Parasitic Plant Classification: Parasitic Plants Belong to About 15 Families of Flowering Plants, with 277 Genera and 4100 Species Distributed All Over the World

Total Page:16

File Type:pdf, Size:1020Kb

Parasitic Plant Classification: Parasitic Plants Belong to About 15 Families of Flowering Plants, with 277 Genera and 4100 Species Distributed All Over the World Chemotaxonomical Studies oonnnn Sudanese Parasitic PlantPlantssss By Salma Abdelghafar Hassan Elamin A thesis SubSubmitmitmittedted in FFFulfillmentFulfillment For the Requirements for the Degree of Master of Science Supervisor: Dr. Maha. A. Y. Kordofani Department of Botany Faculty of Science University of Khartoum February, 2007 DEDICATION To my Mother and Father To my Sisters and Brother To all who helped me in this Work ACKNOWLEDGEMENT First of all, my gratitude and praise to the almighty "Allah" who offered me the health, patience and ability to undertake this work. I would like to express my sincere thanks to my Supervisor Dr. Maha Kordofani of the Dept of Botany, Faculty of Science, University of Khartoum, for her guidance, continuous encouragement, help and effort to solve all problems in this research. Thanks are also extended to Dr. Elfatih Ahmed, Sudan University of Science and Technology, College of Science, Dept of Chemistry. For his help in the photochemistry part. Thanks are also extended to Dr. Gawahir Dongla, Agric Research Corporation- Shambat Research Station for her help. Deep thanks to my family for their encouragement and support. Thanks to Miss Nadya Yagoub for typing this work. ABSTRACT Chemotaxonomical Studies on Sudanese Parasitic Plants This study concentrated on plant species parasitic plants which affect agricultural and forest economy. They belong to the families: Cuscutaceae (Cuscuta hyalina Roth.), Hydnoraceae (Hydnora johannis Beccari.), Loranthaceae (Plicosepalus acaciae Zucc.), Orobanchaceae (Cistanche deserticola Schenk.), (Orobanche ramosa L.) and Scrophulriaceae ( Striga hermonthica Del .). This work aimed at classifying parasitic plants in Sudan, development of taxonomic keys and revision of previous taxonomic classification. The study included chemotaxonomy and the comparison between morphological and chemical characters. To indicate similarities and differences, 10 morphological characters were used inaddition to taxonomical description. Plants components were identified with concentration of amino acids, flavonoids, triterpens and alkaloids, using thin layer chromatography with methanol extract. For functional group infrared equipments were used. In addition the percentage of important mineral salts was found using atomic adsorpation apparatus. Results showed that from morphological characters of parasitic plants they have a total index of similarity of 66% and different of 33% of the characters. The study revealed the presence of amino acids, flavonoids, triterpens in all parasitic plants and absence of alkaloids using different indicators. High similarities were found between parasitic plants in functional groups (66%). For essential minerals for example Mg, K were found in high percent in all plant of different host. Combing all the result parasitic plant is similar in morphology and that was comfirmed by the chemical analysis. ا درا ا ا ت ا ادان % % !" #$" . 9 ( Cuscuta hyalina Roth ). 0 12 0 - ./ "# &'( )*+ , 4 Hydnoraceae ( Hydnora johannis Beccari ). ! " 5 4 Cuscutaceae Orobanche ) $5 Loronthaceae ( Plicosepalus acaciae Zucc ) " Del ). 0 70%8 (Cistanche deserticola Schenk 4). Orobanchaceae ( ramosa . Scrophulariaceae ( Striga hermonthica 91 : 1 ; <= % > %& !" ? 89( @- A B I J ; $ H "1 4F% G ; H "= <= % E ; D !" . C > %& . AKL( MN M O 0"1 RQ %%1 : 1 ; G % % H"1 > %& P9 O ;$ U#0$91 % D= H9= % E ; $ "LV W . H"= & T1 S9N % 0 H 9[19$ \ ]!^G 7, % G9I9 I%HK % 1X YZX 0 A 0 A X S#F O \ ]!^G 91# ;b "LV W . _` = a ]= '9 M< P". P". i&1 c dF <!G % 15 = eK1X fG g ' h E9;2 & T1 S9N <= % ]= % G H"1 MGN l% RjkO .% .% 33 %G AKLV % 66 %G H"= \ 0 0!" % n % G)9 HK % 1X YZX !" $O .% .% 66 %G p 91# MGN 4 >o$ S \ ]!^G I . > ]= , % $ \I( /q = \ ! ) = eK1X T1 .s ; D > %& s H"= > %& G 'K r%- F &j= l% T1 Page Table of CCContentContent Acknowledgement …………………………………………………………………… i Abstract ……………………………………………………………………………….. ii Arabic abstract ……………………………………………………………………… iv Table of contents …………………………………………………………………….. v List of table s.……………………………………………………………… vii List of figures ………………………………………………………… viii Chapter one . General Introduction and Literature Review Types of parasitic plant …………………………………………………….. 2 Stem parasites ………………………………………………………….. 2 Root parasites ………………………………………………………….. 2 Parasitic Plan ts Classification …………………………………………….. 3 10 Economics Importance ……………………………………………….. Objectives of the study. ................................................................................. .. 13 Chapter TTTwoTwowowo Material and Methods 1. Taxonomy ……………………………………………………………………… 15 2. Phytochemistry ……………………………………………………………… 18 Plant material ……………………………………………………………….. 18 Preparation of plant material for extraction …………………………….. 18 Preparation of extraction …………………………….……………………… 18 Screening of extraction …………………………….……………………… 19 Preparation of TLC plate …………………………….…………………………… 19 Application of material …………………………….……………………………… 19 Solvent system development …………………………….………………………. 19 Preparation of speray reagent ………………………………………………… 19 3. Infra red spectroscopy……………………………………………………. 20 4. Dry ashing preparation………………………………………………… 20 Chapter three Results (A) Taxonomy results ………………………………………………………………. 21 Key to the stuied familes…………………………………………………………. 21 (a) Description ……………………………………………………………... 22 1 Family Hydnoraceae ……………………………………………………….. 22 2 Family Loranthoceae ………………………………………………………. 24 3 Family Cuscutaceae ………………………….……………………………… 26 4 Family Scrophulariaceae ……………………….………………………….. 28 5 Family Orobancheceae ………………………….………………………….. 30 (B) TLC Results …………………...………………………………………………. 34 ( C) Infrared spectroscopic result……………………………………………... 45 (D) Minerals results..…………………………………………………………... 63 CCChapterChapter four Discussion and conclusions ………………………………………………… 65 ChaChaapapapapterter five References …………..………………………………………………………………. 71 List of TablTable Page Table (1): Selected pathogenic parasitic angiosperm. 6 Table (2): Classification of parasitic plants after 7 Hunchinson(1954) Table (3): Classification of parasitic plants after Tachtajan (1970) 8 Table (4): APG (1998) classification of the flowering plant 8 Table (5): Species under study. 17 Table (6) : Index of similarity of speices under study in 10 36 morphological character 38 Table (7): RF(100) value and colors of spots of species under study of amino acid 41 Table (8): RF(100) value and colors of spots of species under study of triterpinoid 44 Table (9): RF(100) value and colors of spots of species under study of flavonoid Table (20): Index of similarty between species under study in functinal 56 groups Table (21): Infra red spectroscopic result in functional group present and 60 absent Table (22): Analysis of plant sample for some minerals (mg% /100g %). 64 List of Figures Page Fig (1) Anginiosperm phylogenic group (APG) interrelationship of the orders 9 Of The flowering plant (1998). Fig (2) Hydnora johannis host plant: Acacia nilotica .(A)Fruit.(B) 24 Root. Fig (3) Plicosepalus acaciea host plant: Acacia seyal. (A)Friut. (B)Habit 26 (C) Haustorium. 28 Fig (4) Cuscuta hyalina host plant: Eruca sativa. Fig (5) Striga hermonthica host plant: Sorghum valgare . (A) Flower. 30 Fig (6) Cistanche deserticola host plant: Capparis decidua. 32 Fig (7) Orobanche ramosa host plant: Lycopersicones culentum . 34 Fig (8) Orobanche ramosa host plant: Solanum melogena 34 Fig (9) Amino acid, methanol extraction, BAW solvent system,ninhydrin 37 reagent 40 Fig (10) Triterpinodes, methanol extraction, BAW solvent system, vanallin reagent. Fig (11) Flavonoid, methanol extraction, BAW solvent system , KOH reagent . 34 Fig (12) Hydnora johannis (sample1) host plant: Acacia nilotic 46 Fig (13) Plicosepalus acaciea (sample 2) host plant: Acacia seyal. 47 Fig (14) Cistanche deserticola (sample 3) host plant: Capparis 48 decidua Fig (15) Cuscuta hyalina Roth (sample 4) host plant: Eruca sativa. 49 Fig (16) Striga hermonthica (sample 5) host plant: Sorghum valgare . 50 Fig (17) Orobanche ramosa (sample 6) host plant: Lycopersicum 51 es culentum . Fig (18) Orobanche ramosa (sample 7) host plant: Solanum melogena . 52 Fig (19) Cuscuta hyalina (sample 8) host plant: Tamarix nilotica . 53 Fig (20) Cuscuta hyalina (sample 9) host plant: Medicago sativa 54 Fig (21 ) Cuscuta hyalina (sample 10) host plant: Eclipta alba . 55 . Chapter one General IIIntroductionIntroduction and literature RRReviewReview Parasitic plants an angiosperm flowering plants, directly attached themselves to other plant via the haustoriam. The haustorium is a modified root that forms morphological and physiological link between the parasite and the host (Nickernt, 2004). Rick (2004) defined parasitic plants as vascular plants which have developed specialized organs for the penetration of another vascular host plant, and the establishment of connection to the vascular strands of the host to the end of absorption of nutrient by the parasite. These organs are termed haustoria. Parasitism for plants is a relationship in which one organism uses the nutrient and water of another plant, (the host). A homoparasitism is a relationship where parasitism is obligatory. A hemiparasitism is exemplified by a plant that can live either as a parasite or on its own; hence this plant is a facultative parasite. According to Botgrad (2006) the parasites have the following properties: 1. Nutrients and water are transported via a physiological bridge, called the haustorium. 2. The parasite
Recommended publications
  • An Account of Orobanche L. in Britain and Ireland
    Watsonia, 18, 257-295 (1991) 257 An accountof OrobancheL. in Britain and Ireland J. RUMSEY and S. L. JURY Departmentof Botany, Universityof Reading,P.O. Box 221,Reading, Berkshire, RG6 2AS ABSTRACT Morphological descriptions are given of the 14 speciesof Orobanche (Orobanchaceae) recorded in the British Isles, together with separate keys for identifying fresh material and herbarium specimens. Accounts of the history of the speciesare presented together with illustrations and distribution maps. The variation in Orobanche minor is accounted for with the recognition of four varieties. INTRODUcnON ..,,; . The genus Orobanche is renowned as a taxonomically very difficult one. In most casesthis is a result of many of the useful charactersbecoming lost on drying, and the lack of adequate field notes. Plants which are very distinct in the field become reduced to a hideous brown uniformity when pressed. Therefore, herbarium specimens are often incorrectly determined (an average of 5-10% in fact). The loss of characters on drying, considerable intra-specific variation, confusing synonymies, incorrectly cited names and badly described specieswith poor types (often with different specieson the same sheet) have done little to generate interest in the genus. Too many botanists have shown a reluctance to deal with this genusin herbaria, perpetuating the myth that the speciesare impossible to identify once dried. Certainly, Orobanche minor Sm. and its close relatives often cannot be positively determined without descriptive notes made at the time of gathering, but all other species from the British Isles are distinct enough not to need any additional information. It is hoped that this account will stimulate other botanists to study, identify and record members of this fascinating parasitic genus in Britain and Ireland, as well as clear up some errors and confusions made in the past.
    [Show full text]
  • Research Indicators – Herbarium
    State Herbarium of South Australia Research Prospectus 2008–09 The State’s key institution for advancing and disseminating knowledge of plants, algae and fungi Table of Contents Overview..............................................................................................................................3 Background .........................................................................................................................3 Reporting .........................................................................................................................3 History..............................................................................................................................3 Vision & Mission ..................................................................................................................5 Research expertise, strengths and opportunities.................................................................6 Background......................................................................................................................6 Current strengths .............................................................................................................7 Taxonomic expertise ........................................................................................................8 Key groups.......................................................................................................................9 Opportunities .....................................................................................................................10
    [Show full text]
  • Weed Risk Assessment for Phelipanche Aegyptiaca (Pers.) Pomel (Orobanchaceae) – Egyptian Broomrape
    United States Department of Weed Risk Assessment Agriculture for Phelipanche aegyptiaca (Pers.) Animal and Pomel (Orobanchaceae) – Egyptian Plant Health Inspection broomrape Service December 21, 2018 Version 1 Left: Phelipanche aegyptiaca parasitizing carrot (Dr. Reuven Jacobsohn, Agricultural Research Organization, Bugwood.org); Right (top): P. aegyptiaca seeds (source: Julia Scher, Federal Noxious Weed Disseminules, USDA APHIS ITP, Bugwood.org); (bottom): carrot field infested with P. aegyptiaca, left treated with soil solarization, right untreated with crop completely destroyed (source: Jaacov Katan, University of Jerusalem, Bugwood.org). AGENCY CONTACT Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Phelipanche aegyptiaca (Egyptian broomrape) 1. Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world.
    [Show full text]
  • In Virginia Tobacco (Nicotiana Tabacum L.)* By
    Beiträge zur Tabakforschung International # Contributions to Tobacco Research Volume 20 # No. 2 # June 2002 Studies on the Control of Broomrape (Orobanche ramosa L.) in Virginia Tobacco (Nicotiana tabacum L.)* by Lorenzo Covarelli Dipartimento di Arboricoltura e Protezione delle Piante, Università degli Studi di Perugia, 06121 Perugia, Italy SUMMARY tralin (1200 mL ha1), n-Decanol (10720 mL ha1), Gly- phosate (180–324 mL ha1) und Rimsulfuron (12.5–25 g During 1997 and 1998, in the province of Perugia (Umbria, ha1) bei der Sorte K 394 getestet. Im zweiten Jahr wurden central Italy), four field experimental trials were carried out Maleinsäurehydrazid (2040 mL ha1), n-Decanol (10720 to study the control of broomrape (Orobanche ramosa L.) mL ha1) und Butralin (2160 mL ha1) auf derselben Sorte in Virginia tobacco. In 1997, maleic hydrazide (2040 mL eingesetzt. Außerdem wurde ein Feldexperiment zur ha1), flumetralin (1200 mL ha1), n-decanol (10720 mL Anfälligkeit verschiedener nichtgeköpfter Virginia-Tabak- ha1), glyphosate (180–324 mL ha1) and rimsulfuron sorten gegen Orobanche durchgeführt. Die Befallstärke (12.5–25 g ha1) were tested on the variety K 394. In the wurde aufgrund der vorhandenen Orobanche-Pflanzen pro second year, maleic hydrazide (2040 mL ha1), n-decanol m2 ermittelt und nach der Ernte wurde ihr Trockengewicht (10720 mL ha1) and butralin (2160 mL ha1) were utilised bestimmt. in the same variety. Furthermore, a field experiment was Maleinsäurehydrazid erwies sich als hoch wirksam gegen performed to assess the susceptibility of different untopped das parasitäre Unkraut, wenn es im frühen Blühstadium des Virginia tobacco varieties to broomrape. The presence of Tabaks eingesetzt wurde; der Befall verringerte sich durch- the weed was recorded as the number of the aboveground schnittlich um 95% (1997) und 75% (1998) im Vergleich broomrape plants per m2 and after harvest dry weight was zur unbehandelten Kontrollgruppe.
    [Show full text]
  • Orobanchaceae) in POLAND
    ACTA AGROBOTANICA Vol. 65 (1): 53-62 2012 A REVISION OF DISTRIBUTION AND HISTORICAL ANALYSIS OF PREFERRED HOSTS OF Orobanche ramosa (Orobanchaceae) IN POLAND Renata Piwowarczyk Department of Botany, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland e-mail: [email protected] Received: 12.11.2011 Abstract Poland, Estonia and the former USSR) and Southern The Polish localities of Orobanche ramosa L., branched Europe, in Asia, northern and southern Africa, north broomrape, are either extinct or have not been confirmed for America and southern Australia. The species probably many years. This paper presents two new localities of O. ramo- travelled to Central Europe from Asia with hemp crops sa in Poland from the Pła skowyż Proszowicki plateau (Wyżyna ca. 500 BC (Kreutz, 1995; Pusch and Gün- Małopolska upland) and the Nizina Nadwiślańska lowland (Ko- ther, 2009). tlina Sandomierska basin). Habitat preferences and the abun- The Polish localities of Orobanche ramosa are dance at the sites are described. A revised map of the distribu- rare and mostly extinct or have not been confirmed tion and a historical analysis of preferred hosts in Poland are for many years. O. ramosa is red-listed in Poland as included. The taxonomy, biology, ecology and control methods a rare, potentially threatened species (R) (Zarzyc- of O. ramosa are also discussed. k i and Szelą g , 2006). It is classified as a species of indeterminate status (I) in the Kujawy-Pomeranian Key words: Orobanche ramosa, distribution, taxonomy, ar- region (Rutkowski, 1997), as extinct (Ex) in We- chaeophyte, host, Poland stern Pomerania and Wielkopolska (Ż ukowski and Jackowiak, 1995), regionally extinct (RE) in INTRODUCTION Gdańsk Pomerania (Markowski and Buliń ski, 2004; Olszewski and Markowski, 2006), and Orobanche ramosa L., branched broomrape, extinct (Ex) in the Kraków Voivodeship (Z a j ą c and belongs to the parasitic family Orobanchaceae.
    [Show full text]
  • Genuine and Sequestered Natural Products from the Genus Orobanche (Orobanchaceae, Lamiales)
    Review Genuine and Sequestered Natural Products from the Genus Orobanche (Orobanchaceae, Lamiales) Friederike Scharenberg and Christian Zidorn * Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-431-880-1139 Received: 10 October 2018; Accepted: 28 October 2018; Published: 30 October 2018 Abstract: The present review gives an overview about natural products from the holoparasitic genus Orobanche (Orobanchaceae). We cover both genuine natural products as well as compounds sequestered by Orobanche taxa from their host plants. However, the distinction between these two categories is not always easy. In cases where the respective authors had not indicated the opposite, all compounds detected in Orobanche taxa were regarded as genuine Orobanche natural products. From the about 200 species of Orobanche s.l. (i.e., including Phelipanche) known worldwide, only 26 species have so far been investigated phytochemically (22 Orobanche and four Phelipanche species), from 17 Orobanche and three Phelipanche species defined natural products (and not only natural product classes) have been reported. For two species of Orobanche and one of Phelipanche dedicated studies have been performed to analyze the phenomenon of natural product sequestration by parasitic plants from their host plants. In total, 70 presumably genuine natural products and 19 sequestered natural products have been described from Orobanche s.l.; these form the basis of 140 chemosystematic records (natural product reports per taxon). Bioactivities described for Orobanche s.l. extracts and natural products isolated from Orobanche species include in addition to antioxidative and anti-inflammatory effects, e.g., analgesic, antifungal and antibacterial activities, inhibition of amyloid β aggregation, memory enhancing effects as well as anti-hypertensive effects, inhibition of blood platelet aggregation, and diuretic effects.
    [Show full text]
  • Application of Chemical Mutagenesis to Increase the Resistance of Tomato to Orobanche Ramosa L
    505 Bulgarian Journal of Agricultural Science, 13 (2007), 505-513 National Centre for Agrarian Sciences Application of Chemical Mutagenesis to Increase the Resistance of Tomato to Orobanche ramosa L. K. KOSTOV, R. BATCHVAROVA and S. SLAVOV Agrobioinstitute, BG – 1164 Sofia, Bulgaria Abstract KOSTOV, K., R. BATCHVAROVA and S. SLAVOV, 2007. Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramosa L. Bulg. J. Agric. Sci., 13: 505-513 In this study chemical mutagenesis of tomato seeds with Ethylmethanesulfonate was used to obtain lines with increased resistance to Orobanche ramosa L. The M2 progeny of the mutant tomato plants was screened for the response to broomrape attack in large scale experiment conducted in greenhouse. Sixteen non-infested by the parasite tomato plants were selected. Their offspring was a subject of another screening for broomrape resistance using an artificial polyethylene bags system. As a result of the experiments six lines with significantly increased level of resistance to Orobanche ramosa L., were selected. Key words: Orobanche, mutagenesis, tomato, broomrape control Introduction sistant varieties, trap crops, soil solariza- tion, and biological control have their limi- Broomrape (Orobanche spp.) is wide tations. That is why the modern under- spread parasitic weed which affects crops standing for the parasite management is and a number of dicotyledonous species. the use of integrated control strategy by Broomrape causes significant losses in combining several of the known methods. tomato, tobacco and sunflower production Essential part of this strategy is the use of in many countries in the Mediterranean resistant to broomrape varieties (Sackston, region, Eastern Europe and Russia (Parker 1992; Ruso et al., 1996; Sukno et al., 1999).
    [Show full text]
  • Inflorescence Evolution in Santalales: Integrating Morphological Characters and Molecular Phylogenetics
    Inflorescence evolution in Santalales: Integrating morphological characters and molecular phylogenetics Daniel L. Nickrent,1,4 Frank Anderson2, and Job Kuijt3 Manuscript received 21 June 2018; revision accepted 17 PREMISE OF THE STUDY: The sandalwood order (Santalales) December 2018 includes members that present a diverse array of inflorescence types, some of which are unique among angiosperms. This 1 Department of Plant Biology, Southern Illinois University, diversity presents a interpretational challenges but also Carbondale, IL 62901-6509 USA opportunities to test fundamental concepts in plant morphology. Here we use modern phylogenetic approaches to address the 2 Department of Zoology, Southern Illinois University, Carbondale, evolution of inflorescences in the sandalwood order. IL 62901-6509 USA METHODS: Phylogenetic analyses of two nuclear and three 3 649 Lost Lake Road, Victoria, BC V9B 6E3, Canada chloroplast genes was conducted on representatives of 146 of the 163 genera in the order. A matrix was constructed that scored 4Author for correspondence: (e-mail: [email protected]) nine characters dealing with inflorescences. One character “trios” that encompasses any grouping of three flowers (i.e. both dichasia Citation: Nickrent D.L., Anderson F., Kuijt J. 2019. Inflorescence and triads) was optimized on samples of the posterior distribution evolution in Santalales: Integrating morphological characters and of trees from the Bayesian analysis using BayesTraits. Three nodes molecular phylogenetics. American Journal of Botany 106:402- were examined: the most recent common ancestors of A) all 414. ingroup members, B) Loranthaceae, and C) Opiliaceae, Santalaceae s. lat. and Viscaceae. doi: 10.1002/ajb2.1250 KEY RESULTS: The phylogenetic analysis resulted in many fully [note: page numbering is not the same as in the published paper] resolved nodes across Santalales with strong support for 18 clades previously named as families.
    [Show full text]
  • Phylogenetic Origins of Parasitic Plants Daniel L. Nickrent Chapter 3, Pp. 29-56 In: J. A. López-Sáez, P. Catalán and L
    Phylogenetic Origins of Parasitic Plants Daniel L. Nickrent Chapter 3, pp. 29-56 in: J. A. López-Sáez, P. Catalán and L. Sáez [eds.], Parasitic Plants of the Iberian Peninsula and Balearic Islands This text first written in English (as appears here) was translated into Spanish and appeared in the book whose Spanish citation is: Nickrent, D. L. 2002. Orígenes filogenéticos de las plantas parásitas. Capitulo 3, pp. 29-56 In J. A. López-Sáez, P. Catalán and L. Sáez [eds.], Plantas Parásitas de la Península Ibérica e Islas Baleares. Mundi-Prensa Libros, S. A., Madrid. Throughout its history, the field of plant systematics has undergone changes in response to the advent of new philosophical ideas, types of data, and methods of analysis. It is no exaggeration to say that the past decade has witnessed a virtual revolution in phylogenetic investigation, owing mainly to the application of molecular methodologies and advancements in data analysis techniques. These powerful approaches have provided a source of data, independent of morphology, that can be used to address long-standing questions in angiosperm evolution. These new methods have been applied to systematic and phylogenetic questions among parasitic plants (Nickrent et al. 1998), but have often raised as many new questions as they have solved, in part due to the amazingly complex nature of the genetic systems present in these organisms. The goal of this chapter is to provide a general synopsis of the current state of understanding of parasitic plant phylogeny. To place in context results concerning the parasites, it is necessary to first examine general features of angiosperm phylogeny.
    [Show full text]
  • Branched Broomrape
    ~ ·. o F c IIL 1·F o RN I A" a ,___ -; t $ --- ----''----,-L------- "-::l!' ...:....,,..__:_®:..· ---,,-,,:.__··__,,:...,,.. <~,, ~, A_u;l~"' f '$ Mature broomrape plant bearing numerous black seed capsules which split open when ripe, releasing tiny seed. Broomrape matures seed during the entire tomato harvest. COVER Broomrape as it appears in tomato fields in midsummer. Bright yellow shoots of the parasite contrast sha rply with the green tomato plant. Below ground, broomrape roots fuse with tomato roots, and all nutrition of the broomrape is supplied by the tomato. Any individual who has seen tJ1e broomrape p est or who has knowledge of its presence is ur gently re­ BRANCHED quested to notify the Agricultural Commissioner of his county. Help s1.amp ou t broomrape. BROOMRAPE THE AUTHORS: (Orobanche ramosa) Stephen Wilhelm is Professor of Plant Pathology and Plant Pathologist in the Experiment Station, Berkeley; Ja mes E. Sagen is Laboratory Technician in the Department of A THREAT TO CALIFORNIA CROPS Plant Pathology, Berkeley; D. H. Hall is Extension Plant Pathologist, Davis; Dan Y. Rosenberg, Carl W. Nichols, and A. Schlocker a re Plant Pathologists, California State Depart­ ment of Agriculture, Sacramento. JUNE, 1965 -w -···~-,,, ('.(l~!ln n,i,-<: E11:1cn~ion wcHl: in A,:riculiurc- a.th.I Hon'I~ [ conomio . Collrc r (ll Apirul1ur(', Uni~tt~hy al Cali. f1>rnin, 1111d Unil<ld Sr, 1ce Dcportm('nl of 1\i;:.riculture co-(Jp,u ~tini;. Di~1rih111('d in hmhcren« o( lite ,\(:a.., of Convcu of May 8, alltl Ju1ic 30, 19H. Gco1g~ B. i\kom, Dirf:1:tor.
    [Show full text]
  • An Annotated Checklist of the Coastal Forests of Kenya, East Africa
    A peer-reviewed open-access journal PhytoKeys 147: 1–191 (2020) Checklist of coastal forests of Kenya 1 doi: 10.3897/phytokeys.147.49602 CHECKLIST http://phytokeys.pensoft.net Launched to accelerate biodiversity research An annotated checklist of the coastal forests of Kenya, East Africa Veronicah Mutele Ngumbau1,2,3,4, Quentin Luke4, Mwadime Nyange4, Vincent Okelo Wanga1,2,3, Benjamin Muema Watuma1,2,3, Yuvenalis Morara Mbuni1,2,3,4, Jacinta Ndunge Munyao1,2,3, Millicent Akinyi Oulo1,2,3, Elijah Mbandi Mkala1,2,3, Solomon Kipkoech1,2,3, Malombe Itambo4, Guang-Wan Hu1,2, Qing-Feng Wang1,2 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Gar- den, Chinese Academy of Sciences, Wuhan 430074, Hubei, China 2 Sino-Africa Joint Research Center (SA- JOREC), Chinese Academy of Sciences, Wuhan 430074, Hubei, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 East African Herbarium, National Museums of Kenya, P. O. Box 45166 00100, Nairobi, Kenya Corresponding author: Guang-Wan Hu ([email protected]) Academic editor: P. Herendeen | Received 23 December 2019 | Accepted 17 March 2020 | Published 12 May 2020 Citation: Ngumbau VM, Luke Q, Nyange M, Wanga VO, Watuma BM, Mbuni YuM, Munyao JN, Oulo MA, Mkala EM, Kipkoech S, Itambo M, Hu G-W, Wang Q-F (2020) An annotated checklist of the coastal forests of Kenya, East Africa. PhytoKeys 147: 1–191. https://doi.org/10.3897/phytokeys.147.49602 Abstract The inadequacy of information impedes society’s competence to find out the cause or degree of a prob- lem or even to avoid further losses in an ecosystem.
    [Show full text]
  • Branched Broomrape Research Section 1
    Compendium of branched broomrape research Section 1. Distribution and dispersal A COMPILATION OF RESEARCH REPORTS FROM THE BRANCHED BROOMRAPE ERADICATION PROGRAM SOUTH AUSTRALIA DECEMBER 2013 Compendium of branched broomrape research Information current as of 3 December 2013 © Government of South Australia 2013 Disclaimer PIRSA and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability and currency or otherwise. PIRSA and its employees expressly disclaim all liability or responsibility to any person using the information or advice. DECEMBER 2012 BRANCHED BROOMRAPE RESEARCH PAGE 2 Table of Contents 1. Potential distribution of Orobanche ramosa ssp. mutelii in Australia 4 2. Using GIS technology to predict the current and potential distribution of branched broomrape (Orobanche ramosa) in South Australia 6 3. Literature review: Branched broomrape - risk of endozoochory 9 4. Assessment of branched broomrape seed (Orobanche ramosa) using in vitro digestion models 13 5. Dispersal of branched broomrape by sheep – preliminary results 16 6. Pilot Study: Primary dispersal seed shadow 19 7. Using a portable field wind tunnel to investigate broomrape seed dispersal – preliminary results 27 8. Efficacy of washing to remove soil on potatoes 31 9. Potential for broomrape seed to contaminate hay 37 10. AFLP analysis of Orobanche species in South Australia 39 See also the following publications: Secomb N. (2006) Defining the distribution of branched broomrape (Orobanche ramosa L.) by tracing the movement of potential vectors for the spread of seed. In Fifteenth Australian Weeds Conference Papers and Proceedings (Eds C.
    [Show full text]