Methods for Improving Efficiency of Linear Induction Motor for Urban

Total Page:16

File Type:pdf, Size:1020Kb

Methods for Improving Efficiency of Linear Induction Motor for Urban 512 Methods for Improving Efficiency of Linear Induction Motor for Urban Transit∗ Nobuo FUJII∗∗, Toshiyuki HOSHI∗∗ and Yuichi TANABE∗∗ To improve the efficiency of the linear induction motors (LIMs) for transportation, the compensation of end effect for LIM with the restriction of length and the long LIM with small end effect essentially are discussed respectively. Based on the proposed concept, the com- pensation method of the magnet rotator type and AC coil type of compensators are developed respectively. The utility is not yet confirmed. As for the long LIM with length of 10 m, the analysis shows that the efficiencies are about 85% at 40 km/h and above 90% at 360 km/h respectively. Key Words: Linear Motor, Linear Induction Motor, LIM, Linear Drives, Transportation, Traction, Subway, Electromagnetic Analysis, End Effect, Compensator length of LIM, the compensation of end effect is the only 1. Introduction method for remarkable improve of the characteristics. The In a part of new type transit, linear induction motors compensating winding method was proposed previous- (1) ff (LIMs) have been used as a direct electromagnetic drive ly , but it was not e ective. The authors have proposed ff (2) device without adhesion. In Japan, the LIM-driven train the new type of end e ect compensator . The proposed ff has been used in the subway in some large cities, as the method is based on the new concept that the end e ect can LIM reduces the construction cost of tunnel because the be compensated only by supplying the eddy current syn- thin shape makes the sectional area of tunnel small and the chronizing with the LIM frequency in front of LIM, which large gradability enables the minimum length of the route. was derived from the previous study. In another case, the LIMs are used in magnetic levitation In the paper, as examples of the way to realize the vehicle called HSST which will be used for the urban or theory of compensation, the magnet rotator with perma- intercity transit, and in an air suspended vehicle with low nent magnets as a mechanical rotating type and the AC floor which aims to be used for a personal rapid transit. coil type with concentrated winding as a static compen- On these LIM-driven trains, there is the problem of sator are discussed. large power consumption. That is, the efficiency is not On the other hand, the long LIM is basic to the small ff satisfactory. In the induction type motor, the efficiency de- end e ect in case we can use the space along the vehi- pends on the operating slip and the small slip is required cle length. In the paper, the use of an onboard primary- fundamentally for the high efficiency. On the other hand, member type LIM with long armature core of 10 m is stud- the LIM has its own end effect which decreases the ef- ied analytically. ficiency and power factor in the small slip region. The 2. LIM with End Effect Compensator influence of end effect becomes serious as the speed in- ff creases. That is, the essential measure for high efficiency The end e ect compensator is attached in front of the is to overcome the end effect, which is a long-pending ob- entry end of primary of LIM to compensate the dynamic ff ject. entry end e ect. Under the condition that there is restriction on the 2. 1 Magnet rotator type of compensator Figure 1 shows the magnet rotator type of end effect ∗ Received 13th January, 2004 (No. 04-4019) compensator installed at the front of armature of LIM. The ∗∗ Department of Electrical and Electronic Systems Engi- magnet rotator has the poles of permanent magnets, and neering, Faculty of Information Science and Electrical En- the rotating speed ns (rps) is synchronized with the fre- gineering, Kyushu University, 6–10–1 Hakozaki, Higashi- quency of LIM. That is, ku, Fukuoka 812–8581, Japan. E-mail: [email protected] ns = 2 f1/p (1) Series C, Vol. 47, No. 2, 2004 JSME International Journal 513 Table 2 Numerals of magnet rotator type of compensator Fig. 1 Magnet rotator type of compensator Table 1 Example of LIM parameters (a) Thrust where, f1 (Hz) is the frequency of current in the primary winding of LIM and p the number of poles of the magnet rotator. The rotating speed is constant for the slip of LIM. This type of compensator has the merit that there is little (b) Efficiency power consumption except the joule loss by the eddy cur- Fig. 2 Characteristics of LIM with the magnet rotator type of rent in the secondary conducting plate, and it is a compact compensator size with large magnetomotive force and without ohmic loss. The phase adjustment between the compensator and the LIM can be done by controlling the inverter of LIM in Figure 2 shows the analytical characteristics of LIM the practical use. when the optimal phase of current for compensation is As it is very difficult to analyze of LIM with the supplied. The thrust and efficiency of LIM increase by magnet rotator type compensator exactly, the rotator is means of the compensator respectively. It is very difficult replaced by the equivalent static winding with rotating to analyze the overall efficiency at the current stage. We field (2). In the procedure, the 3-D dynamic electromag- are preparing for the experimental study using the test fa- netic analysis (Package ELF/MAGIC) for the real model cility shown in Fig. 3. of magnet rotator, and the 2-D finite element method 2. 2 Single-phase AC coil type of compensator (FEM: Package ANSYS) for the equivalent model were Figure 4 shows the compensator using AC coils to used. The quasi-3D analysis is done by using the 2-D avoid the mechanical rotation and to enable the adjustment FEM for the model of LIM with the compensator, con- of magnetomotive force (MMF) of compensator, although sidering with the effect of transverse direction by using it has the problem of poor power factor in the compensator Russell-Norsworthy coefficient. due to its own end effect. The frequency of compensator The characteristics of LIM with the magnet rotator current is equal to that of LIM. type of compensator are studied on the parameters as In this model, it is not difficult to analyze the over- shown in Tables 1 and 2. The parameter of LIM is sim- all characteristics of LIM with the compensator, compared ilar to that of the subway vehicle in Tokyo. with the magnet rotator type. The quasi-3D analysis using JSME International Journal Series C, Vol. 47, No. 2, 2004 514 (a) Thrust Fig. 3 Test facility of LIM (rotating secondary type) with the magnet rotator type of compensator (b) Efficiency Fig. 5 Characteristics of LIM with the coil type of compensator Fig. 4 AC Coil Type of Compensator elements for this model. Table 3 Design example of two-coil type compensator 2. 3 Consideration of overall efficiency The overall characteristics of the LIM and compen- sator must be studied for the net improvement by the com- pensator. The overall efficiency is expressed as: ηt = v2(FLIM + FC)/(PLIM + PC)(2) where, FLIM is the thrust in LIM region and it is not the thrust at LIM alone, v2 the speed of LIM, FC the thrust in the compensator region, PLIM the input power of LIM, PC the input power of compensator. For the magnet rotator type of compensator, PC is: 2-D FEM is done to analyze the model. As a numerical P = ω T + P = 2πn T + P (3) example, the LIM of Table 1 and the compensator shown C C C dl s C dl in Table 3 are used. where, the TC is the torque and Pdl the loss in driving The single-phase AC coil type of compensator gener- mechanism of the compensator. At the current stage, we ally generates the negative thrust in the region due to its don’t yet get the analytical technique to estimate TC in this own end effect. Figure 5 is the characteristics of LIM with model. ffi the coil type of compensator, in which the pole-pitch and We discuss about the e ciency on the condition ne- ffi pole-length of the compensator are selected optimally for glecting the iron loss. The e ciency in case of LIM alone the minimum braking thrust of compensator respectively. is defined by: The thrust characteristics of Fig. 5 (a) shows that the η0 = Fxv2/(Fxv2 + PL1 + PL2)(4) coil type has the ability to compensate the end effect and where, Fx is the thrust of LIM, PL1 the copper loss of the the MMF of compensator increases the overall thrust lin- primary winding of LIM and PL2 the copper loss in the eally. Figure 5 (b) shows the overall efficiency consider- secondary member (reaction rail). The overall efficiency ing both LIM and compensator. The overall efficiency de- of the LIM and compensator is expressed: creases when the MMF of compensator is large, because η = k F v /(k F v + P +k P + P + P )(5) the copper loss in the winding becomes large. The maxi- t t x 2 t x 2 L1 L L2 C1 C2 = + mum value of overall efficiency is large attractively. The ktFx FLIM FC (6) accuracy of computation is not yet confirmed because the where, kt is the thrust ratio to that of LIM alone, kL the numerical solution of FEM needs a very large number of ratio of secondary copper loss in the LIM region to that of Series C, Vol.
Recommended publications
  • A BRIEF INTRODUCTION to TUBULAR LINEAR MOTORS Linear Motors Provide Direct Thrust for Positioning a Payload, Eliminating the Need for Rotary-To-Linear Conversion
    PRODUCT OVERVIEW – DIRECT-DRIVE LINEAR MOTOR SYSTEMS A BRIEF INTRODUCTION TO TUBULAR LINEAR MOTORS Linear motors provide direct thrust for positioning a payload, eliminating the need for rotary-to-linear conversion. The three main direct-drive linear motion systems on the market today – iron-core, U-channel, and tubular linear motors – each have distinct advantages and disadvantages with respect to specific applications, for example regarding form factor, achievable force density, and efficiency. Understanding the differences will enable a designer to select the best motor option. Iron-core motor • Magnetic saturation The basic structure of the iron-core motor (Figure 1) is When the generated forces are pushed beyond the similar to that of an unrolled rotary motor with discrete normal operating range, the iron will reach magnetic stator and magnetic poles. It has a set of electromagnetic saturation and the force-to-current relationship coils wrapped around an iron core. The end effect of this is becomes non-linear, making control more difficult. to increase the amount of magnetic field generated by the • Large footprint coils, as the iron will contribute to the generated field The basic construction of iron-core motors requires a through realigning microscopic magnetic domains in the fairly large footprint. iron with the magnetic field from the coils. This is the major • Lateral and attractive (non-useful) forces advantage of the iron-core motor: for a given input of These forces are inherent to the motor design and current, a significant amount of force can be generated. require additional constraints. However, there are some disadvantages/behaviours that U-channel motor have to be considered: One of the main features of the U-channel motor (Figure 2) • Cogging is the absence of iron from the critical locations in the This is the movement of the motor’s iron forcer so as to motor.
    [Show full text]
  • High Speed Linear Induction Motor Efficiency Optimization
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2005-06 High speed linear induction motor efficiency optimization Johnson, Andrew P. (Andrew Peter) http://hdl.handle.net/10945/11052 High Speed Linear Induction Motor Efficiency Optimization by Andrew P. Johnson B.S. Electrical Engineering SUNY Buffalo, 1994 Submitted to the Department of Ocean Engineering and the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Naval Engineer and Master of Science in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology June 2005 ©Andrew P. Johnson, all rights reserved. MIT hereby grants the U.S. Government permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of A uthor ................ ............................... D.epartment of Ocean Engineering May 7, 2005 Certified by. ..... ........James .... ... ....... ... L. Kirtley, Jr. Professor of Electrical Engineering // Thesis Supervisor Certified by......................•........... ...... ........................S•:• Timothy J. McCoy ssoci t Professor of Naval Construction and Engineering Thesis Reader Accepted by ................................................. Michael S. Triantafyllou /,--...- Chai -ommittee on Graduate Students - Depa fnO' cean Engineering Accepted by . .......... .... .....-............ .............. Arthur C. Smith Chairman, Committee on Graduate Students DISTRIBUTION
    [Show full text]
  • Industrial Linear Motors
    Industrial Linear Motors Smart solutions are driven by PRODUCT OVERVIEW www.linmot.com Precision and dynamics In the products and in the everyday life of NTI AG, these values ​​are inseparable. NTI AG NTI AG is a global manufacturer of high quality tubular style linear motors and linear motor systems and thus focuses on the development, production and distribution of linear direct drives for use in industrial environments. Founded in 1993 as an independent business unit of the Sulzer Group, NTI AG has been in operation since 2000 as an independent company. NTI AG headquarters are located in Spreitenbach, near Zurich in Switzerland. In addition to three production sites in Switzerland and Slovakia, NTI AG maintains a sales and support office LinMot® USA Inc. to cover the Americas. Mission The brands LinMot® for industrial linear motors and MagSpring® for magnetic springs are offered LinMot offers its customers a sophisticated and dedicated linear to customers worldwide. NTI AG drive system that can be easily integrated into all leading control maintains an experienced customer systems. A high degree of standardization, delivery from stock and consultant sales and support a worldwide distribution network insure the immediate availability network of over 80 locations and excellent customer support. worldwide. For the realization of linear motion Our aim is to push linear direct drive technology and make it a NTI AG is always a competent and standard machine design element. We offer highly efficient drive reliable partner. solutions that make a major contribution to the overall resource conservation effort. 2 3 Linear Motors Position and Temperature sensors Electronic nameplate Stator Winding Slider with Neodynium Magnets Payload Mounting LinMot linear motors employ a direct electromagnetic principle.
    [Show full text]
  • Electromagnetic Launcher: Review of Various Structures
    Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 9 Issue 09, September-2020 Electromagnetic Launcher : Review of Various Structures Siddhi Santosh Reelkar Prof. Dr. U. V. Patil Department of Electrical Engineering, Department of Electrical Engineering, Government College of Engineering, Government College of Engineering, Karad Karad Prof. Dr. V. V. Khatavkar Department of Electrical Engineering, P.E.S. Modern college of Engineering, Pune Hrishikesh Mehta Utkarsh Alset Aethertec Innovative Solutions, Aethertec Innovative Solutions, Bavdhan, Pune Bavdhan, Pune Abstract— A theoretic review of electromagnetic coil-gun This paper is mainly focusing the basic principle of launcher and its types are illustrated in this paper. In recent electromagnetic coil-gun launcher, inductance and resistance years conventional launchers like steam launchers, chemical calculations, construction and modeling concept of different launchers are replaced by electromagnetic launchers with coil-gun launcher. auxiliary benefits. The electromagnetic launchers like rail- gun and coil-gun elevated with multi pole field structure delivers II. WORKING PRINCIPLE great muzzle velocity and huge repulse force in limited time. Rail gun has two parallel rails from which object is launched. Various types of coil-gun electromagnetic launchers are When current passes through the rails to the object it compared in this paper for its structures and characteristics. The paper focuses on the basic formulae for calculating the produces arc. Because of high current pulse it has more values of inductance and resistance of electromagnetic contact friction losses [4]. Compare to the rail-gun launcher, launchers. Coil-gun launchers have no contact friction losses as there is no electrical contact between coils and object.
    [Show full text]
  • Linear Induction Motor
    Linear Induction Motor Electrical and Computer Engineering Tyler Berchtold, Mason Biernat and Tim Zastawny Project Advisor: Professor Steven Gutschlag 4/21/2016 2 Outline of Presentation • Background and Project Overview • Microcontroller System • Final Design • Economic Analysis • Hardware • State of Work Completed • Conclusion 3 Outline of Presentation • Background and Project Overview • Microcontroller System • Final Design • Economic Analysis • Hardware • State of Work Completed • Conclusion 4 Alternating Current Induction Machines • Most common AC machine in industry • Produces magnetic fields in an infinite loop of rotary motion • Current-carrying coils create a rotating magnetic field • Stator wrapped around rotor [1] [2] 5 Rotary To Linear [3] 6 Linear Induction Motor Background • Alternating Current (AC) electric motor • Powered by a three phase voltage scheme • Force and motion are produced by a linearly moving magnetic field • Used in industry for linear motion and to turn large diameter wheels [4] 7 Project Overview • Design, construct, and test a linear induction motor (LIM) • Powered by a three-phase voltage input • Rotate a simulated linear track and cannot exceed 1,200 RPM • Monitor speed, output power, and input frequency • Controllable output speed [5] 8 Initial Design Process • Linear to Rotary Model • 0.4572 [m] diameter 퐿 = 훳푟 (1.1) • 0.3048 [m] arbitrary stator length • Stator contour designed for a small air gap • Arc length determined from stator length and diameter • Converted arc length from a linear motor to the circumference of a rotary motor • Used rotary equations to determine required [6] frequency and verify number of poles 9 Rotational to Linear Speed (1.2) (1.3) 10 Pole Pitch and Speed (1.4) • For fixed length stator τ= L/p • L = Arc Length τ A B C A B C [7] 11 Linear Synchronous Speed Ideal Linear Synchronous Speed vs.
    [Show full text]
  • Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L. Publication date: 2009 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Zambrano, H. A., Walther, J. H., & Jaffe, R. L. (2009). Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces. Poster session presented at NanoEurope Symposium 2009 : Moving Nanotechnology to Market, Rapperswil, Switzerland. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces Harvey A. Zambranoa, Jens H. Walthera,b and Richard L. Jaffec aDepartment of Mechanical Engineering, DTU, Denmark. bChair of Computational Science, ETH Zurich, Switzerland. cNASA Ames Research Center, Moffett Field, CA 94035, USA. We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube.
    [Show full text]
  • Linear Motors Innovative Motion Control
    Linear Motors Innovative Motion Control ABOUT ETEL LINEAR MOTORS What is a linear motor? Linear motors are a special class of synchronous brushless servo motors. They work like torque Over the last 20 years, direct drive linear motors have provided significant performance motors, but are opened up and rolled out flat. Through the electromagnetic interaction between improvements in numerous applications covering a wide range of high-tech industries. Today, a coil assembly (primary part) and a permanent magnet assembly (secondary part), the electrical direct drive technology is recognized as a leading solution towards meeting the requirements of energy is converted to linear mechanical energy with a high level of efficiency. Other common high productivity, improved accuracy, and increased dynamics of modern machinery. names for the primary component are motor, moving part, slider or glider, while the secondary part is also called magnetic way or magnet track. Direct drive essentially means the load and motor are directly connected; or in other words, the motor “directly drives” the load. Significant improvement to stiffness and a more compact solution Since linear motors are designed to produce high force at low speeds or even when stationary, are among the benefits of this technology. In addition to providing high dynamic performance, the sizing is not based on power but purely on force, contrary to traditional drives. linear motors reduce cost of ownership, simplify the design of the machine and eliminate wear and maintenance. The moving part of a linear motor is directly coupled to the machine load, saving space, simplifying machine design, eliminating backlash, and removing potential failure sources such as Since its founding in 1974, ETEL has been exclusively dedicated to the development of direct ballscrew systems, couplings, belts, or other mechanical transmissions.
    [Show full text]
  • Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives
    Review Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives Matthias Hunstig Grube 14, 33098 Paderborn, Germany; [email protected] Academic Editor: Delbert Tesar Received: 26 November 2016; Accepted: 18 January 2017; Published: 6 February 2017 Abstract: Piezoelectric inertia motors—also known as stick-slip motors or (smooth) impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for miniaturisation due to their simple structure and inherent fine-positioning capability. Originally developed for positioning in microscopy in the 1980s, they have nowadays also found application in mass-produced consumer goods. Recent research results are likely to enable more applications of piezoelectric inertia motors in the future. This contribution gives a critical overview of their historical development, functional principles, and related terminology. The most relevant aspects regarding their design—i.e., friction contact, solid state actuator, and electrical excitation—are discussed, including aspects of control and simulation. The article closes with an outlook on possible future developments and research perspectives. Keywords: inertia motor; stick-slip motor; smooth impact drive; piezeoelectric motor; review 1. Introduction Piezoelectric actuators have long been used in diverse applications, especially because of their short response time and high resolution. The major drawback of these solid state actuators in positioning applications is their small stroke: actuators made of state-of-the-art lead zirconate titanate (PZT) ceramics only reach strains up to 2 . A typical piezoelectric actuator with 10 mm length thus reaches a maximum stroke of only 20 µm.h Bending actuator designs [1] and other mechanisms [2] can increase the stroke at the expense of stiffness and actuation force ([3]; [4] (pp.
    [Show full text]
  • Linear Motor for Linear Compressor K
    Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Linear Motor For Linear Compressor K. Park LG Electronics Inc. E. Hong LG Electronics Inc. H. K. Lee LG Electronics Inc. Follow this and additional works at: https://docs.lib.purdue.edu/icec Park, K.; Hong, E.; and Lee, H. K., " Linear Motor For Linear Compressor " (2002). International Compressor Engineering Conference. Paper 1544. https://docs.lib.purdue.edu/icec/1544 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html C12-1 LINEAR MOTOR FOR LINEAR COMPRESSOR *Kyeongbae Park, Senior Research Engineer, Digital Appliance Laboratory, LG Electronics Inc, 327-23 Gasan-dong, Geumchen-gu, Seoul, Korea; Phone: 82-2-818-7953, Email: [email protected] Eunpyo Hong, Senior Research Engineer, Digital Appliance Laboratory, LG Electronics Inc, 327-23 Gasan-dong, Geumchen-gu, Seoul, Korea; Phone: 82-2-818-7950, Email: [email protected] Hyeong-Kook Lee, Chief Research Engineer, Digital Appliance Laboratory, LG Electronics Inc, 327-23 Gasan-dong, Geumchen-gu, Seoul, Korea; Phone: 82-2-818-3502, Email: [email protected] ABSTRACT In contrast to the conventional rotational compressors, the linear compressor is driven by a linear motor directly coupled with a piston. So the performance of the linear compressor is strongly dependent on the characteristics of the linear motor. In addition to high efficiency, the parameters of a linear motor should be nearly constant regardless of the amount of the current flow and position of the piston in order to control the position of piston without an additional sensor.
    [Show full text]
  • Development of a Bendable Permanent-Magnet Tubular Linear Motor Christian Urban, Richard Günther, Thomas Nagel, René Richter, and Robert Witt
    IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 8, AUGUST 2012 2367 Development of a Bendable Permanent-Magnet Tubular Linear Motor Christian Urban, Richard Günther, Thomas Nagel, René Richter, and Robert Witt Faculty of Electrical Engineering and Information Technology, Institute of Electromechanical and Electronic Design, Dresden University of Technology, Dresden 01062, Germany This paper presents a new flexible linear actuator. It is a two-phase permanent-magnet tubular linear motor. An elastomer offers the desired actuator flexibility both between the coils of the stator and between the magnets in the mover. We determined the motor dimen- sions in a numerical parameter optimization and used various finite element models. The novel artificial muscle actuator is designed for tensile loads. It is electrically powered and obtains variable forces. Weights up to 750 g were lifted with a minimal bending radius of 200 mm. The outer diameter of the flexible linear direct drive measures about 30 mm. Index Terms—Bendable linear actuator, electric propulsion, flexible linear actuator, tubular linear permanent-magnet motors. I. INTRODUCTION LECTROMAGNETIC linear direct drives are able to E realize high forces, large strokes, high reliability, and fast response [1], [2]. A bendable actuator combining these Fig. 1. Basic structure of the bendable linear actuator. advantages might extend the moving range and the flexibility in robotics. For example, there are ambitions to build a power assist suit with flexible electric powered actuators [3]. Although there are bendable pneumatic muscle actuators (PMA) [4], a bendable electromagnetic linear motor neither needs bulky valves and piping nor compressors. The flexible linear electromagnetic actuator described in [3] Fig.
    [Show full text]
  • Development of a Low-Inductance Linear Alternator for Stirling Power Convertors
    NASA/TM—2017-219699 AIAA–2017–4961 Development of a Low-Inductance Linear Alternator for Stirling Power Convertors Steven M. Geng and Nicholas A. Schifer Glenn Research Center, Cleveland, Ohio November 2017 NASA STI Program . in Profile Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientific and to the advancement of aeronautics and space science. technical findings by NASA-sponsored The NASA Scientific and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientific, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientific and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major significant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis.
    [Show full text]
  • Development of Resonating Oscillating Linear Engine Alternator; Instrumentation and Control
    Graduate Theses, Dissertations, and Problem Reports 2018 Development of Resonating Oscillating Linear Engine Alternator; Instrumentation and Control Fereshteh Mahmudzadeh Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Mahmudzadeh, Fereshteh, "Development of Resonating Oscillating Linear Engine Alternator; Instrumentation and Control" (2018). Graduate Theses, Dissertations, and Problem Reports. 7211. https://researchrepository.wvu.edu/etd/7211 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Development of Resonating Oscillating Linear Engine Alternator; Instrumentation and Control Fereshteh Mahmudzadeh Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Parviz Famouri, Ph.D., Chair Muhammad A. Choudhry, Ph.D. Katerina Goseva-Popstojanova, Ph.D. Lane Department of Computer Science and Electrical Engineering Morgantown, West Virginia 2018 Keywords: Linear Engine Alternator, Control Copyright 2018 Fereshteh Mahmudzadeh Abstract Development of Resonating Oscillating Linear Engine Alternator; Instrumentation and Control Fereshteh Mahmudzadeh The Oscillating Linear Engine and Alternator (OLEA) machine is a micro power generator that operates on natural gas.
    [Show full text]