austin - AUSA - February 2006 IAT Talk 1358 Eraser Institute for Advanced Technology, The University of Texas at Austin - AUSA - February 2006 IAT Talk 1358 Transitioning EM Railgun Technology to the Warfighter Dr. Harry D. Fair, Director Institute for Advanced Technology The University of Texas at Austin The Governator is correct! • At the IAT, we are harnessing large quantities of electric energy to enable radically new capabilities for the warfighter. • These new electric weapons are capable of accelerating high energy hypervelocity projectiles Electric guns are real. from electric railguns on land, sea, and air platforms, and are capable of protecting these platforms by electromagnetic protection systems. Institute for Advanced Technology, The University of Texas at Austin - AUSA - February 2006 IAT Talk 1358 Hypervelocity Electromagnetic Railguns What are they? How do they work? Why change to electromagnetic energy? How can we use them? When can we have them? What are the implications for the Army and the Navy? Institute for Advanced Technology, The University of Texas at Austin - AUSA - February 2006 IAT Talk 1358 What is an Electromagnetic Railgun? Converts Electricity to Kinetic Energy The barrel can have any cross section - round, The accelerating Force square, rectangular is provided by Electromagnetic Forces and can accelerate projectiles to very high velocities Force Muzzle view We routinely launch projectiles to hypervelocities -
Investigation, Analysis and Design of the Linear Brushless Doubly-Fed
AN ABSTRACT OF THE THESIS OF Farroh Seifkhani for the degree of Master of Science in Electrical and Computer Engineering presented on February 8, 1991 . Title: Investigation, Analysis and Design of the Linear Brush less Doubly-Fed Machine.Redacted for Privacy Abstract approved: K. Wallace This thesis covers theefforts of thedesign, analysis, characteristics, and construction of a Linear Brush less Doubly-Fed Machine (LBDFM), as well as the results of the investigations and comparison with its actual prototype. In recent years, attempts to develop new means of high-speed, efficient transportation have led to considerable world-wide interest in high-speed trains. This concern has generated interests in the linear induction motor which has been considered as one of the more appropriate propulsion systems for Super-High-Speed Trains (SHST). Research and experiments on linear induction motors arebeing actively pursued in a number of countries. Linear induction motors are generally applicable for the production of motion in a straight line, eliminating the need for gears and other mechanisms for conversion of rotational motion to linear motion. The idea of investigation and construction of the linear brushless doubly-fed motor was first propounded at Oregon State University, because of potential applications as Variable-Speed Transportation (VST) system. The perceived advantages of a LBDFM over other LIM's are significant reduction of cost and maintenance requirements. The cost of this machine itself is expected to be similar to that of a conventionalLIM. However, it is believed that the rating of the power converter required for control of the traveling magnetic wave in the air gap is a fraction of the machine rating. -
N O T I C E This Document Has Been Reproduced From
N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE gg50- y-^ 3 (NASA-CH-163584) A STUDY OF TdE N80 -32856 APPLICABILITY/COMPATIbIL1TY OF INERTIAL ENERGY STURAGE SYSTEMS TU FU'IUAE SPACE MISSIONS Firnal C.eport (Texas Univ.) 139 p Unclas HC A07/MF AJ1 CSCL 10C G3/44 28665 CENTER FOR ELECTROMECHANICS OLD ^ l ^:' ^sA sit ^AC^utY OEM a^ 7//oo^6^^, THE UNIVERSITY OF TEXT COLLEGE OF ENGINEERING TAYLOR NAIL 167 AUSTIN, TEXAS, 71712 512/471-4496 4l3 Final Report for A Study of the Applicability/Compatibility of Inertial Energy Storage Systems to Future Space Missions Jet Propulsion Laboratory ... Contract No. 955619 This work was {performed for the Jet Propulsion Laboratory, California Institute of Technology Sponsored by The National Aeronautics and Space Administration under Contract NAS7-100 by William F. Weldon r Technical Director Center for Electromechanics The University of Texas at Austin Taylor Hall 167 Austin, Texas 18712 (512) 471-4496 August, 1980 t c This document contains information prepared by the Center for Electromechanics of The University of Texas at Austin under JPL sub- contract. Its content is not necessarily endorsed by the Jet Propulsion Laboratory, California Institute of Technology, or its sponsors. QpIrS r^r^..++r•^vT.+... .. ...^r..e.^^..^..-.^...^^.-Tw—.mss--rn ^s^w . ^A^^v^T'^'1^^w'aw^.^^'^.R!^'^rT-.. _ ..,^.wa^^.-.-.^.w r^.-,- www^w^^ -- r f Si i ABSTRACT The applicability/compatibility of inertial energy storage systems, i.e. -
A BRIEF INTRODUCTION to TUBULAR LINEAR MOTORS Linear Motors Provide Direct Thrust for Positioning a Payload, Eliminating the Need for Rotary-To-Linear Conversion
PRODUCT OVERVIEW – DIRECT-DRIVE LINEAR MOTOR SYSTEMS A BRIEF INTRODUCTION TO TUBULAR LINEAR MOTORS Linear motors provide direct thrust for positioning a payload, eliminating the need for rotary-to-linear conversion. The three main direct-drive linear motion systems on the market today – iron-core, U-channel, and tubular linear motors – each have distinct advantages and disadvantages with respect to specific applications, for example regarding form factor, achievable force density, and efficiency. Understanding the differences will enable a designer to select the best motor option. Iron-core motor • Magnetic saturation The basic structure of the iron-core motor (Figure 1) is When the generated forces are pushed beyond the similar to that of an unrolled rotary motor with discrete normal operating range, the iron will reach magnetic stator and magnetic poles. It has a set of electromagnetic saturation and the force-to-current relationship coils wrapped around an iron core. The end effect of this is becomes non-linear, making control more difficult. to increase the amount of magnetic field generated by the • Large footprint coils, as the iron will contribute to the generated field The basic construction of iron-core motors requires a through realigning microscopic magnetic domains in the fairly large footprint. iron with the magnetic field from the coils. This is the major • Lateral and attractive (non-useful) forces advantage of the iron-core motor: for a given input of These forces are inherent to the motor design and current, a significant amount of force can be generated. require additional constraints. However, there are some disadvantages/behaviours that U-channel motor have to be considered: One of the main features of the U-channel motor (Figure 2) • Cogging is the absence of iron from the critical locations in the This is the movement of the motor’s iron forcer so as to motor. -
Alternator Winding Temperature Rise in Generator Systems
TM Information Sheet # 55 Alternator Winding Temperature Rise in Your Reliable Guide for Power Solutions Generator Systems 1.0 Introduction: When a wire carries electrical current, its temperature will increase due to the resistance of the wire. The factor that mostly influences/ limits the acceptable level of temperature rise is the insulation system employed in an alternator. So the hotter the wire, the shorter the life expectancy of the insulation and thus the alternator. This information sheets discusses how different applications influence temperature rise in alternator windings and classification standards are covered by the National electrical Manufacturers Association (NEMA). (Continued over) Table 1 - Maximum Temperature Rise (40°C Ambient) Continuous Temperature Rise Class A Class B Class F Class H Temp. Rise °C 60 80 105 125 Temp. Rise °F 108 144 189 225 Table 2 - Maximum Temperature Rise (40°C Ambient) Standby Temperature Rise Class A Class B Class F Class H Temp. Rise °C 85 105 130 150 Temp. Rise °F 153 189 234 270 Typical Windings Within a Generator Set’s Alternator Excitor windings Stator windings Rotor windings To fulfill our commitment to be the leading supplier and preferred service provider in the Power Generation Industry, the Clifford Power Systems, Inc. team maintains up-to-date technology and information standards on Power Industry changes, regulations and trends. As a service, our Information Sheets are circulated on a regular basis, to existing and potential Power Customers to maintain awareness of changes and -
High Speed Linear Induction Motor Efficiency Optimization
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2005-06 High speed linear induction motor efficiency optimization Johnson, Andrew P. (Andrew Peter) http://hdl.handle.net/10945/11052 High Speed Linear Induction Motor Efficiency Optimization by Andrew P. Johnson B.S. Electrical Engineering SUNY Buffalo, 1994 Submitted to the Department of Ocean Engineering and the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Naval Engineer and Master of Science in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology June 2005 ©Andrew P. Johnson, all rights reserved. MIT hereby grants the U.S. Government permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of A uthor ................ ............................... D.epartment of Ocean Engineering May 7, 2005 Certified by. ..... ........James .... ... ....... ... L. Kirtley, Jr. Professor of Electrical Engineering // Thesis Supervisor Certified by......................•........... ...... ........................S•:• Timothy J. McCoy ssoci t Professor of Naval Construction and Engineering Thesis Reader Accepted by ................................................. Michael S. Triantafyllou /,--...- Chai -ommittee on Graduate Students - Depa fnO' cean Engineering Accepted by . .......... .... .....-............ .............. Arthur C. Smith Chairman, Committee on Graduate Students DISTRIBUTION -
Overlapped Electromagnetic Coilgun for Low Speed Projectiles
ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 Journal of Magnetics 20(3), 322-329 (2015) http://dx.doi.org/10.4283/JMAG.2015.20.3.322 Overlapped Electromagnetic Coilgun for Low Speed Projectiles Hany M. Mohamed1, Mahmoud A. Abdalla2*, Abdelazez Mitkees, and Waheed Sabery Electrical Engineering Branch, MTC College, Cairo, Egypt [email protected] [email protected] (Received 20 February 2015, Received in final form 16 June 2015, Accepted 16 June 2015) This paper presents a new overlapped coilgun configuration to launch medium weight projectiles. The proposed configuration consists of a two-stage coilgun with overlapped coil covers with spacing between them. The theoretical operation of a multi-stage coilgun is introduced, and a transient simulation was conducted for projectile motion through the launcher by using a commercial transient finite element software, ANSOFT MAXWELL. The excitation circuit design for each coilgun is reported, and the results indicate that the overlapped configuration increased the exit velocity relative to a non-overlapped configuration. Different configurations in terms of the optimum length and switching time were attempted for the proposed structure, and all of these cases exhibited an increase in the exit velocity. The exit velocity tends to increase by 27.2% relative to that of a non-overlapped coilgun of the same length. Keywords : electromagnetic launch, excitation circuit, lorentz force, overlapped coilgun 1. Introduction is not easy to obtain the main performance parameters and optimize the design [3]. Electromagnetic (EM) launch technology is a strong Sandia National Laboratories has succeeded in coilgun candidate to launch objects with high velocities over long design and operations by developing four guns with distances. -
Direct Torque Control of Induction Motors
DIRECT TORQUE CONTROL FOR INDUCTION MOTOR DRIVES MAIN FEATURES OF DTC · Decoupled control of torque and flux · Absence of mechanical transducers · Current regulator, PWM pulse generation, PI control of flux and torque and co-ordinate transformation are not required · Very simple control scheme and low computational time · Reduced parameter sensitivity BLOCK DIAGRAM OF DTC SCHEME + _ s* s j s + Djs _ Voltage Vector s * T + j s DT Selection _ T S S S s Stator a b c Torque j s s E Flux vs 2 Estimator Estimator 3 s is 2 i b i a 3 Induction Motor In principle the DTC method selects one of the six nonzero and two zero voltage vectors of the inverter on the basis of the instantaneous errors in torque and stator flux magnitude. MAIN TOPICS Þ Space vector representation Þ Fundamental concept of DTC Þ Rotor flux reference Þ Voltage vector selection criteria Þ Amplitude of flux and torque hysteresis band Þ Direct self control (DSC) Þ SVM applied to DTC Þ Flux estimation at low speed Þ Sensitivity to parameter variations and current sensor offsets Þ Conclusions INVERTER OUTPUT VOLTAGE VECTORS I Sw1 Sw3 Sw5 E a b c Sw2 Sw4 Sw6 Voltage-source inverter (VSI) For each possible switching configuration, the output voltages can be represented in terms of space vectors, according to the following equation æ 2p 4p ö s 2 j j v = ç v + v e 3 + v e 3 ÷ s ç a b c ÷ 3 è ø where va, vb and vc are phase voltages. -
Pulsed Rotating Machine Power Supplies for Electric Combat Vehicles
Pulsed Rotating Machine Power Supplies for Electric Combat Vehicles W.A. Walls and M. Driga Department of Electrical and Computer Engineering The University of Texas at Austin Austin, Texas 78712 Abstract than not, these test machines were merely modified gener- ators fitted with damper bars to lower impedance suffi- As technology for hybrid-electric propulsion, electric ciently to allow brief high current pulses needed for the weapons and defensive systems are developed for future experiment at hand. The late 1970's brought continuing electric combat vehicles, pulsed rotating electric machine research in fusion power, renewed interest in electromag- technologies can be adapted and evolved to provide the netic guns and other pulsed power users in the high power, maximum benefit to these new systems. A key advantage of intermittent duty regime. Likewise, flywheels have been rotating machines is the ability to design for combined used to store kinetic energy for many applications over the requirements of energy storage and pulsed power. An addi - years. In some cases (like utility generators providing tran- tional advantage is the ease with which these machines can sient fault ride-through capability), the functions of energy be optimized to service multiple loads. storage and power generation have been combined. Continuous duty alternators can be optimized to provide Development of specialized machines that were optimized prime power energy conversion from the vehicle engine. for this type of pulsed duty was needed. In 1977, the laser This paper, however, will focus on pulsed machines that are fusion community began looking for an alternative power best suited for intermittent and pulsed loads requiring source to capacitor banks for driving laser flashlamps. -
Arxiv:1701.07063V2 [Physics.Ins-Det] 23 Mar 2017 ACCEPTED by IEEE TRANSACTIONS on PLASMA SCIENCE, MARCH 2017 1
This work has been accepted for publication by IEEE Transactions on Plasma Science. The published version of the paper will be available online at http://ieeexplore.ieee.org. It can be accessed by using the following Digital Object Identifier: 10.1109/TPS.2017.2686648. c 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv:1701.07063v2 [physics.ins-det] 23 Mar 2017 ACCEPTED BY IEEE TRANSACTIONS ON PLASMA SCIENCE, MARCH 2017 1 Review of Inductive Pulsed Power Generators for Railguns Oliver Liebfried Abstract—This literature review addresses inductive pulsed the inductor. Therefore, a coil can be regarded as a pressure power generators and their major components. Different induc- vessel with the magnetic field B as a pressurized medium. tive storage designs like solenoids, toroids and force-balanced The corresponding pressure p is related by p = 1 B2 to the coils are briefly presented and their advantages and disadvan- 2µ tages are mentioned. Special emphasis is given to inductive circuit magnetic field B with the permeability µ. The energy density topologies which have been investigated in railgun research such of the inductor is directly linked to the magnetic field and as the XRAM, meat grinder or pulse transformer topologies. One therefore, its maximum depends on the tensile strength of the section deals with opening switches as they are indispensable for windings and the mechanical support. -
The Fundamentals of Ac Electric Induction Motor Design and Application
THE FUNDAMENTALS OF AC ELECTRIC INDUCTION MOTOR DESIGN AND APPLICATION by Edward J. Thornton Electrical Consultant E. I. du Pont de Nemours Houston, Texas and J. Kirk Armintor Senior Account Sales Engineer Rockwell Automation The Woodlands, Texas Edward J. (Ed) Thornton is an Electrical Electrical Mechanical Consultant in the Electrical Technology Coupling System Field System Consulting Group in Engineering at DuPont, in Houston, Texas. His specialty is the design, operation, and maintenance of electric power distribution systems and large motor installations. He has 20 years E , I T , w of consulting experience with DuPont. Mr. Thornton received his B.S. degree Figure 1. Block Representation of Energy Conversion for Motors. (Electrical Engineering, 1978) from Virginia Polytechnic Institute and State University. The coupling magnetic field is key to the operation of electrical He is a registered Professional Engineer in the State of Texas. apparatus such as induction motors. The fundamental laws associated with the relationship between electricity and magnetism were derived from experiments conducted by several key scientists J. Kirk Armintor is a Senior Account in the 1800s. Sales Engineer in the Rockwell Automation Houston District Office, in The Woodlands, Basic Design and Theory of Operation Texas. He has 32 years’ experience with The alternating current (AC) induction motor is one of the most motor applications in the petroleum, rugged and most widely used machines in industry. There are two chemical, paper, and pipeline industries. major components of an AC induction motor. The stationary or He has authored technical papers on motor static component is the stator. The rotating component is the rotor.