GUIDE to NUTRITIONAL SUPPLEMENTS This Page Intentionally Left Blank GUIDE to NUTRITIONAL SUPPLEMENTS

Total Page:16

File Type:pdf, Size:1020Kb

GUIDE to NUTRITIONAL SUPPLEMENTS This Page Intentionally Left Blank GUIDE to NUTRITIONAL SUPPLEMENTS GUIDE TO NUTRITIONAL SUPPLEMENTS This page intentionally left blank GUIDE TO NUTRITIONAL SUPPLEMENTS Editor BENJAMIN CABALLERO Elsevier Ltd., The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK ª 2009 Elsevier Ltd. The following articles are US Government works in the public domain and not subject to copyright: CAROTENOIDS/Chemistry, Sources and Physiology VEGETARIAN DIETS All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (+44) 1865 843830, fax (+44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Material in this work originally appeared in the Encyclopedia of Human Nutrition, Second Edition, edited by Benjamin Caballero, Lindsay Allen and Andrew Prentice (Elsevier, Ltd 2005). Library of Congress Control Number: 2009929980 A catalogue record for this book is available from the British Library ISBN 978-0-12-375109-6 This book is printed on acid-free paper Printed and bound in the EU EDITORIAL ADVISORY BOARD Christopher Bates Janet C King MRC Human Nutrition Research Children’s Hospital Oakland Research Institute Cambridge, UK Oakland, CA, USA Carolyn D Berdanier Anura Kurpad University of Georgia St John’s National Academy of Health Sciences Athens, GA, USA Bangalore, India Bruce R Bistrian Harvard Medical School Kim Fleisher Michaelson Boston, MA, USA The Royal Veterinary and Agricultural University Frederiksberg, Denmark Johanna T Dwyer Frances Stern Nutrition Center Carlos Monteiro Boston, MA, USA University of Saˆo Paulo Paul Finglas Saˆo Paulo, Brazil Institute of Food Research Norwich, UK John M Pettifor University of the Witwatersrand & Chris Terrence Forrester Hani-Baragwanath Hospital Tropical Medicine Research Institute Johannesburg, South Africa University of the West Indies, Mona Campus, Kingston, Jamaica Barry M Popkin Hedley C Freake University of North Carolina University of Connecticut Chapel Hill, NC, USA Storrs, CT, USA Michele J Sadler Catherine Geissler MJSR Associates King’s College London Ashford, UK London, UK Susan A Jebb Ricardo Uauy MRC Human Nutrition Research London School of Hygiene and Tropical Medicine Cambridge, UK UK and INTA University of Chile, Santiago, Chile Rachel Johnson David York University of Vermont Pennington Biomedical Research Center Burlington, VT, USA Baton Rouge, LA, USA This page intentionally left blank PREFACE he use of dietary supplements continues to increase worldwide. In the US, sales of dietary supplement is T reaching $30 billion per year, but their use transcend cultural barriers, and dietary supplement products now can be found virtually anywhere in the world. One reason for the widespread use of dietary supplements is the increasing concern in the general population about diet-related chronic diseases, such as diabetes, arthritis, and cardiovascular diseases. In addition, limited access to preventive health care (particularly in the US) may encourage people to self- medicate, as a means to reduce any perceived risk of disease. Claims on the curative properties of dietary supplements abound, many times based on individual testimonials or unsubstantiated data. Still, most health practitioners are likely to confront the decision of whether to recommend (or to allow) a nutritional supplement, based on their own experience and on the best scientific evidence available. This compilation of articles from the acclaimed EHN focuses on nutritional supplements1. These include the traditional, well-known substances such as vitamins and major minerals, present in most diets consumed by humans. They also include other food constituents such as certain fatty acids and amino acids, fiber, carotenoids, and other compounds. Some of these may not have a defined nutritional role, but do affect health by their involvement in specific physiological functions. In addition, several chapters describe key biological mechanisms related to dietary supplement effects, such as cellular antioxidant activity. We trust that the scientific information provided in this compilation will assist the health care professional and the educated consumer in making reasonable choices when dealing with the sometimes limited evidence on supplements’ effects. We also hope that this book will provide a scientific basis for assessing the validity of claims and indications of the ever increasing number of supplements that are coming into the market. Benjamin Caballero Johns Hopkins University, Maryland USA 1 The other group of supplements would include botanicals, extracts from animal tissues, and other compounds not commonly present in human diets. This page intentionally left blank CONTRIBUTORS L H Allen L Cobiac University of California at Davis, CSIRO Health Sciences and Nutrition, Davis, CA, USA Adelaide, SA, Australia J J B Anderson C H C Dejong University of North Carolina, University Hospital Maastricht, Chapel Hill, NC, USA Maastricht, The Netherlands L J Appel M L Dreyfuss Johns Hopkins University, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Baltimore, MD, USA M J Arnaud J Dwyer Nestle S.A., Tufts University, Vevey, Switzerland Boston, MA, USA A Arin˜ o C A Edwards University of Zaragoza, University of Glasgow, Zaragoza, Spain Glasgow, UK G E Bartley J L Ensunsa Agricultural Research Service, University of California at Davis, Albany, CA, USA Davis, CA, USA C J Bates C Feillet-Coudray MRC Human Nutrition Research, National Institute for Agricultural Research, Cambridge, UK Clermont-Ferrand, France J A Beltra´n H C Freake University of Zaragoza, University of Connecticut, Zaragoza, Spain Storrs, CT, USA D A Bender L Galland University College London, Applied Nutrition Inc., London, UK New York, NY, USA I F F Benzie M Gueimonde The Hong Kong Polytechnic University, University of Turku, Hong Kong, China Turku, Finland A Cassidy Z L Harris School of Medicine, University of East Anglia, Johns Hopkins Hospital and School of Medicine, Norwich, UK Baltimore, MD, USA x CONTRIBUTORS A Herrera P Kirk University of Zaragoza, University of Ulster, Zaragoza, Spain Coleraine, UK B S Hetzel R D W Klemm Women’s and Children’s Hospital, Johns Hopkins University, North Adelaide, SA, Australia Baltimore, MD, USA J M Hodgson D Kritchevsky University of Western Australia, Perth, WA, Australia Wistar Institute, Philadelphia, PA, USA M F Holick Boston University Medical Center, R Lang Boston, MA, USA University of Teeside, Middlesbrough, UK C Hotz National Institute of Public Health, A Laurentin Morelos, Mexico Universidad Central de Venezuela, Caracas, Venezuela R Houston Emory University, Atlanta, A R Leeds GA, USA King’s College London, London, UK B K Ishida Agricultural Research Service, BLo¨ nnerdal Albany, CA, USA University of California at Davis, Davis, CA, USA W P T James International Association for the Study of Obesity Y C Luiking International Obesity Task Force Offices, University Hospital Maastricht, London, UK Maastricht, The Netherlands S A Jebb MRC Human Nutrition Research, R J Maughan Cambridge, UK Loughborough University, Loughborough, UK I T Johnson Institute of Food Research, S S McDonald Norwich, UK Raleigh, NC, USA C L Keen J McPartlin University of California at Davis, Trinity College, Davis, CA, USA Dublin, Ireland J E Kerstetter R P Mensink University of Connecticut, Maastricht University, Storrs, CT, USA Maastricht, The Netherlands M Kiely A R Michell University College Cork, St Bartholomew’s Hospital, Cork, Ireland London, UK CONTRIBUTORS xi D M Mock CPSa´nchez-Castillo University of Arkansas for Medical Sciences, National Institute of Medical Sciences and Nutrition, Little Rock, AR, USA Salvador Zubira´n, Tlalpan, Mexico T A Mori K J Schulze University of Western Australia, Perth, WA, Australia Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA P A Morrissey University College Cork, J Shedlock Cork, Ireland Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA J L Napoli University of California, R Shrimpton Berkeley, CA, USA Institute of Child Health, London, UK F Nielsen Grand Forks Human Nutrition Research Center, A P Simopoulos Grand Forks, ND, USA The Center for Genetics, Nutrition and Health, Washington, DC, USA S S Percival University of Florida, P B Soeters Gainesville, FL, USA University Hospital Maastricht, Maastricht, The Netherlands M F Picciano K Srinath Reddy National Institutes of Health, All India Institute of Medical Sciences, Bethesda, MD, USA New Delhi, India S Pin S Stanner Johns Hopkins Hospital and School of Medicine, British Nutrition Foundation, Baltimore, MD, USA London, UK Y Rayssiguier J J Strain National Institute for Agricultural Research, University of Ulster, Clermont-Ferrand, France Coleraine, UK P Roncale´s C L Stylianopoulos University of Zaragoza, Johns Hopkins University, Zaragoza, Spain Baltimore, MD, USA A C Ross S A Tanumihardjo The Pennsylvania State University, University of Wisconsin-Madison, University Park, PA, USA Madison, WI, USA M J Sadler E H M Temme MJSR Associates, University of Leuven, Ashford, UK Leuven, Belgium S Salminen D I Thurnham University of Turku, University of Ulster, Turku, Finland Coleraine, UK xii CONTRIBUTORS D L Topping H Wiseman CSIRO Health Sciences and Nutrition,
Recommended publications
  • Homology Modeling and Structural Analysis of Theflavanone 3- Hydroxylase (F3H) and Flavonoid 3`Hydroxylase (F3`H) Genes from Ginkgo Biloba (L.)
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 7, Issue 1 (Jan. – Feb. 2021), PP 01-21 www.iosrjournals.org Homology Modeling and Structural Analysis of theFlavanone 3- Hydroxylase (F3H) and Flavonoid 3`hydroxylase (F3`H) Genes from Ginkgo biloba (L.) Mohamed ZoelfakarSayedAhmed* (Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-MatariyaStreet, El-Matariya B.O.P 11753 El-Matariya, Cairo, Egypt.) *corresponding author: (Ahmed, M.Z.S.) Abstract: Ginkgo biloba L. is a well-known living gymnosperm fossil that has medicinal, biologically and economically value in the worldwide. In this study, bioinformatics analysis based on Homology modeling were obtainedsuch as flavanone 3-hydroxylase (GbF3H) and flavonoid 3`-hydroxylase (GbF3`H) from Ginkgo biloba L. are key enzymes in involved pathway of plant flavonoids and the anthocyanin.The full-length cDNA of F3H gene sequence (GbF3H) was isolated from G. bilobacontained a 1074 bp open reading frame(ORF) encoding a 357- amino-acid protein. The deduced GbF3H protein showed high identities to other plant F3Hs.For the full-length cDNA GbF3`H gene was contained a1674 bpopen reading frame (ORF)encoding a 556 amino acid protein.As well as, Multiple Sequence Alignment (MSAs) of selected of 30 amino acid were done using MEGA7 software with high identify and similarity.Phylogenetic analysis was performed using the amino acid sequence of GbF3H and GbF3′H with other known plant-specific F3Hs and F3′Hs to each Gymnosperm (Naked seed) and Angiosperms (Flower plant).The parameters computed by ProtParam software was obtained to the molecular weight and grand average of hydropathicity (GRAVY) for GbF3H and GbF3`H protein.The parameters computed by Protscale software was obtained to hydrophilicity scales based on different chemical and physical properties of the amino acids.We have investigated homology modelling and structure analysis to characterize of two genes (GbF3H and GbF3`H) from Ginkgo biloba to identity percentage using the SWISS-MODEL template library (SMTL).
    [Show full text]
  • Nutritional Biochemistry of the Vitamins, Second Edition David A
    Cambridge University Press 0521803888 - Nutritional Biochemistry of the Vitamins, Second Edition David A. Bender Index More information Index abetalipoproteinemia, 36, 125 adenosylhomocysteine, 290f absorption, 9 adequacy, criteria, 10–2 biotin, 325, 329 adequate intake (see also reference intakes), 21, calcium, 93 23 carotene, 35, 40–1, 42 adipic acid oxidation, 191–2 folate, 273–4 adipocytes, vitamin D, 97 iron, 369 adipose tissue, carotene, 72 niacin, 203 retinol, 37 pantothenic acid, 346 vitamin D, 106 phosphate, 93 cADP-ribose, 219–21 riboflavin, 175–6 ADP-ribose cyclase, 219, 220f thiamin, 150–1 ADP-ribosyltransferase, 204f, 206, 215–7 vitamin A, 35–6 adrenal gland, lycopene, 71 vitamin B6, 234 adriamycin, 194, 195f vitamin B12, 300–1, 314 advanced glycation endproducts, 264 vitamin C, 361 aglycone, 402 vitaminD,83 agmatine, 240t vitamin E, 113 AI (adequate intake, see also reference intakes), vitamin K, 133–4 21, 23 accessory food factors, 1 β-alanine, 266 Accutane®,72 alanine, transamination, 242t acetomenaphthone, 132f alanine-glyoxylate transaminase, 20t acetyl choline, 165, 221, 390f alcohol, 62, 151 acetyl CoA carboxylase, 330, 333t dehydrogenase, vitamin A, 38 acetylator status, 355 aldehyde dehydrogenase, 235 N-acetylglutamate, 306 aldehyde oxidase, 41f, 188, 207 activation coefficient, glutathione reductase, alfacalcidiol, 107 197 alkaline phosphatase, 96, 103, 104t, 235 transaminases, 251–2 allicin, 402f transketolase, 168–9 alliin, 402f acute phase proteins, 64 allinase, 401 acyl carnitine excretion, 306 allithiamin, 149f, 150 acyl carrier protein, 350 alloxan, 219, 229–30 acyl CoA dehydrogenase, 185, 191–2 all-R-tocopherol, 112 acyl CoA:retinol acyltransferase, 36 allyl sulfur compounds, 401–2 acylation, proteins 352 alopecia, 97, 101, 337 S-adenosyl methionine, 284, 289, 290f Alzheimer’s disease, 130, 169–70, 346, 356 decarboxylase, 267 amadorins, 264 463 © Cambridge University Press www.cambridge.org Cambridge University Press 0521803888 - Nutritional Biochemistry of the Vitamins, Second Edition David A.
    [Show full text]
  • Discovery of Industrially Relevant Oxidoreductases
    DISCOVERY OF INDUSTRIALLY RELEVANT OXIDOREDUCTASES Thesis Submitted for the Degree of Master of Science by Kezia Rajan, B.Sc. Supervised by Dr. Ciaran Fagan School of Biotechnology Dublin City University Ireland Dr. Andrew Dowd MBio Monaghan Ireland January 2020 Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Master of Science, is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ID No.: 17212904 Kezia Rajan Date: 03rd January 2020 Acknowledgements I would like to thank the following: God, for sending me angels in the form of wonderful human beings over the last two years to help me with any- and everything related to my project. Dr. Ciaran Fagan and Dr. Andrew Dowd, for guiding me and always going out of their way to help me. Thank you for your patience, your advice, and thank you for constantly believing in me. I feel extremely privileged to have gotten an opportunity to work alongside both of you. Everything I’ve learnt and the passion for research that this project has sparked in me, I owe it all to you both. Although I know that words will never be enough to express my gratitude, I still want to say a huge thank you from the bottom of my heart.
    [Show full text]
  • Unity in Diversity, a Systems Approach to Regulating Plant Cell Physiology by 2-Oxoglutarate-Dependent Dioxygenases
    ORIGINAL RESEARCH ARTICLE published: 11 March 2015 doi: 10.3389/fpls.2015.00098 Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases Siddhartha Kundu*† School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India Edited by: Could a disjoint group of enzymes synchronize their activities and execute a complex Stefan Martens, Edmund Mach multi-step, measurable, and reproducible response? Here, I surmise that the Foundation, Italy alpha-ketoglutarate dependent superfamily of non-haem iron (II) dioxygenases could Reviewed by: influence cell physiology as a cohesive unit, and that the broad spectra of substrates Qing Liu, Commonwealth Scientific and Industrial Research transformed is an absolute necessity to this portrayal. This eclectic group comprises Organisation, Australia members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, Vinay Kumar, National Institute of and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to Plant Genome Research, India succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is *Correspondence: followed by an additional specialized conversion. The domain profile of a protein sequence Siddhartha Kundu, School of Computational and Integrative was used as an index of miscellaneous reaction chemistry and interpreted alongside Sciences, Jawaharlal Nehru existent kinetic data in a linear model of integrated function. Statistical parameters University, New Mehrauli Road, were inferred by the creation of a novel, empirically motivated flat-file database of New Delhi, Delhi 110067, India over 3800 sequences (DB2OG) with putative 2-oxoglutarate dependent activity. The e-mail: siddhartha_kundu@ yahoo.co.in; collated information was categorized on the basis of existing annotation schema.
    [Show full text]
  • Unity in Diversity, a Systems Approach to Regulating Plant Cell Physiology by 2-Oxoglutarate-Dependent Dioxygenases
    ORIGINAL RESEARCH ARTICLE published: 11 March 2015 doi: 10.3389/fpls.2015.00098 Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases Siddhartha Kundu*† School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India Edited by: Could a disjoint group of enzymes synchronize their activities and execute a complex Stefan Martens, Edmund Mach multi-step, measurable, and reproducible response? Here, I surmise that the Foundation, Italy alpha-ketoglutarate dependent superfamily of non-haem iron (II) dioxygenases could Reviewed by: influence cell physiology as a cohesive unit, and that the broad spectra of substrates Qing Liu, Commonwealth Scientific and Industrial Research transformed is an absolute necessity to this portrayal. This eclectic group comprises Organisation, Australia members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, Vinay Kumar, National Institute of and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to Plant Genome Research, India succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is *Correspondence: followed by an additional specialized conversion. The domain profile of a protein sequence Siddhartha Kundu, School of Computational and Integrative was used as an index of miscellaneous reaction chemistry and interpreted alongside Sciences, Jawaharlal Nehru existent kinetic data in a linear model of integrated function. Statistical parameters University, New Mehrauli Road, were inferred by the creation of a novel, empirically motivated flat-file database of New Delhi, Delhi 110067, India over 3800 sequences (DB2OG) with putative 2-oxoglutarate dependent activity. The e-mail: siddhartha_kundu@ yahoo.co.in; collated information was categorized on the basis of existing annotation schema.
    [Show full text]
  • The Chemistry of L-Ascorbic Acid Derivatives in the Asymmetric Synthesis of C2- and C3- Substituted Aldono-Γ-Lactones
    The Chemistry of L-Ascorbic Acid Derivatives in the Asymmetric Synthesis of C2- and C3- Substituted Aldono-γ-lactones A Dissertation by Ayodele O. Olabisi M. S., Wichita State University, 2004 B. S., Wichita State University, 1999 Submitted to the College of Liberal Arts and Sciences and the Faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy August 2005 The Chemistry of L-Ascorbic Acid Derivatives in the Asymmetric Synthesis of C2- and C3- Substituted Aldono-γ-lactones I have examined the final copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. ______________________________________ Professor Kandatege Wimalasena, Committee Chair We have read this dissertation and recommend its acceptance: __________________________________________ Professor William C. Groutas, Committee Member __________________________________________ Professor Ram P. Singhal, Committee Member __________________________________________ Professor Francis D’Souza, Committee Member __________________________________________ Professor George R. Bousfield, Committee Member Accepted for the College of Liberal Arts and Sciences __________________________________________ Dr. William Bischoff, Dean Accepted for the Graduate School __________________________________________ Dr. Susan K. Kovar, Dean ii DEDICATION To My Parents iii ACKNOWLEDMENTS I wish to express my deepest and sincerest appreciation to my advisor, Dr Kandatege Wimalasena for his positive guidance, enlightened mentoring and encouragement. His passion for the subject matter has greatly improved my knowledge and interest. My sincere appreciation extends to Dr. Shyamali Wimalasena and Dr. Mathew Mahindaratne, who helped me with my initial research training and their assistance in the preparation of my manuscripts.
    [Show full text]
  • Downloaded and Investigated Further
    Kundu BMC Res Notes (2021) 14:80 https://doi.org/10.1186/s13104-021-05477-z BMC Research Notes RESEARCH NOTE Open Access Fe(2)OG: an integrated HMM profle-based web server to predict and analyze putative non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenase function in protein sequences Siddhartha Kundu* Abstract Objective: Non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenases (i2OGdd), are a taxonomically and func- tionally diverse group of enzymes. The active site comprises ferrous iron in a hexa-coordinated distorted octahedron with the apoenzyme, 2-oxoglutarate and a displaceable water molecule. Current information on novel i2OGdd mem- bers is sparse and relies on computationally-derived annotation schema. The dissimilar amino acid composition and variable active site geometry thereof, results in difering reaction chemistries amongst i2OGdd members. An addi- tional need of researchers is a curated list of sequences with putative i2OGdd function which can be probed further for empirical data. Results: This work reports the implementation of Fe(2)OG , a web server with dual functionality and an extension of previous work on i2OGdd enzymes (Fe(2)OG ≡{H2OGpred, DB2OG}) . Fe(2)OG , in this form is completely revised, updated (URL, scripts, repository) and will strengthen the knowledge base of investigators on i2OGdd biochem- istry and function. Fe(2)OG , utilizes the superior predictive propensity of HMM-profles of laboratory validated i2OGdd members to predict probable active site geometries in user-defned protein sequences. Fe(2)OG , also pro- vides researchers with a pre-compiled list of analyzed and searchable i2OGdd-like sequences, many of which may be clinically relevant.
    [Show full text]
  • An Approach to Using Toxicogenomic Data in US EPA Human Health Risk
    DRAFT EPA/600/R-09/028A DO NOT CITE OR QUOTE May 2009 External Review Draft An Approach to Using Toxicogenomic Data in U.S. EPA Human Health Risk Assessments: A Dibutyl Phthalate Case Study NOTICE THIS DOCUMENT IS AN EXTERNAL REVIEW DRAFT. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent U.S. EPA policy. It is being circulated for comment on its technical policy implications. Please note gene and protein names in this document have been standardized using information from the Rat Genome Project. National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 DISCLAIMER This document is a draft for review purposes only and does not constitute U.S. EPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is a draft for review purposes only and does not constitute Agency policy. ii DRAFT—DO NOT CITE OR QUOTE CONTENTS LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ....................................................................................................................... ix LIST OF ABBREVIATIONS AND ACRONYMS ...................................................................... xi PREFACE ......................................................................................................................................xv
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Nutritional Biochemistry of the Vitamins
    This page intentionally left blank Nutritional Biochemistry of the Vitamins SECOND EDITION The vitamins are a chemically disparate group of compounds whose only common feature is that they are dietary essentials that are required in small amounts for the normal functioning of the body and maintenance of metabolic integrity. Metabol- ically, they have diverse functions, such as coenzymes, hormones, antioxidants, mediators of cell signaling, and regulators of cell and tissue growth and differen- tiation. This book explores the known biochemical functions of the vitamins, the extent to which we can explain the effects of deficiency or excess, and the sci- entific basis for reference intakes for the prevention of deficiency and promotion of optimum health and well-being. It also highlights areas in which our knowledge is lacking and further research is required. This book provides a compact and au- thoritative reference volume of value to students and specialists alike in the field of nutritional biochemistry, and indeed all who are concerned with vitamin nutrition, deficiency, and metabolism. David Bender is a Senior Lecturer in Biochemistry at University College London. He has written seventeen books, as well as numerous chapters and reviews, on various aspects of nutrition and nutritional biochemistry. His research has focused on the interactions between vitamin B6 and estrogens, which has led to the elucidation of the role of vitamin B6 in terminating the actions of steroid hormones. He is currently the Editor-in-Chief of Nutrition Research Reviews. Nutritional Biochemistry of the Vitamins SECOND EDITION DAVID A. BENDER University College London Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521803885 © David A.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]