An Annotated Checklist of the Coastal Forests of Kenya, East Africa
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work. -
Pharmacognostical Studies of Leaf, Stem, Root and Flower of Abutilon Hirtum (Lam.) Sweet
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2016; 8(1); 199-216 ISSN: 0975-4873 Research Article Pharmacognostical studies of leaf, stem, root and flower of Abutilon hirtum (Lam.) Sweet Alshymaa Abdel-Rahman Gomaa, *Mamdouh Nabil Samy, Samar Yehia Desoukey, Mohamed Salah Kamel Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt Available Online: 31st January, 2016 ABSTRACT Abutilon hirtum (Lam.) Sweet, is a perennial herb or shrub, commonly known as Florida Keys Indian mallow and distributed in tropical regions. The present study deals with macro and micromorphological investigations of leaf, stem, root and flower of A. hirtum, which assists in identification and standardization of the plant in both entire and powdered forms. Keywords: Malvaceae, Abutilon hirtum, macro and micromorphology. INTRODUCTION Malvaceae (the mallow family) is the family of flowering plants containing about 243 genera and 4225 species. It is distributed all over the world in tropical regions and includes the economically important plants such as cotton, okra and other ornamental shrubs.1 Abutilon is a large genus belonging to this family, comprising about 150 annual or perennial herbs, shrubs or even small trees. It is native to tropical and subtropical countries of America, Africa, Asia and Australia.2,3 The genus has a significant importance which is attributed to valuable fibers obtained from different species of the genus such as A. theophrastii and also due to several species grown as garden ornamentals such as A. ochsenii and A. vitifolium.4 Phytochemical studies of the genus revealed the presence of flavonoids, sterols, triterpenes, anthocyanins and fatty acids.5 Abutilon hirtum is a perennial herb or shrub, 0.5-2.5m in height [Synonym: A. -
Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem. -
I ANTIPLASMODIAL COMPOUNDS from GHANAIAN MEDICINAL PLANTS a Thesis Submitted in Fulfilment of the Requirements for the Degree Of
ANTIPLASMODIAL COMPOUNDS FROM GHANAIAN MEDICINAL PLANTS A Thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Pharmacognosy) The Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana By GUSTAV KOMLAGA [B. Pharm (Hons); M.Pharm (Pharmacognosy)] December 2015 i DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person or material which has been accepted for the award of any other degree of the university, except where due acknowledgement has been made in the text. Gustav Komlaga ….……………… ……………….. (PG 6958611) Signature Date Certified by: Dr. (Mrs) Rita A. Dickson …………………… …..………………… (Supervisor, KNUST) Signature Date Certified by: Professor Philippe M. Loiseau 20 nov. 2015 (Thesis Director, Université Paris Sud) Signature Date Certified by: Professor MLK Mensah ……………………… ……………………….. (Supervisor, KNUST) Signature Date Professor A. Y Mensah …………………… …………………… (Head of Dept, Pharmacognosy, KNUST) Signature Date ii DEDICATION To my Lord, my Counsellor and my closest friend, Jesus Christ, the author and finisher of my faith whose grace and mercies saw me through this study. To my loving wife and friend, Mrs Grace Yayra Komlaga and my children, Eyram Jessica Kpodua Komlaga and Elikem Gustav Komlaga. To my dear sister, Joyce Komlaga, and my mother, Madam Adeline Komlaga of blessed memory. iii ABSTRACT IN ENGLISH Malaria is a major public health challenge in Ghana, and many indigenes employ medicinal plants, beside orthodox medicines, to treat the disease. An ethnobotanical survey was performed in the Bosomtwi and Sekyere East Districts of Ghana to identify plants used locally to manage malaria. -
FL0107:Layout 1.Qxd
S. M. El Naggar & N. Sawady Pollen Morphology of Malvaceae and its taxonomic significance in Yemen Abstract El Naggar, S. M. & Sawady N.: Pollen Morphology of Malvaceae and its taxonomic signifi- cance in Yemen. — Fl. Medit. 18: 431-439. 2008. — ISSN 1120-4052. The pollen morphology of 20 species of Malvaceae growing in Yemen was investigated by light (LM) and scanning electron microscope (SEM). The studied taxa belong to 9 genera and three different tribes. These taxa are: Abelmoschus esculentus, Hibiscus trionum, H. micranthus, H. deflersii, H. palmatus, H. vitifolius, H. rosa-sinensis, H. ovalifolius, Gossypium hirsutum, Thespesia populnea (L.) Solander ex Correa and Senra incana (Cav.) DC. (Hibiscieae); Malva parviflora and Alcea rosea (Malveae); Abutilon fruticosum, A. figarianum, A. bidentatum, A. pannosum, Sida acuta, S. alba and S. ovata (Abutileae). Pollen shape, size, aperture, exine structure and sculpturing as well as the spine characters proved that they are of high taxonom- ic value. Pollen characters with some other morphological characters are discussed in the light of the recent classification of the family in Yemen. Key words: Malvaceae, Morphology, Yemen. Introduction Malvaceae Juss. (s. str.) is a large family of herbs, shrubs and trees; comprising about 110 genera and 2000 species. It is a globally distributed family with primary concentrations of genera in the tropical and subtropical regions (Hutchinson 1967; Fryxell 1975, 1988 & 1998; Heywood 1993; La Duke & Doeby 1995; Mabberley 1997). Due to the high economic value of many taxa of Malvaceae (Gossypium, Hibiscus, Abelmoschus and Malva), several studies of different perspective have been carried out, such as those are: Edlin (1935), Bates and Blanchard (1970), Krebs (1994a, 1994b), Ray (1995 & 1998), Hosni and Araffa (1999), El Naggar (1996, 2001 & 2004), Pefell & al. -
Evolução Cromossômica Em Plantas De Inselbergues Com Ênfase Na Família Apocynaceae Juss. Angeline Maria Da Silva Santos
UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos AREIA - PB AGOSTO 2017 UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos Orientador: Prof. Dr. Leonardo Pessoa Felix Tese apresentada ao Programa de Pós-Graduação em Agronomia, Universidade Federal da Paraíba, Centro de Ciências Agrárias, Campus II Areia-PB, como parte integrante dos requisitos para obtenção do título de Doutor em Agronomia. AREIA - PB AGOSTO 2017 Catalogação na publicação Seção de Catalogação e Classificação S237e Santos, Angeline Maria da Silva. Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. / Angeline Maria da Silva Santos. - Areia, 2017. 137 f. : il. Orientação: Leonardo Pessoa Felix. Tese (Doutorado) - UFPB/CCA. 1. Afloramentos. 2. Angiospermas. 3. Citogenética. 4. CMA/DAPI. 5. Ploidia. I. Felix, Leonardo Pessoa. II. Título. UFPB/CCA-AREIA A Deus, pela presença em todos os momentos da minha vida, guiando-me a cada passo dado. À minha família Dedico esta conquista aos meus pais Maria Geovânia da Silva Santos e Antonio Belarmino dos Santos (In Memoriam), irmãos Aline Santos e Risomar Nascimento, tios Josimar e Evania Oliveira, primos Mayara Oliveira e Francisco Favaro, namorado José Lourivaldo pelo amor a mim concedido e por me proporcionarem paz na alma e felicidade na vida. Em especial à minha mãe e irmãos por terem me ensinado a descobrir o valor da disciplina, da persistência e da responsabilidade, indispensáveis para a construção e conquista do meu projeto de vida. -
Cryptic Self-Incompatibility and Distyly in Hedyotis Acutangula Champ
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/44648251 Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ. (Rubiaceae) ARTICLE in PLANT BIOLOGY · MAY 2010 Impact Factor: 2.63 · DOI: 10.1111/j.1438-8677.2009.00242.x · Source: PubMed CITATIONS READS 16 38 3 AUTHORS, INCLUDING: Dianxiang Zhang Chinese Academy of Sciences 91 PUBLICATIONS 410 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Dianxiang Zhang letting you access and read them immediately. Retrieved on: 03 December 2015 Plant Biology ISSN 1435-8603 RESEARCH PAPER Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ. (Rubiaceae) X. Wu, A. Li & D. Zhang Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China Keywords ABSTRACT Distyly; Hedyotis acutangula; pollination; Rubiaceae; self-incompatibility; thrum Distyly, floral polymorphism frequently associated with reciprocal herkogamy, self- flowers. and intramorph incompatibility and secondary dimorphism, constitutes an impor- tant sexual system in the Rubiaceae. Here we report an unusual kind of distyly Correspondence associated with self- and ⁄ or intramorph compatibility in a perennial herb, Hedyotis D. Zhang, South China Botanical Garden, acutangula. Floral morphology, ancillary dimorphisms and compatibility of the two Chinese Academy of Sciences, Guangzhou morphs were studied. H. acutangula did not exhibit precise reciprocal herkogamy, 510650, China. but this did not affect the equality of floral morphs in the population, as usually E-mail: [email protected] found in distylous plants. Both pin and thrum pollen retained relatively high viabil- ity for 8 h. -
1 History of Vitaceae Inferred from Morphology-Based
HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Iju Chen 2 To my parents and my sisters, 2-, 3-, 4-ju 3 ACKNOWLEDGMENTS I thank Dr. Steven Manchester for providing the important fossil information, sharing the beautiful images of the fossils, and reviewing the dissertation. I thank Dr. Walter Judd for providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections, Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the field trip in Australia. This research is partially supported by National Science Foundation Doctoral Dissertation Improvement Grants award number 0608342. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................11 ABSTRACT...................................................................................................................................14 -
Mothers, Markets and Medicine Hanna Lindh
Mothers, markets and medicine The role of traditional herbal medicine in primary women and child health care in the Dar es Salaam region, Tanzania Hanna Lindh Degree project in biology, Bachelor of science, 2015 Examensarbete i biologi 15 hp till kandidatexamen, 2015 Biology Education Centre, Uppsala University Supervisors: Sarina Veldman and Hugo de Boer 1 Abstract Traditional medicine is still the most common primary healthcare used in Tanzania, especially among women. The ethnobotanical studies performed in Tanzania have not explored women’s traditional medicine, with the result that we do not know that much about it, including if women’s usage of medicinal plants create a threat against the medicinal flora’s biodiversity or not. Field studies consisting of interviews and collections of medicinal plants were carried out in the Dar es Salaam region in Tanzania before identifying the collected specimens by DNA barcoding, literature and morphology in Uppsala, Sweden. The 33 informants belonged to 15 different ethnic groups and 79% of them had migrated to Dar es Salaam. A total of 249 plant species were mentioned for women’s healthcare and 140 for children’s healthcare. The medicinal plants frequently reported as used for women’s health and childcare during structured interviews and free-listing exercises were Senna occidentalis/ Cassia abbreviata, Zanthoxylum sp., Clausena anisata, Acalypha ornata and Ximenia sp. The most salient uses of medicinal plants by women were during pregnancy, childbirth, menstruation, to induce abortion, and for cleansing infants and treating convulsions in children. Most of the fresh specimens were collected from disturbance vegetation. The informants having most interview answers in common were the market vendors, healers and herbalists and they were the only informants that mentioned species listed as vulnerable on the IUCN Red List of Threatened Species. -
Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae. -
Figure 1: Afrothismia Korupensis Sainge & Franke Afrothismia
Figure 1: Afrothismia korupensis Sainge & Franke Afrothismia fungiformis Sainge, Kenfack & Afrothismia pusilla Sainge, Kenfack & Chuyong (in press) Chuyong (in press) Afrothismia sp.nov. Three new species of Afrothismia discovered during this study. CASESTUDY: SYSTEMATICS AND ECOLOGY OF THISMIACEAE IN CAMEROON BY SAINGE NSANYI MOSES AN MSC THESIS PRESENTED TO THE DEPARTMENT OF BOTANY AND PLANT PHYSIOLOGY, UNIVERSITY OF BUEA, CAMEROON 1.0. INTRODUCTION The family Thismiaceae Agardh comprises five genera Afrothismia Schltr., Haplothismia Airy Shaw, Oxygyne Schltr., Thismia Griff. and Tiputinia P. E. Berry & C. L. Woodw. (Merckx 2006, Woodward et al., 2007) with close to 63 - 90 species (Vincent et al. 2013, Sainge et al. 2012). The worldwide distribution of this family ranges from lowland rain forest and sub-montane forest of South America, Asia and Africa, with a few species in the temperate forest of Australia, New Zealand, and Japan to the upper mid-western U.S.A., on an evergreen, semi-deciduous and deciduous vegetation type. In tropical Africa, they occur in two genera (Afrothismia Schltr. & Oxygyne Schltr.) with about 20 species with the highest diversity in the forest of Central Africa (Cheek 1996, Franke 2004, 2005, Sainge et al., 2005, 2010 and Sainge et al. 2012). The recent taxonomic Classification of Thismiaceae (Merckx et al. 2006) is as follows: Kingdom: Plantae Division: Magnoliophyta Class: Magnoliopsida Order: Dioscoreales Family: Thismiaceae Genera: Afrothismia Schltr., Haplothismia Airy Shaw, Oxygyne Schltr., Thismia Griff. and Tiputinia Berry & Woodward In tropical Africa, thismiaceae was discovered over a century ago but classified as Burmanniaceae (Engler, 1905). This family is monocotyledonous, and form part of a heterogeneous group of plants known as the myco-heterotrophic plants (MHPs) (Leake, 1994) consisting of nine plant families: Petrosaviaceae, Polygalaceae, Ericaceae, Iridaceae (Geosiris), Thismiaceae, Burmanniaceae, Triuridaceae, Gentianaceae and some terrestrial Orchidaceae. -
Acalypha Fruticosa Forssk
Acalypha fruticosa Forssk. Identifiants : 348/acafru Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 03/10/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Dicotylédones vraies ; Clade : Rosidées ; Clade : Fabidées ; Ordre : Malpighiales ; Famille : Euphorbiaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Magnoliopsida ; Ordre : Euphorbiales ; Famille : Euphorbiaceae ; Genre : Acalypha ; Nom(s) anglais, local(aux) et/ou international(aux) : dadaro, inchane , Gonasokola, Keryaya hola, Kuppameni, Mfulwe, Mhacha, Mkima-dimbya, Ndyavadimi, Nyautitili, Pan-lahpet, Shaiti ; Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : Feuille (feuilles0(+x) [nourriture/aliment{{{(dp*) : légume0(+x)(dp*)]) comestible0(+x). Détails : Feuilles, légume. Les jeunes feuilles sont cuites comme légume {{{0(+x) (ex. : comme potherbe{{{(dp*)) ; elles sont hachées et bouillies et mélangées à d'autres légumes ou aliments de base{{{0(+x) Les jeunes feuilles sont cuites comme légume. Ils sont hachés et bouillis et mélangés à d'autres légumes ou à l'aliment de base. Les feuilles séchées sont utilisées pour le thé néant, inconnus ou indéterminés.néant, inconnus ou indéterminés. Illustration(s) (photographie(s) et/ou dessin(s)): Autres infos : dont infos de "FOOD PLANTS INTERNATIONAL" : Page 1/2 Distribution : C'est une plante tropicale. Il pousse dans les endroits humides des zones arides. Il passe du niveau de la mer à 1800 m d'altitude{{{0(+x) (traduction automatique). Original : It is a tropical plant. It grows in moist spots in arid areas. It grows from sea level to 1,800 m above sea level{{{0(+x).