<<

HISTORY OF INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE RECORD OF SEEDS

By

IJU CHEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2009

1

© 2009 Iju Chen

2

To my parents and my sisters, 2-, 3-, 4-ju

3

ACKNOWLEDGMENTS

I thank Dr. Steven Manchester for providing the important fossil information, sharing the beautiful images of the , and reviewing the dissertation. I thank Dr. Walter Judd for

providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary

Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections,

Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in

China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the

field trip in Australia. This research is partially supported by National Science Foundation

Doctoral Dissertation Improvement Grants award number 0608342.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ...... 4

LIST OF TABLES...... 9

LIST OF FIGURES ...... 11

ABSTRACT...... 14

CHAPTER

1 SEED MORPHOLOGY OF VITACEAE...... 16

Introduction...... 16 Materials and Methods ...... 17 Results...... 18 , , and ...... 20 and ...... 22 Acareosperma and ...... 24 , Nothocissus, and Pterisanthes ...... 26 , , , , and ...... 26 Discussion...... 28

2 MORPHOLOGY-BASED PHYLOGENY OF VITACEAE: COMPARING TWO DIFFERENT TREATMENTS FOR CODING CONTINUOUS CHARACTERS...... 75

Introduction...... 75 Materials and Methods ...... 80 Taxon Sampling...... 80 Terminology of Morphological Characters...... 80 Character Measurement...... 82 Character Coding...... 82 Phylogenetic Analyses...... 84 Results...... 85 Discussion...... 91 The Influences of Coding Methods ...... 91 Relationships Within the Family, Comparisons with the Molecular Data...... 92 Morphology of Vitaceae and Character Evolution...... 99 Growth habit...... 99 Phyllotaxy...... 101 Tendrils...... 103 Stipules...... 105 ...... 106 Hairs ...... 111 Sexuality...... 112

5

Inflorescence-branch architecture ...... 113 Inflorescences architecture...... 118 Floral morphology...... 121 Pollen morphology ...... 125 ...... 125 Seeds...... 126 Concluding Remarks ...... 127

3 THE BIOGEOGRAPHICAL HISTORY OF VITACEAE INFERRED FROM FOSSIL SEEDS ...... 159

Introduction...... 159 Materials and Methods ...... 162 Results and Discussion ...... 165 Classification of Fossil Vitaceaous Seeds ...... 165 1) st-Ampelocissus-wide infolds...... 165 2) st-Ampelocissus-rugose...... 165 3) st-Ampelopsis-smooth...... 166 4) st-Ampelopsis-rugose ...... 167 5) st-Ampelopsis-xs ...... 167 6) st-Vitis ...... 168 7) st-Vitis-Ampelopsis ...... 168 8) st- ...... 169 9) st-Parthenocissus ...... 169 10) st-Parthenocissus clarnensis...... 170 11) st-Cayratia ...... 171 12) st-Tetrastigma ...... 171 13) st-perichalaza ...... 171 14) uncertain specimens with affinity to Vitaceae ...... 172 Summary of seed type classification...... 173 Geographic Distribution of Fossil and Extant Vitaceous Seeds...... 175 Europe ...... 176 Siberia...... 177 Asia...... 177 North America...... 178 Central and South America ...... 180 ...... 180 Australia ...... 181 Summary of seed type distribution...... 181 Phylogeny of Vitaceae...... 182 Phylogenetic Signals of the Seed Types...... 183 Biogeographical History...... 187 Vitis, Ampelocissus, Ampelopsis, and Parthenocissus ...... 187 Clematicissus, "Austrocissus", and Rhoicissus ...... 189 Perichalazal seeds: Cissus, Cyphostemma, and Leea...... 189 Tetrastigma and Cayratia...... 190

6

Origin of the family: Timing? North? South?...... 191 Adaptation, ecology, and biogeography...... 193 Conclusion ...... 195

4 FOSSIL SEEDS OF THE FAMILY AND THEIR PHYLOGENETIC POSITIONS...... 224

Introduction...... 224 Materials and Methods ...... 224 Results...... 226 Discussion...... 231 Effects of Missing Data in the Phylogenetic Analyses ...... 231 Fossil Affinities ...... 232

APPENDIX

A SPECIMENS INFORMATION OF THE VITACEOUS SEEDS SAMPLED IN THIS STUDY...... 261

B SPECIMENS EXAMINED FOR THE MORPHOLOGICAL ANALYSES...... 265

C MORPHOLOGICAL CHARACTERS AND CHARACTER STATES USED IN THE CLADISTIC ANALYSES OF VITACEAE ...... 268

D DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING...... 281

E DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH GW CODING...... 284

F DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOPSIS ROOSEAE, CONTINUOUS CHARACTERS TREATED WITH GW CODING ...... 287

G DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS TIFFNEYI, CONTINUOUS CHARACTERS TREATED WITH GW CODING...... 290

H DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PALAEOVITIS PARADOXA, CONTINUOUS CHARACTERS TREATED WITH GW CODING...... 293

I DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOCISSUS WILDEI, CONTINUOUS CHARACTERS TREATED WITH GW CODING ...... 296

J DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PARTHENOCISSUS CLARNENSIS, CONTINUOUS CHARACTERS TREATED WITH GW CODING...... 299

7

K DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS MAGNISPERMA, CONTINUOUS CHARACTERS TREATED WITH GW CODING ....302

L DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH GW CODING...... 305

M DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING...... 308

LIST OF REFERENCES...... 311

BIOGRAPHICAL SKETCH ...... 326

8

LIST OF TABLES

Table page

1-1 Number of seeds sampled in the survey of vitaceous seeds...... 32

1-2 Description and the variation pattern of seed characters...... 33

1-3 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 A...... 39

1-4 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 B...... 40

1-5 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 C...... 41

1-6 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 D...... 42

1-7 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 E ...... 43

1-8 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 F ...... 44

3-1 Fossils classified as seed type st-Ampelocissus-wide infolds...... 199

3-2 Fossils classified as seed type st-Ampelocissus-rugose ...... 200

3-3 Fossils classified as seed type st-Ampelopsis-smooth ...... 201

3-4 Fossils classified as seed type st-Ampelopsis-rugose...... 203

3-5 Fossils classified as seed type st-Ampelopsis-xs...... 203

3-6 Fossils classified as seed type st-Vitis...... 204

3-7 Fossils classified as seed type st-Vitis-Ampelopsis...... 206

3-8 Fossils classified as seed type st-Vitis rotundifolia...... 207

3-9 Fossils classified as seed type st-Parthenocissus...... 207

3-10 Fossils classified as seed type st-Parthenocissus clarnensis ...... 208

3-11 Fossils classified as seed type st-Cayratia...... 209

3-12 Fossils classified as seed type st-Tetrastigma...... 209

9

3-13 Fossils classified as seed type st-perichalaza...... 209

3-14 Fossil vitaceous seeds not classified in this study ...... 210

3-15 Groups of taxa sharing the same combinations of characters as the fossils listed in Tables 3-1 to 3-13 ...... 213

3-16 The stratigraphic distribution of the fossil vitaceous seed types from Europe...... 215

3-17 The stratigraphic distribution of the fossil vitaceous seed types from Siberia and Japan ...... 216

3-18 The stratigraphic distribution of the fossil vitaceous seed types from North America ...217

3-19 The stratigraphic distribution of the fossil vitaceous seed types from Central America, South America, Africa, and Australia...... 218

3-20 Geographical distribution of extant genera of Vitaceae ...... 219

4-1 Numbers from the phylogenetic analyses...... 237

4-2 Fossil affinities to extant inferred from the analyses presented in this study...... 238

10

LIST OF FIGURES

Figure page

1-1. The surface features of a vitaceous seed after removing the sarcotesta ...... 45

1-2. The measurements of the seed morphometric characters...... 46

1-3. The seed coat anatomy of vitaceous seeds ...... 47

1-4. Some examples showing the variation of endotestal sclereids in vitaceous seeds...... 48

1-5. Graphs showing individual values of selected seed morphometric characters grouped by genera...... 49

1-6. The score plot of the first two components from PCAs for 57 seed characters ...... 54

1-7. Seeds of Leea...... 58

1-8. Seeds of Cissus ...... 60

1-9. Seeds of Cyphostemma...... 62

1-10. Seeds of Tetrastigma ...... 63

1-11. Seeds of Rhoicissus ...... 65

1-12. Seeds of "Austrocissus" indistinguishable from Tetrastigma by PCAs ...... 66

1-13. Seeds of Acareosperma spireanum ...... 68

1-14. Seeds of Cayratia ...... 69

1- 15. Seeds of ...... 70

1-16. Seeds of Vitis ...... 70

1-17. Seeds of Ampelopsis ...... 71

1-18. Seeds of "Austrocissus" undifferentiable from Ampelopsis by PCA...... 72

1-19. Seeds of Clematicissus ...... 73

1-20. Seeds of Parthenocissus ...... 74

1-21. Seeds of Yua ...... 74

2-1. Strict consensus of 516 shortest from the morphological dataset in which the continuous characters were treated with discrete coding...... 129

11

2-2 The shortest from the morphological dataset in which the continuous characters were treated with GW coding ...... 130

2-3 Character changes over selected branches on one of the shortest trees obtained from the morphological dataset in which the continuous characters were treated with discrete coding ...... 131

2-4 Character changes over selected branches (labeled 1-4) on the shortest tree obtained from the morphological dataset in which the continuous characters were treated with GW coding...... 133

2-5 The shoot apex of Nothocissus spicifera ...... 135

2-6 The optimization of the character phyllotaxy (character 5)...... 136

2-7 The optimization of the character form (character 14) ...... 138

2-8 The optimization of the character leaf teeth density (character 19)...... 140

2-9 The inflorescence-branch of ...... 142

2-10 Inflorescences and tendrils...... 143

2-11 The optimization of the character inflorescence-tendril organization (character 43)...... 145

2-12 The optimization of the character floral merosity (character 54) ...... 147

2-13 The optimization of the character lenticel density on surface (character 78) ...... 149

2-14 The optimization of the character endotesta sclereid width/length ratio (character 126) ...... 151

2-15 The optimization of the character stomata on sarcotesta (character 130)...... 153

2-16 The optimization of the character tracheidal cell diameter (character 131) ...... 155

2-17 The optimization of the character chalaza circularity (character 98) ...... 157

3-1 The morphological phylogeny used for inferring the biogeography of Vitaceae...... 220

3-2 Geographic distribution of fossil and extant Vitaceae...... 222

4-1 The score plots of the first two principle components from the PCAs including extant and fossil vitaceous seeds ...... 239

4-2 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method, and backbone constraint applied...... 242

12

4-3 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method ...... 243

4-4 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method, and backbone constraint applied...... 252

4-5 The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method...... 254

13

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

HISTORY OF VITACEAE INFERRED FROM MORPHOLOY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS

By

Iju Chen

December 2009

Chair: Steven R. Manchester Major: Botany

The Vitaceae, or grape family, contains around 900 species and 15 genera mainly having the growth form. Extant members of the family exhibit interesting geographical distribution patterns. Some genera are strictly regional; others display North America-Asia

disjunction pattern. The family have a rich fossil record, particularly of seeds, in the Tertiary.

Seeds of Vitaceae can be readily recognized by unique characters such as a dorsal chalaza and a pair of ventral infolds, and fossil seeds frequently have been identified to extant genera. The fossil seeds are potentially useful for inferring the past geographical distribution patterns of

Vitaceae.

To test whether seeds of Vitaceae can be identified to the generic level and used to properly identify/assess fossil seeds, 252 seeds, representing all 15 extant genera including the closest relatives Leea, were sampled for morphometric analyses. Seeds of genera mostly can be distinguished by a set of characters, nevertheless, some genera have very similar seeds. Such similar seeds may indicate closer phylogenetic relationships among these genera. Besides similarity comparison, a phylogeny of the family is also needed to interpret fossil affinities.

Although intrafamilial relationships have been inferred previously from molecular work, none of these studies sampled all of the genera. Phylogenetic analyses based on morphological

14

data have not been done previously. The morphological phylogeny presented here includes all genera of the family using 80 non-seed characters, plus 57 seed characters from the

morphometric analyses. To test different theories of homology, the continuous characters are

treated using two different coding methods. The morphological phylogeny resolves the 4-

petaled genera as earlier branching lineages, sister to a clade containing primarily 5-petaled

genera.

Most fossil seeds from the Tertiary are indistinguishable from the extant seeds externally, however, some show combinations of characters not present in the sampled modern seeds. The affinities of six selected better preserved fossils were additionally tested by morphometric analyses and cladistic methods. Fossil seeds with oval chalazas are much more abundant than the ones with linear chalazas or perichalazas. The distribution of the fossils suggests that the lineages bearing perichalazal seeds have been restricted to the tropical regions since the Eocene.

15

CHAPTER 1 SEED MORPHOLOGY OF VITACEAE

Introduction

The seeds of Vitaceae are characterized by a pair of ventral infolds and a dorsal chalaza

(Figure 1-1). The combination of these two characters is not found in seeds of other

families, hence the identification of vitaceous seeds is relatively reliable. Fossil vitaceous seeds

were abundant throughout the Tertiary, and they have frequently been identified to the generic-

level (for example, Tiffney and Barghoorn, 1976). However, those identifications were either 1) based on comparisons to limited samples of extant seeds; or 2) the sample sources and herbarium vouchers were not clearly indicated and the seed characters were not systematically documented and compared (for example, Latiff, 1994).

The potential systematic value of seed characters in this family has been recognized previously, although based on relatively limited sampling of extant species. Süssenguth (1953) mentioned that the configuration of the seed, as viewed in cross section, varies among genera.

Corner (1976) emphasized the evolution of the perichalazal condition among vitaceous seeds.

Periasamy (1962) discovered the variation of the chalaza growth and the number of layers in the seed coat mechanical tissues among some genera. A seed survey with more comprehensive sampling can help us understand the variation of seed characters within the family and therefore provide a better interpretation for the fossil vitaceous seeds; and only through comparison to a broad sampling of extant seeds can one properly identify the extinct characters of the fossil seeds. A broad investigation of all observable seed characters not only improves fossil identification but also provides information for interpreting the intrafamilial phylogenetic relationships.

16

A potential pitfall of trying to identify seeds to the generic level is that the

traditionally/currently defined genera may not be monophyletic. In this study all seeds were

sampled from the herbarium sheets with identifications verified according to floral and

vegetative morphology. Taxa considered to be paraphyletic based on molecular data, for

example the compound-leaved/multiple-seeded Australian or South American endemic Cissus

(Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007), were

especially scrutinized. Leea, the closest relative of Vitaceae (Ridsdale, 1974; Ingrouille et al.,

2002), were also sampled for the seed survey. Leea was sometimes separated as a family

(Ridsdale, 1974); the growth forms of Leea are small trees or shrubs without tendrils. Shape characters can be more objectively compared if measured mathematically; therefore, in this study, morphometric methods were used to record the seed characters. This study presents a broad, well documented survey of extant vitaceous seeds; seed characters were compared, and principle component analysis (PCA) was applied to visualize the morphological variability of seeds within the family.

Materials and Methods

The terminology of seed morphology used here largely follows that of Tiffney and

Barghoorn (1976) with slight modification (Figure 1-1). Here, the chalaza is defined as the part of the vascular strand of the funicle buried under lignified tissues. The part of the vascular strand not covered by lignified tissues, which is lying on top of the endotesta at the raphe region and continuing to the dorsal side, could be easily removed with the soft tissues of sarcotesta. Rugae are defined as the unevenness or infolds of the seed surface excluding those in chalaza and ventral infolds (vi). The Ruga apex refers to the raised part of the ruga; ruga sinus refers to the indentation. Terminology of testa anatomy follows that of Periasamy (1962) and Corner (1976).

17

Seeds were sampled from herbarium sheets and processed as in Chen and Manchester

(2007). Sources of sampled seeds, including those with pictures shown in this paper, are listed in

Appendix A. Cross sections of seeds were made by cutting through the center of chalaza at right angles to the seed surface. Anatomical features of the testa were observed with a compound light microscope (LM) under 200x or 400x magnification. Testa sclereids were examined by transmitted light microscopy from thin median cross sections of seeds prepared by hand with a razor blade. The cutting angle was adjusted to be parallel to the anticlinal sclereids in order to get an accurate counting of sclereid layer numbers. Sarcotestal and tracheidal cells were peeled or scratched off from the seeds. All slides were prepared with water. The measurements of all numerical characters were obtained from pictures by using program Image J (Rasband, 1997-

2006). Anatomical characters usually vary within the same seed; the most frequently observed condition was recorded. PCAs were performed with the software Minitab15 (Minitab Inc., US).

Results

A total of 252 seeds, representing 238 species, and 15 genera, or about one fourth of the species of the family worldwide, were sampled (Table 1-1). At least one fourth of all species of each were sampled except for the large genera Cissus and Cyphostemma. All species of the smaller genera were sampled, when possible. The seed characters are described in Table 1-2 and illustrated in Figures1-2 and 1-3. The outer integument of the vitaceous seed is composed of the soft outer sarcotesta and the lignified endotesta, i.e., the inner epidermis of the outer integument (Periasamy, 1962; Corner, 1976). The surface features of the lignified part of the seeds, including the pair of ventral infolds, the dorsal chalaza, and rugae (Figures 1-1 and 1-2;

Table 1-2), were revealed by removing the sarcotesta. Cross sections of the seeds show the configuration of the ventral infold cavities, angle of chalaza depression, and the thickness of the endotesta in various regions (Figure 1-2; Table 1-2). The sarcotesta contains several layers of

18

parenchyma cells; raphides, druses, and mucilage are typical cell contents in the parenchyma,

sometimes slightly lignified cells are present in the sarcotesta. In contrast with the condition in

vitaceous seeds, the sarcotesta of Leea is very thin, with little parenchyma tissue, and is devoid

of crystals (Ridsdale, 1974). The cells in the outer epidermis of the outer integuments are

polygonal. Although it has not been reported previously, stomata are present in the outer

epidermis of the outer integument in certain species (Figure 1-3 A). The lignified endotesta is 1

to several cells thick; the cell shape of the endotesta sclereids and the thickness of the cell wall

varies (Figure 1-3 B, Figure 1-4). The surface of the endotestal sclereids is pitted in all sampled

seeds, and sometimes a prismatic crystal is present in the cell lumen (Figure 1-4). The inner

integuments (tegmen) are usually 3- or 4-layered (Figure 1-3 C). The outer epidermis of the inner integument is composed of tangentially elongate tracheidal cells with spiral to reticulate thickenings (Figure 1-3 D, E) (Corner, 1976). The exotegmic tracheidal cells are usually one cell thick; however, in some seeds the tracheidal cells are two cell thick, the outer layer has cells of small diameter (Figure 1-3 D) and the inner layer has cells of much larger diameter (Figure 1-3

E). The mesophyll cells of the inner integuments are thin-walled without thickening patterns and are usually crushed (Figure 1-3 C). Cells of the inner epidermis of the inner integuments are usually polygonal and contain mucilage (Figure 1-3 F).

Among the 57 seed characters, seven are discrete, and the others are continuous. When arranging all measured values of a continuous character to a scaled attribute axis, it is usually not possible to define gaps that would objectively allow the differentiation of the character into a few character states; only occasionally in certain characters extreme conditions present a large gap, separating one to a few taxa from all others. Nevertheless, patterns do exist, allowing generic differentiation. Those patterns are summarized in Table 1-2, and exemplified in Figure 1-5. Ten

19

seeds of sampled species of Cissus have a different morphology from other species of this genus;

they are labeled as "Austrocissus" (a term borrowed from Dr. Besty Jackes; personal

communication) thoughout this article. These seeds belong to species of Cissus that are endemic

in South America or Australia. The inflorescence and/or floral morphology of these species also

differ from those of other Cissus (Chapter 2). Some of these Cissus species have been shown to be phylogenetically distinct from other Cissus (Rossetto et al., 2002; Soejima and Wen, 2006;

Rossetto, 2007; Wen et al., 2007). These ten seeds can be easily distinguished from other Cissus

by chalaza length (C21) (Figure 1-5 F). They were excluded from the character variation pattern

seeking process presented in Table 1-2 and Figure 1-5 because of the potential paraphyly of

Cissus.

PCAs were employed to test how well the genera can be distinguished by seed characters

(Figure 1-6, Tables 1-3 to 1-8). Since the seeds of all 15 genera cannot be well differentiated by

a single PCA, PCAs were performed several times, each time with different divergent genera

excluded. The variance explained in the first two principle components is low in all PCAs.

Frequently the characters with high loading value in PCAs correspond to the observed variation

patterns among genera (Table 1-2). Seeds of each genus were described according to the results

of the PCAs. The characters with high loading values in the first two components (Tablse 1-3 to

1-8) were assumed to be the diagnostic characters for distinguishing seeds of different genera.

The similarity of "Austrocissus" to other vitaceous seeds was interpreted according to the results of the PCAs.

Leea, Cissus, and Cyphostemma

The score plot of a PCA with all 57 seed characters and all 252 sampled seeds is shown in

Figure 1-6 A, and the loading values from the analysis are shown in Table 1-3. Seeds of Leea,

Cissus and Cyphostemma can be distinguished clearly from the rest of the family in the analysis

20

(Figure 1-6 A). They all have seeds with long (C21, Figure 1-5 F) and linear chalaza (C18,

Figure 1-5 E) visible from the ventral side and terminated very near to the beak at the dorsal side

(C23), a condition termed perichalaza by Corner (1976). In addition, these seeds are mostly not

compressed or laterally compressed (C30), with short ventral infolds (C9, Figure 1-5 C), and

linear or irregular shaped ventral infold cavities (C33) (the high loading value in Table 1-3).

Leea usually has six-seeded fruits, and the seeds are laterally compressed (C30) (Figure 1-

7). Their ventral infolds (C53) and rugae are covered by sclereids on the surface, with faint

markings on the seed surface showing the outlines of the infolds and rugae (lateral views, Figure

1-7). The Y-shaped dorsal infold (cross sections, Figure 1-7) underneath the perichalaza (Figure

1-7 F), and a pair of longitudinally arranged rugae (C39) (lateral views, Figure 1-7) are unique

features of the genus. The longitudinal rugae of Leea can be unbranched (Figure 1-7 A, B), branched (Figure 1-7 C), or highly branched (Figure 1-7 D, E, F), and the endotesta in the rugae is not well developed (C44) (cross sections, Figure 1-7).

Cissus (Figure 1-8) and Cyphostemma (Figure 1-9) are usually one-seeded, and laterally compressed seeds (C30) occur in some species of Cissus (Figure 1-8 B, E, F). Seeds of both genera can be smooth or rugose (C24). When rugose the rugae usually form protruding ridges on the seed surface and do not fold deep into the endosperm (C26) in Cissus (Figure 1-8 C, D, E) and Cyphostemma (Figure 1-9); extremely rugose seeds (Figure 1-8 F) are rare in both genera.

The opening of the ventral infolds on the seed surface is usually linear in Cissus; but, wide ventral infolds do exist in at least one species of Cissus (Figure 1-8 D). The endotesta sometimes

is extremely thickened along the chalaza (C43) and forms a sharp ridge (Figure 1-8 E) in some

species of Cissus.

21

Seeds of Cyphostemma and Cissus are not distinguished from each other in the PCA

(Figure 1-6 A); however, all seeds of Cyphostemma have extra layers of sclereids covering on

the surface of ventral infolds (C53), and the vascular strand on the raphe region is also wrapped

inside the endotesta (cross sections, Figure 1-9). The feature of ventral infolds covered by

endotesta (C53) is present in all Leea and Cyphostemma, but absent in all other vitaceous seeds

examined. The ventral infold cavities of Cyphostemma are linear to irregularly shaped in cross

section (Figure 1-9); the longitudinal section shows the unique ruminating pattern of the ventral

infolds (Figure 1-9 C).

The ten "Austrocissus" seeds do not possess a perichalaza and therefore were not grouped

with other Cissus in the PCA (Figure 1-6 A). These seeds are subsequently compared to other

vitaceous seeds.

Tetrastigma and Rhoicissus

A PCA was performed with non-perichalazal seeds, i.e., with all seeds except Leea, Cissus,

and Cyphostemma (Figure 1-6 B; Table 1-4). Tetrastigma and Rhoicissus can roughly be

separated from other non-perichalazal seeds by their linear chalaza (C18), which is located near

the apical notch (C22) and extends toward the beak (C23), long, narrow, sometimes divergent

ventral infolds (C8, 9, 11, 15), and rugose surface (C24, 26) (high loading value in Table 1-4).

Five species of "Austrocissus" belong to the group of Tetrastigma and Rhoicissus. Another PCA

including Tetrastigma, Rhoicissus, and the five "Austrocissus" shows that the five "Austrocissus"

are more similar to Tetrastigma, and that Rhoicissus still cannot be well separated from some

species of Tetrastigma (Figure 1-6 C).

The seed morphology of Tetrastigma is diverse (Figure 1-10). Many seeds have long (C9)

and divergent (C15) ventral infolds (Figure 1-10 A, B, C, G) and linear chalaza (C18) (Figure 1-

10 A, B, G). However, not all species of Tetrastigma have linear chalazas; oval chalazas (C18 >

22

0.5, Figure 1-5 E) occur in some species (Figure 1-10 C, D, E, F). Neither is long ventral infolds

(C9, Figure 1-5 C) a consistent character in Tetrastigma (notice the short ventral infolds Figure

1-10 E, F). These are the main reasons that seeds of some Tetrastigma were not well separated

from those of other genera in the analysis (Figure 1-6 B). Many species of Tetrastigma have

oblong seeds; the rugae dissect into the endosperm with sharp angle and the endotesta at the ruga

sinus is not well lignified and is similarly thin to that inside the ventral infold cavities (C26, 44,

Table 1-4; cross and longitudinal sections in Figure 1-10 A). On the seed surface, the rugae

appear as horizontal furrows flanking the elongate chalaza (Figure 1-10 A). Nevertheless, not all

Tetrastigma have this kind of rugae; the more typical rugae observed in other vitaceous seeds —

shallow ruga sinus angle and well developed endotesta at ruga sinus — also occur in Tetrastigma

(Figure 1-10 B, E, F). Most species of Tetrastigma do not have apical grooves (C28) and the chalaza is not sunken (C36, 37; Table 1-5); nevertheless, a few species have the chalaza sunken deep into the endosperm (Figure 1-10 G). Endotesta thickness ( C42, 43; Table 1-5) also varies

greatly among species of this genus. Some species, for example, T. hainanense, T. henryi, T.

erubescens, T. caudataum, do not possess well developed endotesta; the endotesta is one-cell

thick and not lignified. The lack of a lignified endotesta is a character observed only in

Tetrastigma. A unique character observed only in Tetrastigma and Acareosperma is the V-

shaped ventral infold cavities (C56); the endotesta at the notch part of the V-shaped ventral

infold cavity is thickened and lignified (Figure 1-10 F). The four Tetrastigma seeds near

Rhoicissus in the PCA score plot in Figure 1-4 C have the distinct V-shaped ventral infold cavities; however, this discrete character was not well explained by the first two principle components.

23

Seeds of Rhoicissus are rugose (C24), with a linear chalaza (C18), and divergent infolds

(C15) (Figure 1-11). The long (C21) and sunken chalaza (C36, 37) of R. rhomboidea is very similar to those in some species of Tetrastigma (Figure 1-10 G). The ventral infolds of most

Rhoicissus are not as long as most Tetrastigma (C9, Figure 1-5 C). However, this character, and most other characters of the two genera have overlapping ranges of variation. Diagnostic characters that separated these two genera could not be unambiguously identified.

Among the five "Austrocissus" seeds that grouped with Tetrastigma in the PCA (Figure 1-

6 B, C; Figure 1-12), Cissus penninervis, C. hypoglauca, and C. sterculiifolia (Figure 1-12 A-C) are Australian endemics. They have linear chalaza (C18), long ventral infolds (C9), and rugose surface (C24); they are indistinguishable from the seeds of Tetrastigma. Cissus trianae and C. granulosa (Figure 1-12 D, E) are South American endemics. Their chalazas are not as linear

(C18) as the Australian "Austrocissus", and the near apex-positioned pyriform chalaza of C. gradulosa (Figure 1-12 E) is a feature present in some seeds of Ampelopsis (see description of

Ampelopsis). Nevertheless, rugae of these two species have undeveloped endotesta at the ruga sinus (C44; Figure 1-12 D, E), a character present in seeds of Leea, some Tetrastigma, and some

Rhoicissus.

Acareosperma and Cayratia

Another PCA was conducted with all seeds except Leea, Cissus, Cyphostemma,

Tetrastigma, Rhoicissus, and the Tetrastigma-like "Austrocissus" (Figure 1-6 D, Table 1-6). The resulting score plot shows the distinctness of Acareosperma, and Cayratia is well separated from the rest (Figure 1-6 D). Seeds of Acareosperma and Cayratia usually have a narrow chalaza

(C19), polygonal endotestal sclereids (C46) (Figure 1-5 J), multiple layers of endotestal sclereids

(C48), sarcotestal stomata (C50), and two layers of different sized tegmic tracheidal cells (C52)

(high loading value in Table 1-6); these characters distinguish the seeds of these two genera from

24

those of Ampelocissus, Nothocissus, Pterisanthes, Vitis, Ampelopsis, Clematicissus,

Parthenocissus, and Yua (Figure 1-6 D).

Seeds of Acareosperma are relatively large (C1) and highly compressed dorsiventrally

(C30) (Table 1-6). The whorled spiny rugae (C54) are a distinct feature present in only this

monotypic genus (Figure 1-13). The seeds have V-shaped ventral infold cavities (C56) (cross

section, Figure 1-13) similar to those of some Tetrastigma (Figure 1-10 F). This species is

endemic to Laos; it has only been collected once and the flowering materials have never been collected. The establishment of the genus is largely based on its visually distinct seeds

(Gagnepain, 1919).

Seeds of Cayratia have linear (Figure 1-14 A, B, D, E) to oval chalaza (Figure 1-14 C)

(C18, Figure 1-5 E) sometimes extending to the apical notch (Figure 1-14 A-D) (C22; Figure 1-5

G); their ventral infolds are either narrow (Figure 1-14 A, C, E) or wide (Figure 1-14 B, D) (C35,

Figure 1-5 H), usually not divergent (C15, Figure 1-5 D), and the surface is usually rugose

(C24), sometimes with very sharp ruga ridges (C27) (Figure 1-14 A, B). Nevertheless, smooth seeds also exist in Cayratia (Figure 1-14 C). Some seeds of Cayratia have the lateral margin folded inward forming a constricted rim (pore) on the ventral side (C57) (Figure 1-14 D, E), a character not present in other genera. The endosperm is either present in the region of the constricted rim (Figure 1-14 D) or absent (Figure 1-14 E). This is a visually distinct character; however, it was not explained well in the PCA (Figure 1-6 D).

Among the five seeds of "Austrocissus" involved in this level of comparison, Cissus antarctica is not grouped with the other four (Figure 1-6 D). Cissus antarctica has a linear chalaza (C18) and shallow ventral infolds (C34) (Figure 1-15); its endotesta at ventral infold cavities (C42) and the ruga sinus region (C44) is thickened (Figure 1-15). All other sampled

25

vitaceous seeds have less well developed endotesta at ventral infold cavities and ruga sinus;

hence, the condition present in C. antarctica is unique. Cissus oblonga, a species endemic to

Australia with overall morphology similar to C. antarctica, has same kind of seeds as C.

antarctica (observed but not measured).

Ampelocissus, Nothocissus, and Pterisanthes

A PCA was performed excluding all of the above-mentioned genera, but including seeds of

Ampelocissus, Nothocissus, Pterisanthes, Vitis, Ampelopsis, Clematicissus, Parthenocissus, Yua

and four "Austrocissus" taxa (Figure 1-6 E, Table 1-7). Seeds of Ampelocissus, Nothocissus, and

Pterisanthes can more or less be separated from the rest by their larger size (C1), widest part of the seeds mostly near center (C3), long ventral infolds (C9, Figure 1-5 C), relatively narrow chalaza (C19) which is mostly center-positioned (C22, Figure 1-5 G), and greater degree of dorsiventral compression (C30) (characters in the first component, Table 1-7). The two

Ampelocissus species are inseparable from Vitis (Figure 1-6 E); they are A. erdvendbergiana and

A. robinsonii, both endemic in Central America. The two species have smaller (C1) heart- shaped seeds (C3) and resemble those of Vitis. Seeds of Nothocissus are similar to the extremely rugose seeds of some species of Ampelocissus; Pterisanthes and A. pauciflora can be differentiated from the rest of Ampelocissus by their round seeds and round ventral infolds (Chen and Manchester, 2007). Detailed description and figures of seed of Ampelocissus, Nothocissus, and Pterisanthes were published previously (Chen and Manchester, 2007) and not repeated here.

None of the four "Austrocissus" taxa has seeds similar to Ampelocissus (Figure 1-6 E).

Vitis, Ampelopsis, Clematicissus, Parthenocissus, and Yua

A PCA was conducted with Vitis, Ampelopsis, Clematicissus, Parthenocissus, Yua, and the

four remaining "Austrocissus" taxa (Figure 1-6 F, Table 1-8). Seeds of Vitis, Ampelopsis, and

Parthenocissus are well separated in the PCA by many characters (characters with high loading

26

values in Table 1-8); Clematicissus and the four "Austrocissus" have seeds more similar to those

of Ampelopsis; seeds of Yua are closer to Ampelopsis or Vitis (Figure 1-6 F). The seeds of these five genera are typically small (3-7mm) (C1, Figure 1-5 A), and with an oval chalaza (C18,

Figure 1-5 E).

Seeds of Vitis (Figure 1-16) usually have short ventral infolds (C9, Figure 1-5 C) and an oval chalaza not touching the chalaza notch (C22, Figure 1-5 G). Their apical and/or basal grooves are sometimes prominent (Figure 1-16 B, C). The endotesta is relatively thick (C40,

Figure 1-5 I), and well developed inside the ventral infold cavities (C42) (cross section, Figure 1-

16 A, B). The seeds are usually smooth, however, species with rugose seeds (C24) also exist

(Figure 1-16 B). Vitis rotundifolia has larger seeds with faintly rugose surface; its ventral infolds

are longer compared to other species of Vitis, and the endotesta is thinner and less developed in

the ventral infolds than other Vitis (Figure 1-16 C).

Seeds of Ampelopsis (Figure 1-17) have short ventral infolds (C9, Figure 1-5 C) that are

sometimes divergent (C15, Figure 1-5 D). The ventral infolds (C35, Figure 1-5 H) can be

narrow (Figure 1-17 A, B) or wide (Figure 1-17 C), sometimes with the widest part near the

apices (C10) (Figure 1-17 A). Their apical notches are usually not prominent (C4), and the

chalaza is positioned close to the notch (C22, Figure 1-5 G; Figure 1-17). The chalaza is

sometimes more linear (C18, Figure 1-5 E; Figure 1-17 A), or pyriform (C20) (Figure 1-17 B).

The endotesta is well developed near the ventral infold opening but is much thinner inside the

ventral infold cavities (C32), and the ventral infold cavities are rounded (C33) (cross section,

Figure 1-17). The seed surface (C24) is either smooth (Figure 1-17 A, B) or rugose (Figure 1-17

C, D). The four seeds of "Austrocissus", including C. simsiana, C. tweedieana, and the two

subspecies of C. striata, have seeds with the features of Ampelopsis (Figure 1-18).

27

Clematicissus was originally monotypic, containing only C. angustissima (Jackes, 1989b).

The seeds of C. angustissima possess only one ventral infold (C55) (Figure 1-19 A), a feature not observed in any other vitaceous seeds. was later transferred from Cissus to this genus (Jackes and Rossetto, 2006). Both species have an oval chalaza, and the ventral infold cavities are similar to those of Ampelopsis in cross section (Figure 1-19); nevertheless, in ventral view, their ventral infolds are longer than those of Ampelopsis (C9, Figure 1-5 C).

Parthenocissus seeds typically have long (C9, Figure 1-5 C) and divergent (C14, Figure 1-

5 D; C15) ventral infolds, a deep and sharp apical notch (C4; C5, Figure 1-5 B), and an oval

chalaza located immediately below the notch (C22, Figure 1-5 G). The endotesta is usually thin

(C40, Figure 1-5 I), with only one layer of sclereids (C48) (Figure 1-20 A). Parthenocissus

heptaphylla is the only sampled Parthenocissus seed with endotesta of regular thickness (Figure

1-20 B).

The seeds of the two sampled Yua species are not similar to each other (Figure 1-21). Yua austro-orientalis has rugose seeds (C24) with narrow ventral infolds (C35) and center-positioned chalaza (C22) (Figure 1-21 A). The seeds of Y. austro-orientalis resemble some Ampelocissus externally (Chen and Manchester, 2007), however, the endotesta of Y. austro-orientalis is thicker

(C40) than that of Ampelocissus, and the thickness is comparable to that of Vitis (Figure 1-5 I).

Yua chinenses has smooth seeds (C24) with narrow ventral infolds (C35), a shallow apical notch

(C5), and an oval chalaza positioned near the apical notch (C22) (Figure 1-21 B). The seed resembles Ampelopsis both externally, and in the configuration of the ventral infold cavities as seen in cross section (C32, C33) (Figure 1-21 B).

Discussion

The intrageneric variation range of the seed morphometric characters frequently overlaps among genera. Nevertheless, patterns of variation among genera can still be perceived (Figure 1-

28

5). By relative comparison of selected sets of characters, some of the vitaceous seeds can be distinguished to the generic level, as demonstrated by the results of the PCAs (Figure 1-6); however, similar seeds belonging to different genera do exist. The discrete characters were not always depicted by the algorithm of PCA and have to be examined separately; seeds of

Cyphostemma in fact can be easily separated from Cissus by a single discrete character (C53).

Seeds of Pterisanthes and Nothocissus are similar to some Ampelocissus (Figure 1-6 E) (Chen

and Manchester, 2007). Two species of Ampelocissus have seeds that are not well separated

from those of Vitis (Figure 1-6 E). The molecular phylogeny suggested the monophyly of

Ampelocissus, Pterisanthes, and Nothocissus, with Vitis being sister to this clade (Soejima and

Wen, 2006; Wen et al., 2007). The similarity among seeds of certain Ampelocissus,

Pterisanthes, Nothocissus, and Vitis can be explained by the close phylogenetic relationships of

these genera. Seeds of Rhoicissus cannot be well distinguished from those of Tetrastigma

(Figure 1-6 B, C); however, current molecular data do not support a close relationship between

these two genera (Soejima and Wen, 2006; Wen et al., 2007). Nine species of "Austrocissus"

included in this seed survey have seeds either similar to Tetrastigma or Ampelopsis, and one of

them, C. antarctica, has unique features in its endotesta. and C. simsiana were

grouped with Rhoicissus, and Ampelopsis was sister to this monophyletic clade in the GAI1

phylogeny (Wen et al., 2007). Cissus striata and C. tweedieana were grouped with

Clematicissus based on trnL-trnF data (Rossetto, 2007). Cissus striata, C. simsiana, C.

tweedieana, and Clematicissus all have Ampelopsis-like seeds; hence, the seed morphology

seems to support their close relationship. Cissus antarctica, C. oblonga, and C. hypoglauca

formed a strongly supported clade separated from other non-Australian Cissus, but their relationships within the family are uncertain (Rossetto, 2007). None of the published molecular

29

phylogenies has a complete sampling that includes every genus of the family. The within-family relationship, especially the placement of Rhoicissus, Clematicissus, and "Austrocissus", remains uncertain. Morphological phylogenetic analyses including all genera and eight species of

"Austrocissus", with 80 non-seed characters and the 57 seed characters presented in this study, have been completed (Chapter 2) independently of molecular work to provide hypotheses of relationships.

Some issues related to the identification of fossil vitaceous seeds can already be foreseen.

If fossil seeds possess a morphology identical to more than one extant genera, the affinities of the fossils would be problematic, unless those genera with overlapping seed morphology are monophyletic, as in the example of Ampelocissus, Nothocissus, and Pterisanthes. The hypotheses of the within-family relationships certainly affect how the affinities of the fossils can be interpreted. In addition, fossil identification unavoidably depends on the availability/preservation of the characters. Some Tetrastigma may not be well separated from seeds of other genera with rugose surface, oval chalaza and/or short ventral infolds (Figure 1-6

B; Figure 1-10 D, E, F) although detailed comparisons on additional characters may separate them; and some seeds of Cayratia may have external morphology similar to oval chalazal seeds from other genera (for example, Figure 1-14 C) although testa anatomy can distinguish them

(Figure 1-6 D; Table 1-6). Fossils often do not have every seed character well preserved; without all seed characters, some fossils may not be unequivocally identified.

Based on the PCAs performed in this study, shape and position of ventral infolds and chalaza, shape of ventral infold cavities, and testa anatomy are characters that can generically differentiate vitaceous seeds. These characters are potentially informative for intrafamilial relationships. Among these characters, the features of testal anatomy were generally not applied

30

prior to this study. In addition, prior studies employed subjective, qualitative comparisons,

rather than rigorous morphometric comparisons.

The association of oval chalaza (C18), columnar endotesta sclereids (C46), and smaller

diameter tegmic tracheidal cells (C51) to the taxa primarily possessing 5-merous

Ampelocissus, Vitis, Ampelopsis, Parthenocissus, and Yua (Table 1-2; Figure 1-5) can be

observed from this seed survey. The monophyly of the taxa with 5-merous flowers had been

suggested from the GAI1 sequence data (Wen et al., 2007); these seed characters can be

interpreted as synapomorphies of this clade.

Seed characters are not only valuable in dertermining intrafamilial relationships, they

may also be used for the assessment of interfamilial relationships. The paired ventral infolds,

constantly present in all vitaceous seeds except Clematicissus angustissima, are a unique feature for this family. Ruminate seeds occur in a few plant families (Corner, 1976), however, their ruminations do not have a fixed pattern like the ventral infolds of Vitaceae. Perichalazal seeds occur in other plant families such as Annonaceae and Monimiaceae (Corner, 1976). Stomatal exotesta is known in 19 other plant families (Corner, 1976). Tracheidal exotegmen also occurs in at least Rutaceae, (Corner, 1976), Myristicaceae, , ,

Peraceae (Stevens, 2001 onwards). Whether similar seed characters can improve/provide the interpretation of the within-family relationship in these plant families, or at higher levels of phylogeny, is worthy of further investigation. An affinity between Vitaceae and Dilleniaceae has been suggested by some molecular data, and testal anatomy was considered one of the likely synapomorphies (Nandi, Chase, and Endress, 1998; Hilu et al., 2003). The detailed documentation of seed characters from this study provides a foundation for further comparison.

31 Table 1-1. Number of seeds sampled in the survey of vitaceous seeds. Genus number of seeds number of species estimated total species sampled sampled number Acareosperma 111 Ampelocissus 35 32 94 Ampelopsis 12 12 25 Cayratia 17 15 63 Cissus 69 66 350 Clematicissus 222 Cyphostemma 22 22 250 Nothocissus 111 Parthenocissus 8815 Pterisanthes 5420 Rhoicissus 6512 Tetrastigma 43 38 95 Vitis 15 15 60 Yua 223 Leea 14 13 32 total 252 236 1023

32 Table 1-2. Description and the variation pattern of seed characters. Refer to Figure 1-2 for the measurements of length (L), angle (A), and perimeter (P). Characters measured under LM are shown in Figure 1-3. Images of the discrete characters can be found in other figures in this article.

Character Description Variation patterns among genera

C1 seed max length lateral view; Frete's diameter (calculated by Image J) of seed lateral perimeter (P1). 3-27 mm; Vitis, Ampelopsis, Parthenocissus, and Clematicissus have small seeds (< 7 mm); species with largest seeds belongs to Cissus.

C2 seed width/length ratio ventral view; seed width (L1) divided by seed length (L2). most seeds have values > 0.6; some species of Cissus and Tetrastigma have more elongate seeds (< 0.6).

C3 seed apex to widest part ventral view; distance from seed apex to seed widest part (L3) divided by seed length most seeds have their widest part above the center (< 0.5). (L2).

C4 apical notch depth ventral view; distance from seed apex to lowest point of apical notch (L4) divided by deep in Parthenocissus (> 0.05); all sampled Cissus and Leea have no apical notch (= 0). seed max length.

C5 apical notch angle ventral view; angle of apical notch (A1). all Parthenocissus have a sharp angle less than 60°.

C6 beak length ventral view; length of beak (L5) divided by seed max length; for Leea and Cissus if all Parthenocissus, Cyphostemma, and Leea have values less than 0.1. raphe curved strongly measure from lateral view .

C7 beak angle ventral view; angle of beak (A2); for Leea and Cissus if raphe curved strongly measure all Parthenocissus, Pterisanthes, Cyphostemma, and most Ampelopsis, Rhoicissus, and from top view . Leea have beak angle more than 80°.

C8 vi circularity ventral view; circularity (calculated by Image J) of the perimeter of one ventral infold < 0.4 in all Clematicissus, Parthenocissus, Yua, Nothocissus, Acareosperma, (P2); for Leea and Cyphostemma measure the outline of the marking of the extra testa. Tetrastigma, Rhoicissus, Cyphostemma, and Leea .

C9 vi length ventral view; Frete's diameter (calculated by Image J) of the ventral infold perimeter (P2) Clematicissus, Parthenocissus, Ampelocissus, Pterisanthes, Nothocissus, and divided by seed max length. Tetrastigma mostly have long ventral infolds (> 0.6); other genera mostly have values less than 0.6.

33 Table 1-2. Continued.

Character Description Variation pattern among genera

C10 vi apex to widest part ventral view; distance from the apex of the ventral infold to the widest part of the ventral Clematicissus and most Ampelopsis have widest part near apex (< 0.4). infold (L6) divided by the Frete's diameter of P2; ventral infold with equal width whole length has widest part at the middle.

C11 vi space at the apex ventral view; distance between the apexes of the two ventral infolds (L7) divided by seed most Parthenocissus, Rhoicissus, and Tetrastigma have values more than 0.5. width (L1). Clematicissus angustissima have only one vi therefore characters related to vi space were measured as 0.

C12 vi space at the middle ventral view; distance between the middle points of the two ventral infolds (L8) divided Rhoicissus and Parthenocissus have vi widely spaced at the middle (> 0.35); in most by seed width (L1). Tetrastigma the ventral infolds are closely spaced at the middle.

C13 vi space at the base ventral view; distance between the bases of the two ventral infolds (L9) divided by seed more than 0.15 in all Ampelopsis and most Vitis. width (L1).

C14 vi space base to middle ventral view; vi space at the base divided by vi space at the middle. in most Leea the ventral infolds are divergent toward the base (> 1). ratio

C15 vi divergence angle ventral view; the angle made from the two straight lines along the inner side of the two large (> 25°) in most Rhoicissus, Parthenocissus, Tetrastigma, and some Ampelopsis . ventral infolds from apex to middle (A3) .

C16 vi curve angle ventral view; curve angle along the inner side of the ventral infold (A4); smaller than many Tetrastigma have curve angle less than 180°. Most seeds have straight ventral 180° means the convex side facing the center of the seed. infolds, or the ventral infolds are curve in the opposite direction.

C17 vi base to beak distance ventral view; distance from the base of one ventral infold to the tip of the beak (L10) all Ampelopsis and Vitis have values more than 0.2; most Leea, Clematicissus, divided by seed max length. Parthenocissus, Ampelocissus, Nothocissus and Pterisanthes have values less than 0.2.

C18 chalaza circularity dorsal view; circularity of the perimeter of the chalaza (P3). most Clematicissus, Ampelopsis, Parthenocissus, Yua, Vitis, Ampelocissus, Nothocissus, and Pterisanthes have an oval chalaza (> 0.5).

C19 chalaza width dorsal view; chalaza width at widest part (L11) to seed width (L1) ratio. most oval chalazal seeds (C18 > 0.5) have values more than 0.25 except some Vitis, Ampelocissus, and Pterisanthes.

34 Table 1-2. Continued.

Character Description Variation pattern among genera

C20 chalaza apex to widest dorsal view; distance from chalaza apex to chalaza widest part (L12) divided by chalaza some Ampelopsis has pyriform chalaza (> 0.6). part length in dorsal view (L13); linear chalaza have widest part in the middle .

C21 chalaza length lateral view; length of chalaza (L14) divided by seed max length. distinctly long in Leea, Cissus, and Cyphostemma (> 1.4).

C22 chalaza to notch distance dorsal view; distance from chalaza apex to the lowest point of apical notch (L15) divided > 0.1 in Vitis, most Ampelocissus, Nothocissus, and Acareosperma ; mostly < 0.1 in other by the length from apical notch to beak (L16). genera.

C23 chalaza to beak distance lateral view; distance between chalaza base and the tip of beak (L17) divided by seed clear gap between Leea and others (< 0.1), all Cyphostemma and most Cissus have values max length. between 0.1-0.4, oval chalazal seeds usually have values more than 0.4.

C24 external rugosity lateral view; the difference of the seed lateral perimeter (P1) and the perimeter of the fit < 0.2 corresponding to a visually smooth seed. The rugae of Leea are covered by lignified ellipse of P1 (claculated by Image J) divided by the perimeter of the fit ellipse of P1. endotesta and the seeds have smooth surface. All sampled Leea, Clematicissus, Parthenocissus and Pterisanthes have smooth seeds; all sampled Rhoicissus and Tetrastigma have rogose seeds. C25 raphe curve angle lateral view; curve angle along the longitudinal raphe/ventral surface (A5). Many species of Cissus have concave raphe (< 180°).

C26 ruga sinus angle lateral view; angle of ruga sinus (A6). A smooth seed is measured as 180°. less than 50° in all Leea, Rhoicissus, and most Tetrastigma.

C27 ruga ridge angle lateral view; angle of ruga ridge (A7). some Cayratia have very sharp ridges (< 85°); rugose Ampelocissus have ruga ridge angle between 85-155°; most Tetrastigma do not have a sharp ruga ridge (> 155°).

C28 apical groove angle top view; angle of apical groove (A8). < 150° corresponding to the obvious presence of the groove. Present in most Parthenocissus, Ampelocissus, and Vitis.

C29 basal groove angle bottom view; angle of basal groove (A9). present in all Vitis (< 150°).

35 Table 1-2. Continued.

Character Description Variation pattern among genera

C30 cs high/width ratio cross section; cross section high (L18) divided by width (L19). most seeds have values < 0.9; > 0.9 in most Leea, Cyphostemma, and Cissus.

C31 vi rugosity cross section; difference of the perimeter of the ventral infold cavity (P4) and the < 0.26 in most Cayratia, Ampelopsis, and Vitis ; > 0.26 in all Rhoicissus, Parthenocissus, perimeter of the fit ellipse of P4 (calculated by Image J) divided by the perimeter of the and Yua. fit ellipse of P4.

C32 vi thin part ratio cross section; ratio of length of ventral infold cavity with adruptively thinner testa (L20) present in all Rhoicissus, most Ampelopsis, and some species from other genera (< 0.85). to the whole length (L21); equal to one if the endotesta lining the cavity has consistant thickness.

C33 vi thin part circularity cross section; circularity of the perimeter of the ventral infold cavity with adruptively a circular vi cavity lining with thin endotesta is a distinct feature for Ampelopsis (> 0.72). thinner testa (P5); if vi thin to thick part ratio = 1 measure circularity of P4.

C34 vi depth cross section; depth of ventral infold (L22) divided by the high of seed cross section > 0.5 in all Cyphostemma , most Cissus , and most Parthenocissus ; < 0.5 in most (L18). Ampelocissus, Pterisanthes, Vitis , and Austrocissus.

C35 vi width cross section; the width of the ventral infold opening (L23) divided by the width of seed > 0.2 corresponding to wide vi. Wide vi are present in some species of Ampelopsis, Vitis, cross section (L19). Ampelocissus, Cayratia, Cissus, and all Pterisanthes. vi of Leea and Cyphostemma do not have opening at surface (= 0).

C36 chalaza surface angle cross section; sunken angle of chalaza at seed surface (A10). < 150° corresponding to an obvious dentation. Chalaza sunken at the surface occurs frequently in Ampelocissus.

C37 chalaza sunken angle cross section; sunken angle of chalaza at endosperm surface (A11). < 150° corresponding to obvious dentation. In all Leea seeds the chalaza folds deep into endosperm (< 30°) and with a Y-shaped configuration.

C38 chalaza thickness cross section; thickness of chalaza from seed surface to endosperm (L24) divided by seed > 0.15 in most Leea. max length.

C39 ruga depth/width ratio cross section;ratio of the depth of the ruga (L25) to the width at widest part of the ruga < 1 corresponding to transversely arranged rugae; most seeds have this type of rugae. (L26). Branched or longitudinually arranged rugae (> 1) are less common in Vitaceae but present in all Leea.

36 Table 1-2. Continued.

Character Description Variation pattern among genera

C40 endotesta thickness cross section; endotesta thickness (L27) divided by seed max length. Thickness all Vitis have relatively thick endotesta (> 0.03); other genera mostly have values < 0.03. measured from the dorsal region between chalaza and the lateral edge.

C41 endotesta max thickness cross section; endotesta maximum thickness (L28) divided by seed max length. endotesta maximun thickness usually occurs in lateral edge, raphe, or near ventral infolds. Acareosperma and some Cayratia have extremely thickened endotesta in certain parts of the seeds (> 0.15).

C42 endotesta thickness at vi cross section; endotesta minimun thickness in ventral infold cavity (L29) divided by seed usually endotesta is thin and not well lignified inside vi. However, endotesta is well lignified max length. and thick in most Vitis (> 0.015); very thick in Cissus antarctica and Cayratia corniculata (> 0.03).

C43 endotesta thickness at cross section; endotesta thickness at chalaza (L30) to endotesta thickness (L27) ratio. mostly < 2.5. Some seeds, many Cissus and Tetrastigma have thick endotesta at chalaza chalaza region (> 2.5).

C44 endotesta thickness at ruga cross section; ratio of endo testa thickness at ruga sinus (L31) to endotesta thickness endotesta at ruga sinus is usually thinner comparing to the endotesta in other region in rugose sinus (L27); in smooth seeds equal to 1. seeds (0.45-1). Cissus anarctica seeds have thicker endotesta in ruga sinus (> 1); < 0.45 in Leea, some Tetrastigma, and some Rhoicissus.

C45 endotesta thickness at ruga cross section; ratio of endotesta thickness at ruga ridge (L32) to endotesta thickness endotesta at ruga ridge is usually thicker (1-2), Acareosperma, some Cyphostemma, apex (L27); equal to 1 for smooth seeds. Cissus, Cayratia, and Ampelocissus have extremely thickened endotesta at ruga ridge (> 2).

C46 endotesta sclereid LM, transverse section; endotesta sclereids width to length ratio. in oval chalazal seeds (C18 > 0.5) and Rhoicissus , endotesta sclereids are mostly elongate width/length ratio (< 0.4); Cayratia, Cyphostemma, and Leea all have values > 0.4.

C47 endotesta sclereid wall LM, transverse section; endotesta sclereids wall thickness. in most seeds > 6 µm; some Tetrastigma do not possess well lignified endotesta. thickness

C48 number of endotesta LM, transverse section; number of endotesta sclereids layers. 1-4 layers in oval chalazal seeds; most Cyphostemma and Cayratia have more than 4 layers sclereid layers of endotesta sclereids.

C49 endotesta sclereid crystals LM, transverse section; discrete character, 0=absent, 1=present. mostly present, usually one in each cell.

37 Table 1-2. Continued.

Character Description Variation pattern among genera

C50 stomata in sarcotesta LM, tangential view; discrete character, 0=absent, 1=present. present in some Cayratia, Cyphostemma, and Tetrastigma.

C51 tracheidal cell diameter LM, tangential view; the maximun diameter of the tagmetic tracheidal cells. < 10 µm in most oval chalazal (C18 > 0.5) seeds; > 10 µm in most Leea, Cyphostemma, and Cayratia.

C52 number of tracheidal cell LM, tangential view; discrete character, 0 = tracheidal exotagmen 1 cell thick, 1 = 2 C52 = 1 in Acareosperma , some Cyphostemma, Tetrastigma, Cayratia, Rhoicissus, and layers cells thick, the 2 layers of cells have different diameters. Clematicissus .

C53 vi covered by endotesta ventral view; discrete character, 0=absent, 1=present. Ventral infolds are covered by present in all Leea and Cyphostemma. endotesta sclereids on the seed surface.

C54 rugae whorled ventral view; discrete character, 0=absent, 1=present. Rugae are spine like and arranged present only in Acareosperma. as two whorls on the lateral margin.

C55 one vi ventral view; discrete character, 0=absent, 1=present. Instead of the typcial pair of present only in Clematicissus angustissima. ventral infolds, the seed has only one ventral infold.

C56 vi cavity V-shaped cross section; discrete character, 0=absent, 1=present. Ventral infold cavities V-shaped, present in three species of Tetrastigma, and Acareosperma. and the endotesta at the notch of the V shape are lignified and thick.

C57 constricted rim on ventral ventral view; discrete character, 0=absent, 1=present. The lateral margin of the seed is present in some Cayratia. side folded up and forming a constricted rim on the ventral surface of the seed.

38 Table 1-3. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 A. Variable PC1 PC2 C1 seed max length -0.113 -0.054 C2 seed width/length ratio 0.163 0.004 C3 seed apex to widest part -0.123 -0.112 C4 apical notch depth 0.163 -0.083 C5 apical notch angle -0.186 0.139 C6 beak length 0.127 0.138 C7 beak angle -0.028 -0.100 C8 vi circularity 0.146 0.192 C9 vi length 0.148 -0.261 C10 vi apex to widest part -0.111 -0.096 C11 vi space at the apex 0.065 -0.171 C12 vi space at the middle -0.003 0.044 C13 vi space at the base -0.123 0.155 C14 vi space base to middle ratio -0.109 -0.028 C15 vi divergence angle 0.089 -0.188 C16 vi curve angle -0.056 0.237 C17 vi base to beak distance 0.085 0.231 C18 chalaza circularity 0.274 0.022 C19 chalaza width 0.180 0.045 C20 chalaza apex to widest part 0.101 0.012 C21 chalaza length -0.287 0.088 C22 chalaza to notch distance 0.167 -0.052 C23 chalaza to beak distance 0.264 0.083 C24 external rugosity -0.016 -0.228 C25 raphe curve angle 0.124 -0.155 C26 ruga sinus angle 0.050 0.321 C27 ruga ridge angle 0.043 -0.112 C28 apical groove angle -0.188 0.096 C29 basal groove angle -0.188 0.072 C30 cs high/width ratio -0.240 0.101 C31 vi rugosity -0.095 -0.176 C32 vi thin part ratio 0.031 -0.070 C33 vi thin part circularity 0.241 0.052 C34 vi depth -0.177 0.023 C35 vi width 0.190 0.085 C36 chalaza surface angle -0.084 0.143 C37 chalaza sunken angle 0.033 0.230 C38 chalaza thickness -0.083 -0.035 C39 ruga depth/width ratio -0.100 -0.210 C40 endotesta thickness 0.038 0.205 C41 endotesta max thickness 0.029 0.149 C42 endotesta thickness at vi 0.173 0.089 C43 endotesta thickness at chalaza -0.100 -0.085 C44 endotesta thickness at ruga sinus 0.090 0.260 C45 endotesta thickness at ruga apex -0.024 0.019 C46 endotesta sclereid width/length ratio -0.182 0.035 C47 endotesta sclereid wall thickness 0.026 -0.009 C48 number of endotesta sclereid layers -0.174 0.155 C49 endotesta sclereid crystals -0.077 0.022 C50 stomata in sarcotesta -0.029 -0.075 C51 tracheidal cell diameter -0.058 -0.124 C52 number of tracheidal cell layers 0.023 -0.121 C53 vi covered by endotesta -0.170 -0.032 C54 rugae whorled 0.001 -0.012 C55 one vi 0.015 -0.002 C56 vi cavity V-shaped 0.029 -0.040 C57 constricted rim on ventral side 0.013 0.032 Cumulative variance explained 0.177 0.286

39 Table 1-4. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 B. Characters excluded in some of the PCAs due to lack of variation are indicated by "*". Variable PC1 PC2 C1 seed max length 0.122 -0.236 C2 seed width/length ratio -0.094 0.187 C3 seed apex to widest part 0.131 -0.218 C4 apical notch depth -0.028 -0.008 C5 apical notch angle -0.008 0.053 C6 beak length -0.148 0.121 C7 beak angle 0.050 -0.026 C8 vi circularity -0.243 -0.080 C9 vi length 0.157 -0.254 C10 vi apex to widest part 0.080 -0.182 C11 vi space at the apex 0.170 0.247 C12 vi space at the middle 0.030 0.206 C13 vi space at the base -0.050 0.195 C14 vi space base to middle ratio 0.006 -0.083 C15 vi divergence angle 0.159 0.258 C16 vi curve angle -0.172 -0.053 C17 vi base to beak distance -0.178 0.215 C18 chalaza circularity -0.239 0.007 C19 chalaza width -0.144 0.128 C20 chalaza apex to widest part -0.037 0.186 C21 chalaza length 0.193 0.173 C22 chalaza to notch distance -0.087 -0.232 C23 chalaza to beak distance -0.230 0.057 C24 external rugosity 0.241 0.000 C25 raphe curve angle 0.055 0.009 C26 ruga sinus angle -0.256 0.021 C27 ruga ridge angle 0.051 0.030 C28 apical groove angle 0.053 0.063 C29 basal groove angle 0.060 -0.016 C30 cs high/width ratio 0.091 0.212 C31 vi rugosity 0.222 0.055 C32 vi thin part ratio -0.036 -0.227 C33 vi thin part circularity -0.201 0.094 C34 vi depth 0.152 0.125 C35 vi width -0.181 -0.217 C36 chalaza surface angle -0.051 0.095 C37 chalaza sunken angle -0.121 0.061 C38 chalaza thickness -0.034 0.233 C39 ruga depth/width ratio 0.162 0.024 C40 endotesta thickness -0.187 0.206 C41 endotesta max thickness -0.097 0.012 C42 endotesta thickness at vi -0.187 -0.075 C43 endotesta thickness at chalaza 0.168 0.081 C44 endotesta thickness at ruga sinus -0.224 -0.003 C45 endotesta thickness at ruga apex 0.007 -0.031 C46 endotesta sclereid width/length ratio 0.104 0.061 C47 endotesta sclereid wall thickness 0.031 0.085 C48 number of endotesta sclereid layers -0.051 0.101 C49 endotesta sclereid crystals 0.030 0.089 C50 stomata in sarcotesta 0.095 -0.010 C51 tracheidal cell diameter 0.132 0.028 C52 number of tracheidal cell layers 0.110 0.044 C53 vi covered by endotesta* C54 rugae whorled 0.010 -0.026 C55 one vi -0.005 0.002 C56 vi cavity V-shaped 0.020 0.044 C57 constricted rim on ventral side -0.017 -0.052 Cumulative variance explained 0.173 0.278

40 Table 1-5. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 C. Characters excluded in some of the PCAs due to lack of variation are indicated by "*". Variable PC1 PC2 C1 seed max length -0.113 -0.121 C2 seed width/length ratio 0.173 0.056 C3 seed apex to widest part -0.168 -0.075 C4 apical notch depth 0.137 -0.114 C5 apical notch angle -0.045 0.168 C6 beak length 0.173 -0.017 C7 beak angle -0.027 0.106 C8 vi circularity 0.225 0.080 C9 vi length -0.261 -0.016 C10 vi apex to widest part -0.132 0.104 C11 vi space at the apex 0.109 -0.151 C12 vi space at the middle 0.149 -0.085 C13 vi space at the base 0.025 0.042 C14 vi space base to middle ratio -0.139 0.031 C15 vi divergence angle 0.191 -0.113 C16 vi curve angle 0.074 0.070 C17 vi base to beak distance 0.239 0.064 C18 chalaza circularity 0.123 0.232 C19 chalaza width -0.007 0.133 C20 chalaza apex to widest part -0.028 0.032 C21 chalaza length -0.023 -0.236 C22 chalaza to notch distance -0.041 0.167 C23 chalaza to beak distance 0.127 0.215 C24 external rugosity -0.086 -0.242 C25 raphe curve angle -0.095 0.020 C26 ruga sinus angle 0.218 0.115 C27 ruga ridge angle -0.175 -0.083 C28 apical groove angle -0.102 0.262 C29 basal groove angle -0.149 0.177 C30 cs high/width ratio -0.069 -0.176 C31 vi rugosity -0.042 -0.194 C32 vi thin part ratio -0.103 -0.044 C33 vi thin part circularity 0.111 0.142 C34 vi depth -0.167 -0.071 C35 vi width 0.167 -0.024 C36 chalaza surface angle -0.007 0.266 C37 chalaza sunken angle 0.007 0.268 C38 chalaza thickness 0.157 -0.185 C39 ruga depth/width ratio -0.017 -0.184 C40 endotesta thickness 0.245 0.009 C41 endotesta max thickness 0.249 0.001 C42 endotesta thickness at vi 0.180 -0.070 C43 endotesta thickness at chalaza -0.040 -0.222 C44 endotesta thickness at ruga sinus 0.199 0.061 C45 endotesta thickness at ruga apex 0.155 -0.080 C46 endotesta sclereid width/length ratio 0.004 -0.083 C47 endotesta sclereid wall thickness 0.087 -0.162 C48 number of endotesta sclereid layers 0.206 -0.122 C49 endotesta sclereid crystals 0.017 -0.150 C50 stomata in sarcotesta -0.147 0.117 C51 tracheidal cell diameter 0.031 -0.067 C52 number of tracheidal cell layers 0.044 -0.096 C53 vi covered by endotesta* C54 rugae whorled* C55 one vi* C56 vi cavity V-shaped 0.147 0.031 C57 constricted rim on ventral side* Cumulative variance explained 0.202 0.335

41 Table 1-6. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 D. Characters excluded in some of the PCAs due to lack of variation are indicated by "*". Variable PC1 PC2 C1 seed max length -0.222 0.102 C2 seed width/length ratio 0.129 -0.126 C3 seed apex to widest part -0.197 0.131 C4 apical notch depth -0.039 -0.025 C5 apical notch angle 0.012 -0.108 C6 beak length 0.091 -0.112 C7 beak angle 0.036 0.141 C8 vi circularity -0.028 -0.131 C9 vi length -0.153 0.233 C10 vi apex to widest part -0.146 0.150 C11 vi space at the apex 0.201 0.079 C12 vi space at the middle 0.134 0.092 C13 vi space at the base 0.149 -0.079 C14 vi space base to middle ratio -0.043 -0.179 C15 vi divergence angle 0.224 0.026 C16 vi curve angle -0.061 0.026 C17 vi base to beak distance 0.128 -0.214 C18 chalaza circularity 0.119 0.149 C19 chalaza width 0.246 0.128 C20 chalaza apex to widest part 0.193 -0.037 C21 chalaza length 0.132 -0.129 C22 chalaza to notch distance -0.178 0.163 C23 chalaza to beak distance 0.194 -0.012 C24 external rugosity -0.181 -0.018 C25 raphe curve angle 0.052 0.184 C26 ruga sinus angle 0.200 0.015 C27 ruga ridge angle 0.168 0.159 C28 apical groove angle 0.080 -0.165 C29 basal groove angle 0.024 -0.125 C30 cs high/width ratio 0.217 -0.079 C31 vi rugosity -0.051 -0.020 C32 vi thin part ratio -0.171 0.033 C33 vi thin part circularity 0.159 -0.015 C34 vi depth 0.207 0.102 C35 vi width -0.125 0.009 C36 chalaza surface angle 0.156 -0.134 C37 chalaza sunken angle 0.163 -0.119 C38 chalaza thickness 0.149 -0.039 C39 ruga depth/width ratio -0.144 0.086 C40 endotesta thickness 0.158 -0.124 C41 endotesta max thickness -0.079 -0.216 C42 endotesta thickness at vi -0.052 -0.078 C43 endotesta thickness at chalaza 0.022 0.021 C44 endotesta thickness at ruga sinus 0.039 -0.031 C45 endotesta thickness at ruga apex -0.126 -0.147 C46 endotesta sclereid width/length ratio -0.087 -0.253 C47 endotesta sclereid wall thickness 0.045 0.068 C48 number of endotesta sclereid layers -0.085 -0.295 C49 endotesta sclereid crystals 0.026 -0.073 C50 stomata in sarcotesta -0.073 -0.261 C51 tracheidal cell diameter -0.101 -0.214 C52 number of tracheidal cell layers -0.085 -0.239 C53 vi covered by endotesta* C54 rugae whorled -0.105 -0.121 C55 one vi 0.008 -0.015 C56 vi cavity V-shaped -0.105 -0.121 C57 constricted rim on ventral side -0.082 -0.141 Cumulative variance explained 0.162 0.289

42 Table 1-7. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 E. Characters excluded in some of the PCAs due to lack of variation are indicated by "*". Variable PC1 PC2 C1 seed max length -0.219 0.129 C2 seed width/length ratio 0.169 -0.026 C3 seed apex to widest part -0.212 -0.041 C4 apical notch depth -0.003 -0.074 C5 apical notch angle 0.045 0.070 C6 beak length 0.093 0.064 C7 beak angle -0.011 -0.014 C8 vi circularity 0.003 0.309 C9 vi length -0.212 -0.001 C10 vi apex to widest part -0.174 -0.033 C11 vi space at the apex 0.146 -0.270 C12 vi space at the middle 0.078 -0.318 C13 vi space at the base 0.136 -0.163 C14 vi space base to middle ratio 0.022 0.207 C15 vi divergence angle 0.199 -0.209 C16 vi curve angle -0.061 -0.011 C17 vi base to beak distance 0.167 -0.052 C18 chalaza circularity 0.069 -0.046 C19 chalaza width 0.220 -0.102 C20 chalaza apex to widest part 0.183 -0.045 C21 chalaza length 0.176 -0.004 C22 chalaza to notch distance -0.232 -0.025 C23 chalaza to beak distance 0.173 0.126 C24 external rugosity -0.194 -0.179 C25 raphe curve angle -0.058 -0.141 C26 ruga sinus angle 0.200 0.158 C27 ruga ridge angle 0.155 0.082 C28 apical groove angle 0.143 0.188 C29 basal groove angle 0.080 0.204 C30 cs high/width ratio 0.222 -0.106 C31 vi rugosity -0.002 -0.189 C32 vi thin part ratio -0.182 0.097 C33 vi thin part circularity 0.144 0.061 C34 vi depth 0.175 -0.120 C35 vi width -0.127 0.308 C36 chalaza surface angle 0.192 0.178 C37 chalaza sunken angle 0.188 0.169 C38 chalaza thickness 0.139 -0.064 C39 ruga depth/width ratio -0.169 -0.205 C40 endotesta thickness 0.160 0.009 C41 endotesta max thickness 0.101 0.193 C42 endotesta thickness at vi -0.047 0.188 C43 endotesta thickness at chalaza 0.054 -0.082 C44 endotesta thickness at ruga sinus 0.125 0.083 C45 endotesta thickness at ruga apex -0.101 0.002 C46 endotesta sclereid width/length ratio 0.017 -0.071 C47 endotesta sclereid wall thickness -0.003 0.021 C48 number of endotesta sclereid layers 0.043 0.051 C49 endotesta sclereid crystals 0.045 -0.115 C50 stomata in sarcotesta* C51 tracheidal cell diameter 0.023 0.058 C52 number of tracheidal cell layers 0.014 0.034 C53 vi covered by endotesta* C54 rugae whorled* C55 one vi 0.014 0.034 C56 vi cavity V-shaped* C57 constricted rim on ventral side* Cumulative variance explained 0.203 0.332

43 Table 1-8. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 F. Characters excluded in some of the PCAs due to lack of variation are indicated by "*". Variable PC1 PC2 C1 seed max length 0.012 -0.158 C2 seed width/length ratio 0.079 0.076 C3 seed apex to widest part 0.092 -0.079 C4 apical notch depth 0.213 -0.146 C5 apical notch angle -0.196 0.162 C6 beak length -0.188 -0.058 C7 beak angle 0.176 0.061 C8 vi circularity -0.213 0.071 C9 vi length 0.253 -0.099 C10 vi apex to widest part -0.028 -0.274 C11 vi space at the apex 0.199 -0.118 C12 vi space at the middle 0.130 -0.124 C13 vi space at the base -0.164 -0.038 C14 vi space base to middle ratio -0.231 -0.015 C15 vi divergence angle 0.204 0.011 C16 vi curve angle -0.053 0.037 C17 vi base to beak distance -0.255 0.040 C18 chalaza circularity -0.027 -0.283 C19 chalaza width 0.176 0.130 C20 chalaza apex to widest part 0.065 0.285 C21 chalaza length 0.061 0.252 C22 chalaza to notch distance -0.180 -0.183 C23 chalaza to beak distance 0.001 0.095 C24 external rugosity -0.101 0.128 C25 raphe curve angle 0.030 -0.080 C26 ruga sinus angle 0.054 -0.123 C27 ruga ridge angle 0.098 -0.106 C28 apical groove angle 0.017 0.279 C29 basal groove angle 0.086 0.062 C30 cs high/width ratio -0.020 0.132 C31 vi rugosity 0.137 -0.055 C32 vi thin part ratio -0.053 -0.223 C33 vi thin part circularity -0.070 0.258 C34 vi depth 0.188 -0.105 C35 vi width -0.121 0.000 C36 chalaza surface angle 0.121 0.120 C37 chalaza sunken angle 0.137 0.149 C38 chalaza thickness -0.051 0.030 C39 ruga depth/width ratio -0.090 0.120 C40 endotesta thickness -0.240 -0.046 C41 endotesta max thickness -0.197 0.104 C42 endotesta thickness at vi -0.202 -0.181 C43 endotesta thickness at chalaza 0.217 0.026 C44 endotesta thickness at ruga sinus 0.034 -0.204 C45 endotesta thickness at ruga apex -0.038 0.096 C46 endotesta sclereid width/length ratio 0.155 0.020 C47 endotesta sclereid wall thickness -0.007 0.054 C48 number of endotesta sclereid layers -0.178 -0.032 C49 endotesta sclereid crystals 0.077 0.060 C50 stomata in sarcotesta* C51 tracheidal cell diameter 0.058 0.163 C52 number of tracheidal cell layers 0.039 0.139 C53 vi covered by endotesta* C54 rugae whorled* C55 one vi 0.039 0.139 C56 vi cavity V-shaped* C57 constricted rim on ventral side* Cumulative variance explained 0.209 0.362

44 45 46 47 48 30 A 25

20

15

10 7 5 C1, seed max length (mm)

0 s s s a s s s s a a a s s a a s" u si u u iti u u e ti u u e su ss p ss Y V ss ss th a rm m ss ss m e is ci lo ci ci ci n yr e tig ci i m L c ti e o lo o sa a sp s oi C te ro a p n e th ri C o ra h os st m m he p o e re et R h u le A rt m N Pt a T p "A C a A c y P A C

200 B 150

100

60 50 C5, apical notch angle (°)

0 s s s" us si u ua tis us us es tia a a us us a ea su ss p ss Y Vi ss ss th a rm m ss ss m e is ci lo ci ci ci n yr e tig ci i m L c ti e o lo o sa a sp s oi C te ro a p n e th ri C o ra h os st m m he p o e re et R h u le A rt m N Pt a T p "A C a A c y P A C

Figure 1-5. Graphs showing individual values of selected seed morphometric characters grouped by genera. "Austrocissus" referred to the 10 taxa of Cissus which are potentially paraphyletic to other Cissus. The line in each graph indicates the pattern described in Table 1-2. A) C1, seed max length; B) C5, apical notch angle; C) C9, vi length; D) C15, vi divergence angle; E) C18, chalaza circularity; F) C21, chalaza length; G) C22, chalaza to notch distance; H) C35, vi width; I) C40, endotesta thickness; J) C46, endotesta sclereid width/length ratio.

49 1.0 0.9 C 0.8 0.7 0.6 0.6 0.5

C9, vi length 0.4 0.3 0.2 0.1 s s s s s s" us si u ua ti u u es tia a a us us a ea su ss p ss Y Vi ss ss th a rm m ss ss m e is ci lo ci ci ci n yr e tig ci i m L c ti e o lo o sa a sp s oi C te ro a p n e th ri C o ra h os st m m he p o e re et R h u le A rt m N Pt a T p "A C a A c y P A C

100 D

75

50

25 25

C15, vi divergence angle (°) 0

s s s s" us si u ua ti us us es tia a a us us a ea su ss p ss Y Vi ss ss th a rm m ss ss m e is ci lo ci ci ci n yr e tig ci i m L c ti e o lo o sa a sp s oi C te ro a p n e th ri C o ra h os st m m he p o e re et R h u le A rt m N Pt a T p "A C a A c y P A C

Figure 1-5. Continued.

50 Figure 1-5.Continued. C21, Chalaza length C18, chalaza circularity " A " A

u 0.0 0.5 1.0 1.5 2.0 2.5 u 0.0 0.2 0.4 0.6 0.8 1.0 s t s t r o r o c c is is C s C s le u le u m s" m s" a a t t ic ic is is A s u A s u m s m s p p P e P e a lo a lo r p r p t h s t h s e is e is n n o o c c is is s u s u s s

Y Y u u a a

A V A V m i m i p t i p t i e s e s lo lo c c is is N s u N s u o s o s t h t h o o c i c i P s P s t s u t s u e s e s 51 r i r i s a s a n n t h t h e e s s C C a a A y A y c r a c r a a t a t r e ia r e ia o o s p s p e e T r m T r m e e t a t a r a r a s t s t ig ig m m R R h a h a o o ic ic is is s u s u s s

C C C C y is y is p s p s h u h u o s o s s s t e t e m m m m a a

L L e e e e a a 0.5 1.4 E F Figure 1-5.Continued. C35, vi width C22, Chalaza to notch distance " A " A

u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 s u t s t r o r o c i c s is C s u C s le le u m s" m s" a a t t ic ic is is A s u A s u m s m s p p P e P e a lo a lo r p r p t h s t h s e is e is n n o o c c is is s u s u s s

Y Y u u a a

A V A V m i m i p t i p t i e s e s lo lo c c is is N s u N s u o s o s t h t h o o c i c i P s P s t s u t s u e s e s 52 r i r i s a s a n n t h t h e e s s C C a a A y A y c r a c r a a t a t r e ia r e ia o o s p s p e e T r m T r m e e t a t a r a r a s t s t ig ig m m R R h a h a o o ic ic is is s u s u s s

C C C C y is y is p s p s h u h u o s o s s s t e t e m m m m a a

L L e e e e a a 0.1 0.2 G H 0.06 I 0.05

0.04

0.03 0.03

0.02

C40, endosta thickness 0.01

0.00 s" us is us a tis us us es ia a a us us a a u s ps s Yu i s s h at rm m s s m ee ss is lo is V is is nt r e ig is is m L ci tic e oc oc oc a ay p st ic C te o a p n l h is C os ra o s tr m m e pe ot er e t Rh o us le A th m N t ar Te ph A C ar A P c y " P A C 2.0 J

1.5

1.0

0.5 0.4

0.0

s" s is s a is s s s ia a a s s a a u su s su u it su su he t m m su su m e s is op is Y V is is t ra er ig is is m Le is ic l c c c an y p st ic C e oc t pe o lo o is Ca s a o st C46, endotesta sclereid width/length ratio r a n e th r o r h o st m m he p o e re et R h u le A rt m N Pt a T p "A C a A c y P A C

Figure 1-5. Continued.

53 5.0 "Austrocissus" Clematicissus A Ampelopsis 2.5 Parthenocissus Yua Vitis 0.0 Ampelocissus Nothocissus Pterithanses Cayratia -2.5 Acareosperma Tetrastigma Rhoicissus -5.0 Cissus Cyphostemma Second Component Leea -7.5

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 First Component

Figure 1-6. The score plot of the first two components from PCAs for 57 seed characters of: A) all 252 sampled seeds; B) all seeds excluding Leea, Cissus, and Cyphostemma; C) all sampled Tetrastigma, Rhoicissus, and Tetrastigma-like "Austrocissus"; D) all seeds excluding Leea, Cissus, Cyphostemma, Tetrastigma, Rhoicissus, and Tetrastigma- like "Austrocissus"; E) all seeds excluding those excluded in D, Acareosperma, Cayratia, and Cissus antarctica; F) all seeds excluding those excluded in E, Ampelocissus, Nothocissus, and Pterisanthes. D, the arrow indicates Cissus antarctica; Cayratia with absence (C57 = 0) or presence (C57 = 1) of constricted rim on ventral side are labeled differently.

54 "Austrocissus" 5.0 Clematicissus B Ampelopsis Parthenocissus Yua Vitis 2.5 Ampelocissus Nothocissus Pterithanses Cayratia 0.0 Acareosperma Tetrastigma Rhoicissus

Second Component -2.5

-5.0

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 First Component

"Austrocissus" 5.0 Tetrastigma C Rhoicissus 2.5

0.0

-2.5

-5.0 Second Component

-7.5

-10.0 -5.0 -2.5 0.0 2.5 5.0 7.5 First Component

Figure 1-6. Continued.

55 "Austrocissus" 5.0 Clematicissus D Ampelopsis Parthenocissus 2.5 Yua Vitis t Ampelocissus 0.0 Nothocissus Pterithanses Cayratia, C57 = 0 -2.5 Cayratia, C57 = 1 Acareosperma

-5.0 Second Componen

-7.5

-10.0 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 First Component

5.0 "Austrocissus" Clematicissus E Ampelopsis Parthenocissus 2.5 Yua Vitis Ampelocissus Nothocissus 0.0 Pterithanses

-2.5 Second Component -5.0

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 First Component

Figure 1-6. Continued.

56 7.5 "Austrocissus" Clematicissus F Ampelopsis Parthenocissus 5.0 Yua Vitis

2.5

0.0 Second Component -2.5

-5.0 -5.0 -2.5 0.0 2.5 5.0 7.5 First Component

Figure 1-6. Continued.

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

CHAPTER 2 MORPHOLOGY-BASED PHYLOGENY OF VITACEAE: COMPARING TWO DIFFERENT TREATMENTS FOR CODING CONTINUOUS CHARACTERS

Introduction

Vitaceae, the grape family, contain 700-900 species, distributed worldwide in tropical, subtropical, and temperate regions. The members of this family are easily recognized as with leaf-opposed tendrils. Leea, a genus of 34 species of shrubs or small trees (Ridsdale, 1974), is the closest relative of Vitaceae. This sister relationship has been suggested by the comparable vegetative and seed morphology (Ridsdale, 1974) and also by molecular data (Ingrouille et al.,

2002). Leea was often treated as a family (e.g., Ridsdale, 1974; Wen, 2007a), although APG III

(2009) placed it within Vitaceae. Vitaceae have been placed in a position sister to all

(Soltis et al., 2000; Soltis et al., 2003; Jansen et al., 2006) with uncertainty (Stevens, 2001 onwards; Kubitzki, 2007). The recent sequence data of Wang et al. (2009) reinforced this sister- to-rosids position, however, one of the previously suggested close relatives, Dilleniaceae (Nandi,

Chase, and Endress, 1998; Hilu et al., 2003), was not included in their study. Genera of Vitaceae exhibit a complex pattern of geographical distribution; some genera are strictly regional, some distributed worldwide, and some display disjunctions between different continents, such as North

America-eastern Asia. This family has an ample fossil occurring throughout the Tertiary.

Fossils previously assigned to this family include leaves, , pollen, and seeds. The majority of the fossil records are seeds, and this is partially due to the high confidence level of identifying fossil seeds to this family — the seeds of this family are unique. In contrast with seeds, unequivocal features for identifying other plant parts to Vitaceae have not been found (although see Wheeler and LaPasha, 1994 regarding stem anatomy). Not only can they be safely identified to family, the seeds of Vitaceae also exhibit morphological variability. An extensive seed survey of this family has demonstrated that extant seeds may be identified to the genus (Chapter 1).

75

Historical biogeography within the family can be inferred from a well supported phylogeny; and for Vitaceae, it can also be inferred from the abundant seed fossils, which may be properly identified.

Early monographic treatments of Vitaceae include the works of Planchon (1887), Gilg

(1896), and Süssenguth (1953). Various important taxonomic studies of Vitaceae have been produced, emphasizing the taxa of particular regions. These include the treatments of Gagnepain

(1911a; 1911b; 1919), Latiff (1981; 1982b; 1982a; 1982c; 1982d; 1982e; 1983; 1984; 1991;

1999; 2001b; 2001a), Backer and Bakhuizen van Den Brink (1965), and Mabberley (1995) on species in southeast Asia/; Jackes’s studies on Australian species (1984; 1987b; 1987a;

1988a; 1988b; 1989b; 1989a; Jackes and Rossetto, 2006); Wang's (1979), and Li's (1998) treatments of Vitaceae in ; Shetty and Singh's (2000) study of Indian species;

Vassilczenko's (1970) treatment of Vitaceae in Iran; Gilg and Brandt's (1911), Dewit and

Willems's (1960), Wild and Drummond's (1966), Descoings's (1967; 1972), and Verdcourt's

(1993) treatments of species in Africa and Madagascar; Lombardi's (2000) of South American species; Brizicky's (1965), Galet's (1967), and Moore's (1990) of the species of temperate North

America regions. Currently there are 14 commonly accepted genera: Acareosperma Gagnepain,

Ampelocissus Planch., Ampelopsis Michx., Cayratia Juss., Cissus L., Clematicissus Planch.,

Cyphostemma (Planch.) Alston, Nothocissus (Miq.) Latiff, Parthenocissus Planch., Pterisanthes

Blume, Rhoicissus Planch., Tetrastigma (Miq.) Planch., Vitis L., and Yua C. L. Li. Among these,

Acareosperma, and Nothocissus, are monotypic. The Australian endemic Clematicissus was monotypic until the recent transfer of the Australian species, Cissus opaca, to this genus (Jackes and Rossetto, 2006). Pterocissus mirabilis was transferred to Cissus (Lombardi, 1997) and this genus is now considered within Cissus. In these taxonomic treatments, genera are mainly

76

differentiated by floral structures (for example, number is almost always used in keys to the genera; Vitis has a calyptra; Tetrastigma has lobed styles; the floral nectariferous disc of

Cyphostemma is shaped like 4 free glands), inflorescence structures (Ampelocissus has tendril- bearing inflorescence; Nothocissus has whip-like bifurcated spikes; Pterisanthes has an unusual laminar inflorescence axis; inflorescences of Cayratia have an axillary or pseudo-axillary position), and sometimes vegetative (Parthenocissus has suction pads on the tips of the tendrils), fruit (berries of Cissus are mostly one-seeded), and seed morphology (Acareosperma has spiny seeds; Clematicissus endosperm U-shaped in transverse section). Species are often distinguished by variations in vegetative structures, mostly by different leaf forms and/or indument conditions.

Extensive works on comparative developmental morphology of floral and vegetative structures of Vitaceae have been carried out by Gerrath and colleagues (Gerrath and Posluszny, 1986;

Posluszny and Gerrath, 1986; Gerrath and Posluszny, 1988a, 1988b, 1989a, 1989b, 1989c;

Lacroix and Posluszny, 1989b, 1989a; Gerrath, Lacroix, and Posluszny, 1990; Lacroix, Gerrath, and Posluszny, 1990; Gerrath and Posluszny, 1994; Gerrath and Lacroix, 1997; Gerrath, Lacroix, and Posluszny, 1998; Gerrath, Posluszny, and Dengler, 2001; Wilson and Posluszny, 2003a,

2003b; Gerrath, Wilson, and Posluszny, 2004; Wilson, Gerrath, and Posluszny, 2006; Gerrath and Posluszny, 2007; Timmons, Posluszny, and Gerrath, 2007a, 2007b). The results sometimes have been used as evidence to support or disagree with phylogenies hypothesized from sequence data. Although genera are seemingly well defined by morphology, and there is growing information from comparative developmental studies, morphological cladistic analysis has not previously been used to hypothesize relationships within this family. Intergeneric relationships were sometimes proposed in the above-mentioned taxonomic treatments; however, the only

77

known work that applied a consistent methodology to infer taxonomic relationships based on morphology was a phenetic study of 36 Malaysian species (Latiff, 1983).

The phylogeny of Vitaceae has been reconstructed based on DNA sequences (Ingrouille et al., 2002; Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007).

The molecular studies have indicated that Cissus is not monophyletic. The majority of the sampled species of Cissus were grouped together; however, the South American species, C. simsiana and C. striata, together with the African genus Rhoicissus, were nested within

Ampelopsis (Soejima and Wen, 2006; Wen et al., 2007). Another study showed the five

Australian species of Cissus, i.e., C. antarctica, C. oblonga, C. hypoglauca, C. penninervis, and

C. sterculiifolia, did not form a clade with other Cissus, and the two species of Australian

Clematicissus formed a well supported clade with two South American Cissus, i.e., C. striata and C. tweedieana (Rossetto, 2007). Results from the seed survey of Vitaceae (Chapter 1) show that these species of Cissus from South America and Australia have seeds that are distinctly different from other Cissus. Molecular evidence also suggested a close relationships among genera with 5-petaled flowers, a clade that includes the four temperate genera, Vitis, Ampelopsis,

Parthenocissus, and Yua (Wen et al., 2007). It was observed that certain seed characters were associated with taxa having 5-merous flowers (Chapter 1). Seed characters seem to support the sequences-based phylogenies. The morphological cladistic analyses presented here provide an assessment of phylogeny independent of the molecular data, and can provide a way to determine fossil placements other than direct similarity comparison.

The seed survey (Chapter 1) recognized 57 seed characters, most of them morphometric characters relating to shape. When coding for cladistic analysis, shape characters were frequently treated as discrete, regardless of the continuous transformation between shapes.

78

Mathematical measurement transforms shape into numbers so the transition between shapes can

be objectively evaluated. Nevertheless, a precise numeral description does not help to alleviate

the uncertainty of character state delimitation. Assumption of homology has to be made when

coding morphological characters. This assumption is relatively straight forward when coding

discrete characters, especially the classic absence/presence characters. On the contrary, theories

of primary homology (de Pinna, 1991) cannot be so confidently established when coding continuous characters (Stevens, 1991; Scotland, Olmstead, and Bennett, 2003). The general idea shared by taxonomists is that similar measured values should be assigned to the same character state. Disagreements have arisen regarding the concepts and methods used to define similarity.

Various coding methods had been proposed for coding continuous characters, with the aim of achieving an objective set of character state delimitations. Most of the coding methods involved the arrangement of all measured values of a character on a scaled attribute axis. Either the discontinuities were sought out and used as the state delimitation (Mickevich and Johnson, 1976;

Almeida and Bisby, 1984); or, the range of the character was divided into segments and taxa were coded according to the segments they occupied (Colless, 1980; Thorpe, 1984; Chappill,

1989); or, the ranges were compared by their size and overlapping boundaries, then similar ranges were assigned with same character state (Baum, 1988). In some coding methods, statistical tests were applied to determine the similarity or dissimilarity of the measured values, and coding was based on the results of the tests (generalized gap-coding in Archie, 1985;

Guerrero, De Luna, and Sanchez-Hernandez, 2003). Among the coding methods, gap-weighting

(Thiele, 1993) and step-matrix gap-weighting (Wiens, 2001) do not involve the typical pre- coding homology-searching procedure. Instead, coding strategy is set in a way that measured values are compared during the trees searching process. In gap-weighting coding, the mean

79

value of each taxon is range-standardized into one state, and characters are Wagner optimized

(ordered and undirected). This is equivalent to applying differential weighting according to the size of the gap between any two measured values. The variation of a character is preserved precisely and objectively when coding with gap-weighting. Therefore, the gap-weighting method was chosen to treat continuous characters in this study. The hypothesis of primary homology embedded in gap-weighting coding is that the degree of homology is equivalent to the relative distance between two measured values.

The discrete coding approach for continuous characters was also employed on the same data matrix so that the effect of coding method on tree topology could be demonstrated.

Delimitation of the character states for the discrete coding was given based on the overall variation pattern of the character in the family. This is to assume a lax boundary of primary homology; the variation within the near terminal taxa is ignored. The resulting phylogenies are compared to the published molecular phylogenies, and the morphology of Vitaceae and evolution of selected characters are discussed.

Materials and Methods

Taxon Sampling

Eighty-two taxa were sampled from all genera of Vitaceae. Sampling was aimed at representing morphological diversity within each genus. Two species of Leea were sampled as outgroups. Observed herbarium specimens are listed in Appendix B.

Terminology of Morphological Characters

Terms used to describe the nature of a morphological character, such as discrete or continuous, are well defined in Wiens (2001). Terminology for leaf architecture follows LAWG

(Leaf Architecture Working group, 1999). Nodes on a branch were labeled with sequential numbers; the node closest to the main branch was labeled as node 1. In this study, an

80

inflorescence refers to the whole structure developing from one node, which is opposite to the leaf in Vitaceae, with flowers on the terminal axes. A "inflorescence-branch" was used to infer the branch bearing inflorescences at its nodes. A "vegetative-branch" infers a branch that does not have inflorescences at any of its nodes, regardless whether the branches developed from its axillary buds bear inflorescences or not. Inflorescences were considered homologous to tendrils in Vitaceae (see discussions in this chapter); the basal part of the inflorescence sometimes retains the architecture of the tendrils from the same plant. The term "inflorescence-tendril-axis" indicates this part of inflorescence. If the inflorescence-tendril-axes do not have the same branching pattern as that of the tendrils from the same plant, it is viewed as having a simple (not branched) organization. "Inflorescence-axes" refer to the axes attached to the inflorescence- tendril-axis. Inflorescence-axes are usually branched, each order of branching was labeled with a sequential number; the inflorescence-axes nearest to the inflorescence-tendril-axes were labeled with the smallest sequential number, 1. Terminology related to inflorescence-axis architecture follows Weberling (1989). Raceme refers to an arrangement in a main continuous elongate axis, contrary to cymoid, which does not have an elongate axis. Mono-/Di-/tri-/tetra- chasium is 1/2/3/4 axes attached to the top of the lower axis, and a with floral pedicel is located at the junction point of these axes. Axes attached to an end but lacking a terminal flower were viewed as . The double cincinus has a basic dichasial plan, but the secondary flower is replaced by two or more flowers in a cincinus (zigzag pattern not in one plane). The last order/terminal inflorescence-axes are floral pedicels. The floral pedicels are arranged in umbels, dichasia, or double cincina. In the arrangement, the pedicels attached to the same lower axis do not vary in length. In the dichasium and double cincinus, the pedicels are unequal in length. Primary flowers have the longest pedicels and open first, secondary flowers have shorter

81

pedicels and mature later. The secondary flowers of a double cincinus also show differences in

the timing of development.

Character Measurement

The external morphological characters of all plant parts except roots and seedlings were

included in the matrix. The anatomical features of seeds were also examined. All characters

(Appendix C) were scored from firsthand observation of living or the herbarium

specimens (cited in Appendix B), supplemented by data from the literature only when not

observable directly from the specimens examined (indicated in Appendix C).

Characters such as presence of pearl glands, and glaucescence on fruit surface were not

included because they do not preserve well on dry specimens. Presence of raphids and druses

was not included since all observed taxa possess these two types of crystals in the parenchyma of

most tissues. Leaf size and shape were considered to be correlated to leaf type and not included.

Flower size does not show variation among genera (2-3 mm) and therefore was not included; although the outgroup, Leea, has much larger flowers (1-2 cm) than species of Vitaceae. Some characters exhibit variation within terminal taxa; this was indicated for each character in

Appendix C, along with the conditions scored. For Acareosperma spireanum, the characters related to inflorescence architecture were inferred from infructescences because floral materials are not available. The 57 seed characters are described in detail in Chapter 1.

Character Coding

Two coding methods were applied to the continuous characters: discrete, and gap-

weighting. These are discussed, in turn, below:

1) Discrete coding. Patterns of variation for each continuous character were observed by

grouping individual data values by genera. Typically, the measured values of a character show a

range variation among genera. In certain genera particular characters are less variable; that is,

82

the values have smaller ranges for these genera. For other genera, the same characters could

have a wider range in measured values, and usually the wider ranges more or less overlap the

smaller ranges. The state delimitation was set to distinguish the less variable status (the smaller ranges) in certain genera from others. The images were also compared to check the visual distinctness of the character states. Some examples of character delimitation are shown in Figure

1-5, Chapter 1. Figure 1-5 E presents the circularity of chalaza, which was measured to indicate the chalaza shape. The values of circularity are continuous with no obvious gap when arranged by magnitude. However, when the values were grouped by genera, it is clearly shown that some genera have large values in chalaza circularity, and others have wider distribution ranges. The boundary to distinguish an oval chalaza from a linear chalaza was then set at the lower limit of the range that contains the large values. Sometimes the ranges show a non-overlapping pattern; for example, the chalaza length (Figure 1-5 F). Some characters were designed to measure features specifically present in a genus; the measured values would have a small range for that genus. In such case the character state delimitation was set to distinguish this generic feature from others. For example, style width to length (68) distinguishes the very short and conical style of Ampelocissus from that of other genera. Delimitation producing autapomorphy was avoided except for one character, endotesta thickness at ruga sinus (124), in which Cissus antarctica represents a distinct, unusual condition (C44, Table 1-2, Chapter 1). For seed characters the patterns were sought from 252 sampled seeds. The variation patterns of seed characters described in Table 1-2 of Chapter 1 were used as the criteria of character state delimitation. For other continuous characters, the criteria of character state delimitation are described in Appendix C. All characters were weighted equally and unordered.

83

2) Gap-weighting (GW) (Thiele, 1993). For characters describing shape, the raw value of the ratio was directly range-standardized without natural logarithm transformation. Nine characters (labeled in Appendix C) were measurements of length; these numbers were natural logarithm transformed before range-standardization as originally proposed (Thiele, 1993). The continuous characters were transformed into 26 states. In this study, only five meristic characters were treated with the GW method, and they all have a large range (9-55). It was proposed that meristic characters with a large range are better treated with between-character scaling (Wiens and Etheridge, 2003). Therefore, all continuous characters were treated with between-character scaling—the maximum weight of a morphometric character was treated as equivalent to the maximum weight of a qualitative character. That is, continuous characters were weighted 1 and ordered, all other characters were weighted 25 and unordered.

Phylogenetic Analyses

Parsimony analyses were conducted using the computer package PAUP* version 4.0b10

(Swofford, 2002). Inapplicable characters were treated as missing data. Searches for the most parsimonious trees (MPTs) were conducted by tree-bisection-reconnection (TBR) over 1000 random-taxon-addition replicates. The starting tree was obtained via stepwise addition, holding

10 trees, with MulTree in effect. For the gap-weighting coding method, initial searches were conducted via the same settings. Further searches were performed with KEEP in effect in addition to the previous settings, retaining all trees 10 steps longer than the shortest steps obtained from the previous run for swapping. Coding with GW usually found very few MPTs in a short time; sometimes different starting seeds resulted in MPTs with different scores.

Therefore KEEP was used to ensure the finding of the shortest trees. Support was estimated with

500 bootstrap replicates. For the matrix with discrete coding method, searches for bootstrap values were reduced to 10 random addition replicates with TBR, holding one tree, with no more

84

than 1000 MPTs saved in each replicate. For the matrix with GW coding method, searches for

bootstrap values were set the same as the searches for MPTs but KEEP was not in effect.

Characters were optimized onto one of the MPTs using MacClade 4.0 (Maddison and Maddison,

2001) or Mesquite 2.6 (Maddison and Maddison, 2009), with the homoplasy resolving option set to show all most parsimonious reconstructions.

Results

The morphological data matrix includes 137 characters (Appendix D and E); 68 characters are qualitative, meristic with distinct patterns, or continuous but could be easily distinguished to discrete states visually; 69 characters are treated as continuous (6 meristic, 63 morphometric); 49 of the 57 seed characters are continuous. Two characters are parsimony- uninformative: seed ruga whorled (134) is present only in Acareosperma spireanum; seed with one ventral infold (vi) (135) occurs only in Clematicissus angustissima. Acareosperma spireanum contains 20.4% missing data because the floral materials have not been collected.

The discrete coding method yielded 516 MPTs (1186 steps, consistency index (CI) = 0.142, retention index (RI) = 0.611); the strict consensus tree of the 516 MPTs with the bootstrap values is shown in Figure 2-1. The grouping of the two Yua species, and the grouping of Cayratia cardiophylla and C. genitulata have bootstrap supports but the strict consensus tree does not retain these groupings. The gap-weighting coding method retrieved 1 MPT (24094 steps, CI =

0.166, RI = 0.587). The tree with bootstrap values is shown in Figure 2-2. Characters in general have low CI indices regardless of which of the two coding methods was applied (data not shown).

The MPTs recovered from the two character coding methods have tree topologies similar in some parts but different in others (Figure 2-1, Figure 2-2). Both coding methods place

Cyphostemma junceum, an African tendril-less erect herb producing terminal inflorescences, at a

85

position sister to all other Vitaceae. The genera with 4-merous flowers, Cyphostemma, Cayratia,

Tetrastigma, and Cissus, are sister to the rest of the family, which are taxa mostly with 5-merous

flowers. Nothocissus and Pterisanthes are nested within Ampelocissus; this clade forms a

monophyletic group with Vitis. Cissus simsiana and Ampelopsis are basal to the clade that

contains Vitis and Ampelocissus. The monophyly of Pterisanthes, Vitis, Parthenocissus,

Clematicissus, and Tetrastigma, respectively, is recovered, but Ampelocissus, Ampelopsis,

Cissus, Yua, Rhoicissus, Cayratia, and Cyphostemma are paraphyletic.

The major differences in the tree topology come from the positions of Rhoicissus,

Clematicissus, and the 4-petaled genera (Figure 2-1, Figure 2-2). The MPT obtained from the

GW method resolves as sister to the Parthenocissus-Yua clade, and C.

antarctica, C. sterculiifolia and Rhoicissus are grouped together. These two clades, together

with C. trianae C. granulosa, C. penninervis, and C. striata, form a monophyletic group sister to

the clade containing taxa primarily with 5-merous flowers (Figure 2-2). When continuous

characters were treated with discrete coding, the Parthenocissus-Yua clade is sister to the clade

containing Ampelopsis, Vitis and Ampelocissus; Clematicissus is sister to the 5-petaled taxa

except Rhoicissus; Cissus striata, C. granulosa, C. penninervis, C. sterculiifolia, C. hypoglauca,

Rhoicissus digitata, C. trianae, R. tridentata, and C. antarctica are in a sequential sister position to the 5-petaled taxa (Figure 2-1). The rest of Cissus is monophyletic in the MPT of GW (Figure

2-2), but paraphyletic in the MPTs with discrete coding (Figure 2-1). Cayratia, Tetrastigma, and most species of Cyphostemma form a clade when discrete coding was applied (Figure 2-1);

however, this group is not monophyletic in GW (Figure 2-2). Cyphostemma is not monophyletic

in either analysis; C. laza is sister to all taxa with 5-merous flowers and Cissus when discrete

86

coding was applied (Figure 2-1), but this position is not recovered when GW was used (Figure 2-

2).

Characters were optimized to one of the MPTs with discrete coding (Figure 2-3).

Unambiguous changes subtending the major clades are listed below. The monophyly of

Ampelocissus, Pterisanthes, and Nothocissus is supported by leaf teeth density two or more between two secondary veins (19), floral disc margin with extra grooves (62), style width to length ratio ≥ 0.8 (68), style to carpel length ratio < 0.43 (69), and seed apical notch depth ≥ 0.05

(84). The monophyly of Vitis is supported by plant dioecious (31), tendril present in inflorescence-branch (32), inflorescence-branch first internode usually shorter (36), united, forming a calyptra (59), fruit without dense lenticels (78), seed ventral infold thin part circularity

< 0.72 (113), thick endotesta (120), and thick endotesta at ventral infold (122). Vitis,

Ampelocissus, Pterisanthes, and Nothocissus are united by presence of arachnoid hairs (28), inflorescence-first - and-second -axes racemose (46 and 48), inflorescence-terminal-axis umbellate (49), inflorescence with only one order of cymoid organization (51), floral pedicel less than 2 mm long (53), style base width to disc diameter ratio ≥ 0.3 (70), pollen less than 30 µm

(71), and seed chalaza apex to widest part < 0.6 (100). The Ampelopsis-Cissus simsiana-Vitis-

Ampelocissus clade is supported by pinnately compound leaves (14), leaf secondary veins ending in teeth (17), presence of pocket-shape domatia (25), and seed ventral infold cavity rugosity <

0.26 (111). The monophyly of Parthenocissus and Yua is supported by inflorescence-branch first internode usually shorter (36), 2 to 4 inflorescences in one inflorescence-branch (40), inflorescence-second -axis an umbel (48), inflorescence-terminal-axis an umbel (49), anther to petal length ratio ≥ 0.4 (61), disc height to diameter ratio ≥ 0.5 (67), style base width to disc diameter ratio ≥ 0.3 (70), seed ventral infold space at the apex ≥ 0.5 (91), and chalaza apex to

87

widest part < 0.6 (100). The monophyly of Parthenocissus, Ampelopsis, Vitis, and Ampelocissus is supported by seed ventral infolds space at the base ≥ 0.15 (93), ventral infold base to beak distance ≥ 0.2 (97), and thick endotesta (120). The monophyly of Clematicissus is supported by inflorescence-first-axis di-, tri-, or tetra-chasial (46), ventral infold length ≥ 0.6 (89), and ventral infold apex to widest part < 0.4 (90). Clematicissus is grouped with Parthenocissus, Ampelopsis,

Vitis, and Ampelocissus by tendril interrupted (5), leaf secondary vein 6 pairs or less (16), developing shoot apex remaining on inflorescence-branch at anthesis (33), inflorescence-branch terminal node without two inflorescences and one leaf (41), and flower 5-merous (54). Cissus striata, C. granulose, C. penninervis, C. sterculiifolia, C. hypoglauca, R. digitata, R. tridentata,

C. trianae, and C. antarctica are grouped with genera with 5-merous flowers by stipule apex angular (11), inflorescence-tendril monochasial with 2-3 arms (43), fruit 1-4-seeded (75), fruit globose (76), seed ventral infold length ≥ 0.6 (89), chalaza length < 1.4 (101), ruga sinus angle <

50° (106), seed cross section high to width ratio < 0.9 (110), and chalaza sunken angle 30-150°

(117).

The unambiguous changes along the branch that contains all species of Cissus and the genera that produce 5-merous flowers include stipule apex round (11), leaf tooth shape straight

(20), inflorescences produced from any basal node (39), more than 4 inflorescences in one inflorescence-branch (40), flower bud apex not lobed (56), petal not red (57), pollen maximum lumen diameter < 0.7 µm (73), sarcotesta without stomata (130), and ventral infolds not covered by endotesta on the surface (133). Within the rest of the family, the monophyly of Tetrastigma is supported by leaf tertiary veins random reticulate (18), plant dioecious (31), inflorescence- branch second internode not compressed (37), inflorescence-terminal-axis umbellate (49), stigma

4-lobed (65), floral disc to carpel high ratio < 0.25 (66), style width to length ratio ≥ 0.8 (68),

88

style to carpel length ratio < 0.43 (69), pollen size < 30 µm (71), pollen maximum lumen

diameter < 0.7 µm (73), and endotesta sclereid width to length ratio < 0.4 (126). Cayratia

geniculata and C. cardiophylla are united by stipule length < 2.2 mm (13), inflorescence-tendril

monochasial with 2-armed (43), seed raphe curve angle < 180° (105), ventral infold thin part

ratio ≥ 0.85 (112), and presence of a constricted rim on ventral side (137). Tetrastigma, C.

geniculata, and C. cardiophylla are united by stipules persistent when flowering (10), internodes of inflorescence-branches short (35), and leaf frequently missing in the inflorescence-branch

(38). The rest of the Cayratia is characterized by more than 3 nodes produced in one

inflorescence-branch (34), seed beak length ≥ 0.1 (86), ventral infold circularity ≥ 0.4 (88),

chalaza to beak distance ≥ 0.4 (103), apical groove angle < 150° (108), ventral infold thin part

ratio ≥ 0.85 (112), and ventral infold width ≥ 0.2 (115). Acareosperma and the 5 species of

Cayratia are united by seed apical notch depth ≥ 0.05 (84), ruga ridge angle < 85° (107), and

chalaza sunken angle 30-150° (117). The monophyly of Tetrastigma, Cayratia, and

Acareosperma is supported by petal not red (57), seed beak angle < 80° (87), chalaza length <

1.4 (101), seed cross section height to width ratio < 0.9 (110), seed coat tracheidal cells two

layered (132), and ventral infolds not covered by endotesta (133). Eight species of

Cyphostemma, excluding C. junceum and C. laza, are united by the stipule persisting when

fruiting (10), multiseriate hair present (30), and ventral infold rugosity ≥ 0.26 (111). The eight

species of Cyphostemma, Acareosperma, Cayratia, and Tetrastigma are united by 2 or 3 nodes

produced in one inflorescence-branch (34), and inflorescence-branch second internode

compressed (37).

Characters were also mapped onto the MPT with GW coding (Figure 2-4). Unambiguous

changes along some of the branches with topology different from the MPTs obtained from

89

discrete coding are listed below: grouping of Cissus hypoglauca with Yua and Parthenocissus

(branch 1, Figure 2-4) is supported by tendril interrupted (5), stipule length increased (13), leaf glaucous (24), 2 to 4 inflorescences in one branch (40), inflorescence-terminal-axis umbellate

(49), anther to petal length ratio increased (61), style base width to disc diameter ratio increased

(70), pollen maximum lumen diameter increased (73), seed ventral infold apex to widest part decreased (90), endotesta sclereid width to length ratio decreased (126), and seed coat tracheidal cell diameter decreased (131). The grouping of the seven species of Cissus with anomalous seeds to Rhoicissus, Yua, and Parthenocissus (branch 2, Figure 2-4) is supported by tendril not interrupted (5), secondary veins not ending in the teeth (17), style base to disc diameter ratio increased (70), seed ventral infold apex to widest part ratio increased (90), ventral infold space at apex ratio increased (91), ventral infold space base to middle ratio decreased (94), ventral infold divergence angle increased (95), and ventral infold cross section rugosity increased (111). The grouping of Cissus with anomalous seeds with genera with 5-merous flowers (branch 3, Figure

2-4) is supported by inflorescence-tendril monochasial with 2-3 armed (43), floral pedicel length decreased (53), fruit lenticel density increased (78), seed chalaza width increased (99), chalaza apex to widest part increased (100), chalaza to beak distance increased (103), ruga ridge angle increased (107), ventral infold thin part circularity increased (113), chalaza thickness increased

(118), and seed coat tracheidal cell diameter decreased (131). The monophyly of the majority of

Cissus species (branch 4, Figure 2-4) is supported by leaf tooth straight (20), leaf tooth sinus angle decreased (23), anther to petal length ratio increased (61), style to carpel length ratio increased (69), pollen size increased (71), and 15 continuous seed characters (82, 89, 93, 95, 98,

99, 101, 103, 105, 106, 110, 113, 114, 120, 128).

90

Discussion

The Influences of Coding Methods

In Vitaceae, species of different genera frequently have similar vegetative structures; if

reproductive structures are unavailable, the specimens usually cannot be correctly identified.

Nevertheless, genera of Vitaceae have relatively consistent inflorescence-branch, inflorescence, and floral structures; recognizing genera though flowering or fruiting materials is seldom a problem. The discrete coding strategy employed in this study assumes each genus (except

Cissus) is a natural group and looks for the variation pattern among genera. Setting the character

state delimitation is inevitably subject to the observer's point of view. Contrary to discrete coding, GW coding method preserves the patterns of variation objectively and precisely.

However, taxon-sampling, including the choice of the outgroup taxa, can have an effect on tree

topology when continuous characters are coded with the GW method.

The results showed the two different character-state-delimitation methods of the

continuous characters resulted in the generation of MPTs with different tree topology. The

differences are expected because the unit of change is different in the two coding methods. The

effect of the coding methods can be demonstrated by the characters with one extreme value. The

presence of the extreme value will decrease the differentiability of the similar values and hence

down-weight the possible phylogenetic signals that are otherwise discerned in the discrete

coding. Extreme value occurs in several characters, e.g., the stipule length of Leea tetramera ,

disc to carpel height ratio of L. tetramera, disc height to diameter ratio of L. tetramera , pollen

E/P ratio of L. guineensis, pollen pit diameter of L. tetramera, endotesta thickness at ruga sinus

of C. antarctica, and endotesta thickness at ruga ridge of Acareosperma. The discrete coding in

this study does not differentiate the extreme value as a character state and emphasizes the

variation pattern of the majority; compared to GW coding, the chosen variation pattern for

91

character delimitation is weighted more heavily. Log transformation on the length characters

decreases the size of the gap if the extreme value is at the large end and hence reduces the effect

of extreme value in GW coding; however, log transformation may not be reasonable for the ratio

morphometric characters.

Different coding strategies for qualitative morphological characters also can effect the tree topology (Hawkins, Hughes, and Scotland, 1997; Scotland, Olmstead, and Bennett, 2003).

The two coding methods represent different interpretations of the change of continuous

characters. Comparative study showed that both discrete coding and GW coding methods

recover strong statistically significant phylogenetic signal (Garcia-Cruz and Sosa, 2006). In this

study, clades seldom received a strong bootstrap support for either coding method; therefore, all

MPTs were viewed as equally possible evolution scenarios.

Relationships Within the Family, Comparisons with the Molecular Data

A molecular phylogeny including all extant genera is not yet available. Recent molecular studies with broader taxa sampling were either missing Clematicissus and the species of Cissus

endemic to Australia (Soejima and Wen, 2006; Wen et al., 2007) or Cyphostemma and Yua

(Rossetto, 2007). DNA data for Acareosperma is not available because the species has been

collected only once since 1903. The morphological phylogenies presented in this study (Figure

2-1, Figure 2-2) have a backbone structure similar to that of the GAI1 tree (Wen et al., 2007) and

the tree based on combined trnL-F, atpB-rbcL spacer, rps16 intron sequences data (Soejima and

Wen, 2006), albeit only some of the sampled taxa are the same as those in present study. In

these two molecular phylogenies, Cayratia, Tetrastigma, and Cyphostemma formed a clade sister

to other Vitaceae; genera with 5-merous flowers, i.e., Vitis, Ampelocissus, Ampelopsis,

Rhoicissus, and Parthenocissus, formed a clade; Nothocissus and Pterisanthes were nested

92

within Ampelocissus; the majority of the species of Cissus formed a clade sister to the clade that

contains genera with 5-merous flowers.

The monophyly of a clade containing Cayratia, Cyphostemma, and Tetrastigma was

strongly supported by sequence data (Soejima and Wen, 2006; Wen et al., 2007). This clade is

not recovered by morphology-based phylogenetic analysis with GW coding (Figure 2-2), but the topology is present in the morphology trees with discrete coding (Figure 2-1), excluding the paraphyletic C. junceum and C. laza. Stomata on seed sarcotesta and large-sized tracheidal cells

in the seed coat occur in most taxa of these three genera. Most of them can produce highly

reduced inflorescence-branches, and their floral buds have a lobed apex due to the strongly

hooked petals. Some characters are present in two of the three genera: Cayratia and

Cyphostemma have a compressed inflorescence-branch second internode so two pairs of stipules

are present at the position of the first node; Tetrastigma and Cyphostemma frequently have

persistent large stipules. Morphological data indicated that Cayratia is not monophyletic, and

this is congruent with most molecular data (Soejima and Wen, 2006; Rossetto, 2007; Wen et al.,

2007). The species fit to the delimitation of the section Koilosperma Süssenguth (sectional name

violates the international code), Cayratia geniculata and C. cardiophylla, do not form a clade

with the other species of Cayratia (Figure 2-1, Figure 2-2). These two species have a special

seed feature — a constricted rim on ventral side (Chapter 1), and their inflorescences have a

monochasial structure on the basal parts. Seeds of other Cayratia do not have the constricted

rim, and the basal parts of the inflorescences do not have monochasial structures. Tetrastigma

was resolved as monophyletic in both molecular and morphological phylogenies; dioecy and

presence of 4-lobed stigmas are the synapomorphies of this genus. The monophyly of

Cyphostemma is not recovered in the present study, despite the constant floral and seed

93

morphology of this genus. Flowers of Cyphostemma are easily recognized by the 4 large gland- like nectary discs; the scars of the discs can be easily observed in fruits. Seeds of Cyphostemma have ventral infolds covered by extra layers of sclereids and a perichalaza. These seed features are also present in seeds of Leea, and they likely represent retained plesiomorphies.

Cyphostemma junceum has some characters not found in other sampled Vitaceae: the plant is erect, tendril-less, and produces inflorescences only at the terminal node of a branch. This is the growth pattern shared by all species of Leea, therefore the present analyses placed C. junceum sister to all other Vitaceae. Cyphostemma laza, a succulent tendril-bearing tree 1 to 4 m tall, was placed sister to Cissus and all 5-merous genera in the trees resulting from the analysis employing discrete coding mainly because the character state of compressed inflorescence-branch second internode (37) was coded unknown. When the character was coded as present for C. laza, it grouped with the majority of Cyphostemma (data not shown). Cyphostemma laza and C. microdiptera, together with C. junceum, are placed in a position sister to the rest of the family when GW coding was applied (Figure 2-2) although they have tendrils and inflorescences opposite to the leaves like other Vitaceae. These two species of Cyphostemma have pinnately compound leaves, a character shared with Leea. Cyphostemma junceum was not included in the molecular phylogeny. Cyphostemma bainesii and C. mappia, species with similar tendril-less erect growth and terminal inflorescences, were shown to group with other tendril-bearing

Cyphostemma in trnL-F sequence data (Soejima and Wen, 2006). The monophyly of

Cyphostemma must await further testing.

The unique seed shape of Acareosperma spireanum has been used to support recognition of this species as a monotypic genus (Gagnepain, 1919). Available vegetative, infructescence, fruit, and seed characters indicate its close relationship to Cayratia or Cyphostemma (Figure 2-1,

94

Figure 2-2). The architecture of the infructescence-bearing branch of Acareosperma is similar to

that of Cayratia and Cyphostemma, in agreement with the observation of the author who

established the genus (Gagnepain, 1919). Fruits of Acareosperma are 1-seeded; the surface of

the fruit is covered with short 2- to 3-celled uniseriate hairs. One seeded-fruits with hair are

prevalent in Cyphostemma. Large diameter tracheidal cells in the seed coat are shared with

Cayratia, and the same kind of V-shaped ventral infold configuration (136) is observed in at

least 3 species of Tetrastigma (Chapter 1).

The majority of the species of Cissus formed a well supported clade in the molecular

phylogenies (Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007);

Cissus simsiana, C. striata, C. tweedieana, C. antarctica, C. oblonga, C. hypoglauca, and C.

sterculiifolia were not included in this clade of Cissus species (Rossetto et al., 2002; Soejima and

Wen, 2006; Rossetto, 2007; Wen et al., 2007). The monophyly of the majority of the species of

Cissus is recovered by morphological data with GW coding, and the eight species of Cissus, i.e.,

C. simsiana, C. hypoglauca, C. antarctica, C. sterculiifolia, C. trianae, C. granulosa, C.

penninervis, and C. striata, are not included in this clade (Figure 2-2). Among those eight

species of Cissus, C. trianae and C. granulosa were not included in analyses based on sequence

data. The synapomorphies of the monophyletic group comprising the majority of the speceis of

Cissus include leaf with straight teeth (20), leaf teeth with small sinus angle (23), and seeds with

perichalaza (101). The majority of the species of Cissus does not form a clade, however, when discrete coding was applied to the matrix (Figure 2-1). The sister position of Cissus to the clade containing genera with 5-merous flowers was present in molecular phylogenies of Soejima and

Wen (2006) and Wen et al. (2007), and also the present morphological study. The

morphological changes along the branch leading to Cissus and the 5-merous genera are mostly

95

the loss of the characters generally present in Cyphostemma, Cayratia, and Tetrastigma, such as the absence of highly reduced inflorescence-branch (34), absence of lobed flower bud (56), and absence of stomata on sarcotesta (130).

The eight species of Cissus excluded from the clade containing the majority of species of

Cissus in the morphology-based phylogeny with GW coding are either Australian or South

American endemics. They do not possess the perichalazal seeds like those of the members of the clade containing most species of Cissus. Those from Australia, C. antarctica, C. hypoglauca, C.

penninervis, and C. sterculiifolia, have rugose seeds with long divergent ventral infolds and an

elongate chalaza, similar to the seeds of Tetrastigma or Rhoicissus; those from South America,

C. granulose and C. trianae, have seeds that share features of Tetrastigma, and those of C.

simsiana and C. striata are very similar to the seeds of Ampelopsis (Chapter 1). Seeds provide

the most obvious characters distinguishing these species from the rest of Cissus, but the

inflorescence structure also distinguishes these species from the remaining species of Cissus. A

bifurcate structure is present in the basal part of inflorescence in these eight species of Cissus,

but this structure is absent in all other Cissus. A bract is present under one of the two arms,

therefore the structure is interpreted as monochasium with two arms (character 43). The genera

which produce 5-merous flowers mostly have this monochasial structure in the basal part of their

inflorescences. Floral structure can distinguish some of these eight species of Cissus from the

rest of Cissus: C. granulosa, C. trianae, and C. penninervis have larger disc height to diameter ratio (67), C. hypoglauca and C. trianae have smaller style to carpel length ratio (69), and C. hypoglauca has a larger style to disc diameter ratio (70). The remaining members of this group cannot be distinguished from other Cissus by floral characters.

96

Rhoicissus and some species of Cissus without perichalazal seeds have inflorescence- tendril structures (character 43) shared with the taxa with 5-merous flowers, however, their seeds possess features of Tetrastigma. The mixture characters characterizing 5-petaled and 4-petaled

genera in these species place them in a position sister to the primarily 5-petaled clade when discrete coding was applied (Figure 2-1). Hair type also supports the close relationship of these species; 2-armed hairs, a feature characteristic of Cissus, is present in C. antarctica, C. trianae,

C. hypoglauca, C. sterculiifolia, and Rhoicissus. Cissus simsiana not only has the monochasial structure in the basal part of its inflorescences, but also its overall morphology is very similar to that of Ampelopsis. Therefore it is placed close to Ampelopsis by morphological data (Figure 2-

1, Figure 2-2). Rhoicissus and the seven species of Cissus with anomalous seeds are grouped with Parthenocissus-Yua in the morphological phylogeny employing GW coding (Figure 2-2).

Seeds with long and divergent ventral infolds are one of the synapomorphies of this clade.

Palmate leaves with very few teeth on the leaf margin are present in R. digitata, C. hypoglauca,

C. penninervis, and C. sterculiifolia, supporting their close relationship. The glaucous leaves contribute to the grouping of C. hypoglauca and Yua. The placement of Rhoicissus and the species of Cissus without perichalaza was different from that in the molecular phylogenies.

Cissus striata and C. simsiana formed a well supported clade with Rhoicissus, which is nested within Ampelopsis in trees based on GAI1 sequences (Wen et al., 2007). The grouping of

Rhoicissus with Ampelopsis is not present in the present study, however, C. simsiana is placed close to Ampelopsis based on morphological data (Figure 2-1, Figure 2-2). In the analyses emphasizing Australian species, C. antarctica, C. oblonga, C. hypoglauca, and C. sterculiifolia

formed a clade; nevertheless, the position of this clade within the family is uncertain (Rossetto et

al., 2002; Rossetto, 2007). The position of Rhoicissus and the species of Cissus lacking

97

perichalazal seeds cannot be confirmed with current data; their placement based on morphological data does not have bootstrap support, and the molecular phylogenies have an incomplete taxon sampling.

A large clade comprised of genera mostly with 5-merous flowers, including

Clematicissus, is seen in the morphology-based trees. The two species of Clematicissus form a clade, although C. angustissima has unusual one-infolded seeds not seen in any other vitaceous seed (Chapter 1). They are placed in the clade that contains Ampelocissus, Vitis, and Ampelopsis

(Figure 2-2), or the clade that contains Ampelocissus, Vitis, Ampelopsis, and Parthenocissus

(Figure 2-1). GAI1 sequence data strongly support a clade containing species with 5-merous flowers (Wen et al., 2007); however, Clematicissus was not included in this molecular analysis.

In the trnL-F phylogeny, which included Australian endemic species, C. striata grouped with C. tweedieana, a South American species morphologically similar to C. simsiana, and these two species of Cissus formed a well supported clade with Clematicissus (Rossetto, 2007). Seeds of

Clematicissus, C. striata, and C. tweedieana are similar to those of Ampelopsis (Chapter 1); floral and inflorescence structures also support the close phylogenetic placement of

Clematicissus and Ampelopsis. The precise placement of Clematicissus within the family awaits further testing.

Parthenocissus and Yua form a clade in both molecular (Wen et al., 2007) and morphological phylogenies. The monophyly of Yua is not recovered in this study. The genus

Yua from China and Parthenocissus vitacea from North America have floral morphology characteristic of Parthenocissus—carpel -bottle-shaped and disc inconspicuous, but their tendrils are 2- or 3-armed without suction pads, and thus differing from the suction-padded, multiple-armed tendrils of other species of Parthenocissus. The seed morphology of Yua is also

98

different from that of Parthenocissus (Chapter 1). In spite of these differences, the present morphology-based cladistic analyses indicate a clade containing Yua and Parthenocissus. Floral structures are the major synapomorphies of this clade. Parthenocissus and Yua were placed within the clade containing Ampelocissus, Vitis, and Ampelopsis in the molecular phylogenies of

Soejima and Wen (2006) and Wen et al. (2007). A similar grouping is present in the phylogeny with discrete coding (Figure 2-1), with Ampelopsis paraphyletic.

In these molecular phylogenies, Vitis formed a clade with Ampelocissus, with

Nothocissus and Pterisanthes nesting within Ampelocissus. This clade received fair support in the analyses based on three chloroplast sequences (Soejima and Wen, 2006) and received a moderate Bootstrap support in the morphology-based phylogeny (Figure 2-1, Figure 2-2).

Racemose inflorescences and arachnoid hairs are the shared characters for this clade. In the present study, Ampelopsis is paraphyletic and phylogenetically adjacent to the Ampelocissus-

Vitis clade. This relationship of Ampelopsis to the Ampelocissus-Vitis clade was not supported in the molecular phylogenies of Soejima and Wen (2006) or Wen et al. (2007). The molecular data indicated a paraphyletic Ampelopsis with a pinnately-compound leaved species forming a clade, and the simple and palmately compound-leaved species grouped together, with the Rhoicissus-

"C. striata complex" positioned as sister to either of the two clades (Soejima and Wen, 2006;

Wen et al., 2007). The separation of Ampelopsis species by leaf form agrees with the morphological data treated with GW coding (Figure 2-2) but not with the phylogeny employing discrete coding (Figure 2-1).

Morphology of Vitaceae and Character Evolution

Growth habit

Most Vitaceae are climbing to procumbent lianas or . Tuberous rootstocks are frequently observed in Australian and African taxa (Jackes, 1988b; Verdcourt, 1993). Old

99

branches are usually terete; however, flattened woody stems are frequently observed in

Tetrastigma. Four to six-angular stems occur in some succulent Cissus, and the young woody stems of some species of Ampelopsis and Parthenocissus are squarish. Erect growth occurs in a few species of Cissus, Cyphostemma, and Rhoicissus from Africa and Madagascar. Species distributed outside the African region with erect growth include the Australian endemic

Ampelocissus frutescens, which grows in the coastal deciduous forests (Jackes, 1984), and

Ampelopsis vitifolia subsp. hazarganjiensis Nazim & Qaiser from Pakistan (Nazimuddin and

Qaiser, 1982). Those species with the erect growth habit are distributed in xerophytic habitat, and they may be herbs, shrubs, or caudiform trees, with or without tendrils. Species of Leea do

not show the viny habit, and mostly occur in riverine forests but some grow in dry savannas.

The erect growth habit is possibly the ancestral condition of Vitaceae, since C. junceum, a

perennial herb with terminal inflorescences, was placed in a position sister to other Vitaceae by

the morphological data (Figure 2-1, Figure 2-2). An erect habit is often associated with

succulence; at least 20 species of Cyphostemma are caudiform trees (Hardy and Retief, 1981;

Verdcourt, 1993; Descoings, 2004). Succulent growth also occurs in a few viny species of

Cyphostemma, Cissus and Tetrastigma. Although all succulent species belong to the genera with

4-merous flowers, the present phylogeny does not indicate their common origin; the character

state reconstruction suggests succulence evolved independently several times (data not shown).

Crassulacean acid metabolism (CAM) has been reported in some species of Cissus and

Cyphostemma, and it was shown that succulence level is not causally related to CAM activity

(De Santo et al., 1983). CAM is possibly more common in Vitaceae than what would be

expected based on the frequency of succulence.

100

Considering that the stem anatomy of lianas is usually specialized and different from that of trees or shrubs (Carlquist, 1991), and the non-liana habit seems to be restricted to certain genera of Vitaceae, the wood anatomy of Vitaceae is potentially phylogenetically informative. A preliminary survey indicated that Rhoicissus and Leea have similar wood anatomy; the wood of

Cayratia resembles that of Tetrastigma, and both share some characters of wood of Cissus; the wood of Vitis appears more similar to that of Parthenocissus and Ampelopsis than that of

Ampelocissus (Wheeler and Lapasha, 1994). Wood anatomy seems to support the separation of

4-petaled and 5-petaled taxa, as indicated by the current morphological and molecular data. An extensive survey of wood anatomy of Vitaceae should provide insight into the intrafamilial relationships, especially the placement of Rhoicissus. The evolution of stem anatomy of liana then can be inferred from mapping the characters to a phylogenetic tree.

Both deciduous and evergreen growth occur in Vitaceae. In the present study,

Parthenocissus quinquefolia, , and V. vinifera were observed in the field to be deciduous; Ampelocissus acapulcensis and Cyphostemma laza probably flower before new leaves expand because mature leaves are absent and only young leaves are found on developing shoots of flowering specimens. Previous investigations reported that Ampelopsis,

Parthenocissus, and Vitis are deciduous, or rarely evergreen (Brizicky, 1965). The Australian species Cissus cardiophylla, C. reniformis, Clematicissus angustissima, C. opaca are deciduous.

Cissus cornifolia is "usually flowering before new leaves grow" (Verdcourt, 1993). Other sampled species are either evergreen or lacking information on leaf persistence; therefore, this character was not included in the cladistic analyses.

Phyllotaxy

The feature characteristic of Vitaceae, i.e., tendrils opposite the leaves, is quite unusual in vascular plants. Besides leaf primodia, a uncommitted primodium (sometimes called a lateral

101

meristem) is regularly generated in the shoot apex, producing either tendrils or inflorescences that opposed the leaves at a later stage of development (Gerrath, Lacroix, and Posluszny, 1998).

The homologous origin of inflorescences and tendrils has long been considered, based on their occupying the same position on a branch, frequently observed intermediate forms, and the experiments that show that the application of growth regulators can transform one to the other

(Srinivasan and Mullins, 1978, 1979, 1980). Recent molecular genetics studies provided additional evidence. A defect in signal transduction of gibberellin causes young plants to produce inflorescences instead of normal tendrils (Boss and Thomas, 2002); and the finding that

2 MADS-box genes are expressed in both inflorescences and tendrils of very young non- flowering plants but not other vegetative organs (Calonje et al., 2004) implied a partially shared morphogenetic pathway of inflorescences and tendrils. Leaves are alternate and spirally arranged when plants are young and tendril-less, but after the first tendril is initiated, the leaves are usually alternate and 2-rankedly arranged at every node. Tendrils and axillary buds are not always present at every node.

Shoot architectures of Vitaceae have been classified into five patterns, related to the presence or absence of axillary buds and tendrils/inflorescences at the adjacent nodes (Gerrath,

Lacroix, and Posluszny, 1998; Gerrath and Posluszny, 2007). Pattern 1 has a leaf and axillary buds at every node, tendrils absent, and the inflorescence is terminal or axillary. Pattern 5 has a leaf, an inflorescence/tendril, and axillary buds at every node. Patterns 2, 3, and 4 represent the condition described as "tendril interrupted" in the literature. In these three patterns, tendrils/inflorescences are absent in a 3-node modularity, and the axillary buds are present in either one, two, or all three of the nodes in the 3-node modularity. The character survey in this study shows that a terminal inflorescence is not restricted to phyllotaxis pattern 1, and in some

102

taxa the inflorescence-branch architecture is not the same as that of the vegetative-branch.

Therefore, the characters regarding to the inflorescence-branch architecture were treated separately; the general phyllotaxy was inferred from the pattern of the tendril position on a vegetative-branch in this study. Due to the difficulty in confirming the absence of axillary buds in dried and pressed materials, only patterns of tendrils were scored (character 5). A new pattern not belonging to the five patterns described above was also observe, i.e., the tendril is present and interrupted, with two nodes as a repeat, and axillary buds are present at every node (Figure

2-5). This pattern occurs only in Nothocissus spicifera. Leea do not possess tendrils. Erect growth is not related to lack of tendrils; some caudiform Cyphostemma produce young shoots with tendrils near the top of the trunk during the growing season, and C. hereroense is procumbent and tendril-less. Interrupted tendrils can occur in any genus. Character optimization resolved tendril-less as the ancestral condition for Vitaceae, and the tendril interrupted condition evolved from the tendril-less condition. The tendril not interrupted condition is derived several times independently (Figure 2-6). Interestingly, Rhoicissus and most species of Cissus, including those without perichalazal seeds, have uninterrupted tendrils (Figure 2-6).

Tendrils

The tendrils of Vitaceae are always opposite the leaves, usually with a monochasial organization; a bract is present opposite to each tendril arm. Tendril arm number varies from one to nine. When the tendrils have only one arm, i.e., are unbranched, usually there is a bract- like structure in the middle of the tendril (Figure 2-5); only the unbranched tendrils of Cissus fuliginea and Tetrastigma bioritsense do not have any surface protrusion. A bract-like structure was also observed in the middle of the outer tendril arm in some 2- or 3-armed-tendriled species, such as Ampelopsis arborea and A. cordata. In these two species of Ampelopsis, the bract-like scar is sometimes associated with a short reduced inflorescence-like structure. Therefore, a

103

bract-like structure on an unbranched tendril was viewed as a vestigial organ of a reduced multiple-armed tendril with monochasial organization, and only the tendrils of C. fuliginea and

T. bioritsense were considered as having simple organization. Tendrils with umbellate organization are present in Tetrastigma triphyllum (Gagnep.) W. T. Wang, T. yunnanense

Gagnep., and T. obtectum (sampled). Under character optimization, the relatively rare umbellate tendril is a derived state. The umbel structure of the tendril can be hypothesized as a modification of the monochasial structure, with axis length reduced so the tendril arms are condensed to form an umbellate architecture. Tendrils with more than four arms and the tendril tips specialized to suction pads are the characters frequently used to distinguish the genus

Parthenocissus from others. Observations on the organogenesis of the tendrils of Parthenocissus revealed differences between 2-armed tendrils and multiple armed tendrils, with the deviance mainly coming from the relative size differences of the tendril apex and tendril arm initials in the early developmental stages. In later tendril bifurcation the multiple-armed tendril behaved similar to the bifurcation in the 2-armed tendril; and this was speculated to be due to the reduced meristematic activities of the tendril apex in the later stage (Wilson and Posluszny, 2003b).

There is possibly a gradient of variation of meristematic activities displayed in the tendril apex, and the outcome of this variation is the diversity in the tendril arm number. Four- or more-armed tendrils are not restricted to Parthenocissus; at least four species of Ampelocissus, , and the 3 species of Tetrastigma with umbellate tendrils also have tendrils with more than four arms.

The young tendril tips are swollen in a few species. This enlargement is spherical in

Parthenocissus dalzielii, asymmetrical with an acute apex in P. laetevirens, or peg-shaped in

Cayratia trifolia and some species of Cissus, and different from the reduced floral-bud-like

104

structures that sometimes are present on the tendrils of Ampelopsis. The presence of an enlargement in a young tendril tip is not associated with the formation of suction pads. This swollen structure in young tendril tips has an unknown function, nevertheless, it was used to distinguish species of Parthenocissus (Li, 1998). The formation of the suction pad starts when the tendril tips contact solid substances; without this contact the young tendrils soon abscise.

The mature tendrils have a relatively shorter axis compared to the tendrils without suction pads.

Suction pads frequently occur in species of Parthenocissus, nevertheless, not all species of

Parthenocissus have them. Suction pads also occur in Cayratia trifolia, Cissus obovata, and the three species of Tetrastigma with umbellate tendrils. Based on the phylogeny presented in this study, the presence of suction pads on the tendril tips is a derived condition, and has evolved several times.

Stipules

All observed species have a pair of intra-petiolar stipules at each node. The margin of the stipules frequently have short uniseriate hairs. The stipules usually cover the shoot apex when young, and typically fall off soon after the leaves expand. Sometimes, however, the stipules are not deciduous; many species of Cyphostemma and Tetrastigma have persistent stipules, which enlarge as the stem grows and remain on the nodes that produce inflorescences or infructescences. Stipules of Vitaceae are round, oval, triangular, or linear in shape. Most species of Vitis, Ampelopsis, and Cissus have round stipules; Cayratia and Parthenocissus have linear triangular stipules; Cyphostemma frequently has large falcate stipules; and Tetrastigma tends to have oval stipules with a pointed apex. The stipule base is usually straight, but a swollen and cordate stipule base was occasionally observed in species of Cissus. The three Australian species of Cissus, C. hypoglauca, C. antarctica, and C. oblonga, have large stipules, and a unusual feature was observed for the stipules of C. hypoglauca and C. oblonga—the pair of

105

stipules are connected by a partition along the median longitudinal plane so the transverse section of the stipules is H-shaped. This partition was not present in the other investigated species (Lacroix and Posluszny, 1989b). In another study, C. antarctica was reported to have interconnected stipules, and a more subtle form of connection was found in C. quadrangularis

(Timmons, Posluszny, and Gerrath, 2007b). Molecular data, albeit with incomplete sampling, indicated the monophyly of C. hypoglauca, C. oblonga, and C. antarctica; the presence of the H- shaped connected stipules could be a synapomorphy for these species (Rossetto et al., 2002;

Rossetto, 2007). A survey of this character in Vitaceae may provide more data to infer the phylogenetic position of the species of Cissus endemic to Australia.

Leaves

Leaves of Vitaceae are simple or compound; the later condition may be palmate, pedate, or pinnate (Figure 2-7). The simple leaf is common in Vitis, Ampelocissus, Ampelopsis,

Rhoicissus, and Cissus; it seldom occurs in Tetrastigma, Cayratia, and Cyphostemma. The palmately compound leaf, with either three or five leaflets, occurs in all genera of Vitaceae, and is common in Parthenocissus, Tetrastigma, Cayratia, and Cyphostemma. Nevertheless, the palmately compound leaf with five leaflets is curiously missing in species of Cayratia. The pedately compound leaf is common in Cayratia, Tetrastigma, Ampelocissus, and Pterisanthes.

Interestingly, the pedate-leaved species are mostly distributed in southeastern Asia, although the

African Cyphostemma adenocaule is an exception. The pedately compound leaves of

Acareosperma are different from other pedately compound leaves due to the monochasial organization of the multiple lateral leaflets. Pinnately compound leaves are relatively uncommon in Vitaceae; they are present in at least eight species of Ampelopsis, i.e., one North

American species and seven Asian species (Li, 1998), seven species of South American Cissus

(Lombardi, 2000), one Cayratia from Madagascar (Descoings, 1961) and seven species of

106

caudiform Cyphostemma from Madagascar (Descoings, 2004). Leaf form is variable in some

taxa; within the sampled taxa, leaves of Parthenocissus dalzielii are simple when small in size,

and large leaves are mostly trifoliate; sometimes two leaflets are partially fused. Leaves of

Rhoicissus tridentata also vary from simple to trifoliate, along with intermediate form. Leaflet

number varies in the same individual in some taxa. Leea mainly have pinnately compound leaves. One-foliate or 3-foliate leaves are present in at least six species of Leea. As in Vitaceae, the leaflet number is highly variable in some species but is consistent in others (Ridsdale, 1974,

1976).

Mapping the leaf form onto the MPTs in this study resolved the pinnately or palmately compound leaf form as the ancestral condition of Vitaceae (Figure 2-7). There is a trend of reduction in leaf-blade division, and simple leaves are derived independently in the Vitis-

Ampelocissus clade and the major Cissus clade. Based on the character optimization and the observation of the transition forms between simple and compound leaves, a hypothesis is suggested: the simple leaf form is derived from the compound leaf form by the loss of leaf blade division ability. Leaf reduction was also suggested for Leea— leaves of L. crispa can vary from simple, trifoliate, to uni- or bi-pinnate; in L. magnifolia, a pair of foliar-like outgrowths was positioned below the simple leaf; rarely these outgrowths were developed into highly reduced leaflets (Ridsdale, 1974). The palmate leaf form of Vitaceae possibly originated from the reduction of the pinnate leaf form of the common ancestor of Vitaceae and Leeaceae, and reduction of a palmate leaf may have resulted in a simple leaf. The presence of the pinnate leaf form in some taxa of Vitaceae represents the regained ability for leaf division.

The shape of a simple leaf is typically broadly ovate, with an acute to acuminate apex and a cuneate, convex, truncate, or lobate base. The lamina is unlobed, shallow to deeply 3-,5-, or 7-

107

palmately lobed. Within the 82 sampled ingroup taxa, the leaf blade shape varies from unlobed

to deeply lobed in Cissus campestris and C. reniformis within the same individual; this variation

also occurs among individuals in Ampelocissus abyssinica and A. robinsonii. Outside the taxa

sampled in this study, variation in leaf shape was reported at least in Cissus fuliginea and C.

verticillata (Lombardi, 2000).

The leaflets of a compound leaf are typically elliptic to ovate. The terminal leaflets of a compound leaf are usually larger then the lateral leaflets, and the lateral leaflets frequently have an oblique leaf base. The leaflets of Cissus mirabilis are deeply dissected along the secondary veins, and the leaflets can be 20 cm long. Similar highly dissected palmate leaves were observed in Ampelopsis japonica (Thunb.) Makino (not sampled); nevertheless, the leaf size of A. japonica is much smaller. The distinct leaf shape of C. mirabilis contributed to the establishment of the genus Pterocissus; however, the overall morphology of C. mirabilis is not much different from that of Cissus, and it was transferred to Cissus (Lombardi, 2000). The phylogeny in this study places C. mirabilis among Cissus with perichalazal seeds (Figure 2-2), supporting the sinking of

Pterocissus within the clade of Cissus with perichalazal seeds.

A typical simple leaf of Vitaceae has palmate venation with five primary veins; occasionally three or seven primary veins were observed. The secondary veins attached to the mid-primary veins are pinnately arranged. The secondary veins attached to lateral primary veins are agrophic (have a ladder or comb-like pattern). The number of secondary veins branching from the primary veins of the same leaf is roughly the same, typically three to six pairs. Each secondary vein usually ends at a tooth apex. The tertiary veins attached to the basal-most outer lateral primary vein are agrophic. Other tertiary veins usually show an alternate percurrent or

mixed opposite/alternate percurrent pattern, with tertiary veins roughly 90° to secondary veins.

108

In a lobed leaf, the lobe sinus is typically developed between a lateral primary vein and the basal- most secondary vein, and the overall leaf architecture remains the same. The counterpart of the agrophic veins could be observed when leaf is deeply lobed. The deeper the lobe the more strongly developed is the counterpart of the agrophic veins, and the secondary veins in the lobes appear to be pinnately arranged.

In Parthenocissus dalzielii and Rhoicissus tridentata in which the intermediate forms of simple, lobed, to palmate leaves were observed, the venation pattern of the leaflets resembles that of a simple leaf, and the mid lower part of the leaflet margin is entire; teeth are located on the outer margin of the lateral leaflets. Leaves of Vitis piasezkii and Ampelocissus elegens

Gagnep. (not sampled, field observation) are compound in outline, nevertheless, they retain the venation pattern of a simple leaf, as if a simple leaf has became deeply dissected forming a compound leaf. The resemblance of the venation pattern between a lobed simple leaf and a compound leaf strengthens the hypothesis that the simple leaf of Vitaceae has originated from the loss of the leaf blade division ability. However, the venation patterns of other compound leaves of Vitaceae do not show the strong resemblance to that of a simple leaf, due to the relatively weak veins in the leaflets. Typically, the leaflets of a compound leaf have pinnate venation, and the tertiary vein pattern can be alternate percurrent to a random polygonal.

The leaf margin is usually serrate; entire-margined leaves are rare in Vitaceae. Tooth shape is convex, flexuous, or straight, and the tooth sinus is angular or rounded. The tooth apex is usually pointed and swollen. The primary and secondary veins usually end in the tooth apex, with a pair of weak marginal veins joining the secondary vein in the tooth apex. Rarely the secondary vein loops and joins other secondary veins and does not directly end in the tooth. The tooth size usually does not vary greatly in the same leaf, nevertheless, the teeth terminating the

109

primary veins tend to be larger, and the teeth located between the secondary veins are smaller.

The present data indicate that leaves of Ampelocissus are frequently densely serrate, and the three palmate-leafed Australian species of Cissus, Yua austro-orientalis, and have leaf margins almost without teeth (Figure 2-8). Another noticeable consistency is that the simple leaves of Cissus mostly have small, straight teeth with a sharp sinus angle. The densely serrate leaf margin of species of Ampelocissus was also noticed in another leaf survey of

Vitaceae (Patil, 2006).

Yua and the Australian Cissus hypoglauca have strongly glaucous leaf abaxial surface.

The similarity in the leaf characters, i.e., palmate, almost entire leaf margin, is one of the reasons that Parthenocissus-Yua clade was grouped with Rhoicissus and the species of Cissus with anomalous seeds in the analysis with GW-coding (Figure 2-2). Another feature sometimes observed on grape leaves is domatia. The Australian species Cissus antarctica, C. oblonga, and

C. sterculiifolia have prominent pocket-shaped domatia. The vein tissues extend and connect at the junction of major veins, forming a pocket-shape structure. Those on the leaves of C. antarctica and C. oblonga can protrude prominently. The pocket-shaped domatia are also present in some Ampelopsis, Rhoicissus, and the South American C. simsiana, although not as prominent as those in the three Australian species of Cissus. The presence of the pocket-shaped domatia seems to indicate a close relationship among some species of Cissus with anomalous seeds, Ampelopsis, and Rhoicissus, a relationship supported by molecular phylogenies (Wen et al., 2007). Instead of being overgrown with tissue, sometimes a tuft of uniseriate hairs is present in the junction of major veins in leaves of other species. In species of Vitis, these tufts of hairs are acarodomatia, which are frequently inhabited by predatory and mycophagous mites that bring beneficial effects to the host plants (English-Loeb, Norton, and Walker, 2002).

110

Features of leaf epidermal cells and stomata pattern (Zubkova, 1966; Ren et al., 2003), and petiole anatomy (Zubkova, 1975) may contain phylogenetic information, but were not surveyed in this study.

Hairs

Trichomes of Vitaceae are uniseriate, arachnoid, unicellular 2-armed, multiseriate, or multiseriate with a glandular head. Uniseriate hairs are most common; usually uniseriate hairs and one other type of hairs are present on the same plant. Hairs can occur on any plant surface except the and the floral disc; those present on the petal outer surface are uniseriate, multiseriate with glandular head, or 2-armed; those present on the carpel surface are always uniseriate; those on the fruit surface are uniseriate, multiseriate, or multiseriate with glandular heads. The length of the uniseriate haisr varies from 0.1 mm to 1mm; the length and the cell numbers of the uniseriate hairs frequently varies within the same individual. The 2-armed hairs are usually sessile with the arms more or less equal in length. The length of the arms ranges from 0.1-1mm long. However, 2-armed hairs with a stalk of 0.1-0.2mm are present in Cissus antarctica, C. hypoglauca, and Rhoicissus tridentata; and in C. antarctica some of the 2-armed hairs have one arm much longer (1.5-2mm) than the other. Arachnoid hairs are usually longer than 0.8mm. Size of the multiseriate hair varies greatly; in Ampelocissus barbata the multiseriate hairs can be more than 1 cm long. Hair density can be highly variable on the same plant, or, more commonly, varies greatly among individuals of the same species. However, the occurrence of the hair types other than uniseriate seems to be phylogenetically informative.

Arachnoid hairs appear exclusively in all sampled species of Ampelocissus, Pterisanthes,

Nothocissus, and Vitis; such hairs are one of the synapomorphies for this clade. Glandular multiseriate hairs frequently occur in Cyphostemma. Two-armed hairs are present in Cissus,

Rhoicissus, and A. delavayana; such hairs are likely another

111

synapomorphy for the Rhoicissus-Ampelopsis clade supported by the molecular data (Soejima

and Wen, 2006).

Sexuality

Sampled species of Tetrastigma and Vitis are all dioecious except V. vinifera, which has a

long history of cultivation and has hermaphroditic flowers. The unisexual flowers have all floral

organs developed, but the stamens or carpels are reduced. Developmental study has shown that

the staminate flowers of V. riparia have ovules that develop to at least the one integument stage,

and later development is aborted; and the pollen grains of pistillate flowers of V. riparia are

inaperturate (Gerrath and Posluszny, 1988a). The pistillate and staminate inflorescences have

the same structures, however in most observed Vitis the pistillate inflorescences are slightly less

branched than the staminate inflorescences. Ampelocissus and Pterisanthes were described as

polygamo-monoecious (Wen, 2007b); Ampelocissus was described as hermaphroditic or

polygamo-dioecious (Li, 1998); A. erdvendbergiana was described as andro-monoecious

(Lombardi, 2000); Cayratia was described as dioecious, polygamo-dioecious, or hermaphrodites

(Descoings, 1972). Distinct floral dimorphism was not observed in sampled Ampelocissus,

Pterisanthes, and Cayratia; field observation is needed to confirm the reported conditions. The

factors determing the sexuality of vitaceous flowers are largely unknown. It was reported that

cytokinins can convert the male plant of native to produce hermaphroditic flowers

(Negi and Olmo, 1972). The same authors proposed a model of a single locus with three alleles controlling the production of male, hermaphrodite, and female flowers (Negi and Olmo, 1971).

In recent studies, a single locus responsible for the sex determination in a Vitis cultivar was identified (Dalbo et al., 2000; Riaz et al., 2006; Marguerit et al., 2009), supporting the previously proposed single locus model for sex determination.

112

Inflorescence-branch architecture

Characters related to inflorescence-branch architecture are useful in distinguishing genera. As previously stated, inflorescences are homologous to tendrils, and the phyllotaxis of inflorescence-branches is the same as that in vegetative-branch in all observed taxa with tendrils, except for Nothocissus and species with highly reduced inflorescence-branches. Usually new shoots develop from the axillary buds of the old branches during the growing season, and the same shoot may produce only inflorescences, only tendrils, or both. The axillary buds that develop into an inflorescence-branch may or may not be spatially specific. Deciduous species of temperate regions, such as Vitis vinifera (Posluszny and Gerrath, 1986; Boss et al., 2003), have latent buds that overwinter. More than one bud can be generated in a leaf axil; the latent buds are the second order buds that form at the axil of first order axillary buds. Inside the latent buds, the inflorescences have been initiated but remain immature and dormant during the winter. The latent buds will develop into inflorescence-branches in next spring, and the first order axillary buds, instead of overwintering, develop into sylleptic shoots that usually produce only tendrils.

The phenomena of sylleptic shoots producing only tendrils is also observed in other species of

Vitis, such as V. vulpina, V. kelungensis (field observations). The deciduous species,

Parthenocissus inserta, has latent buds bearing immature inflorescences; however, it differs from

Vitis in that its first order axillary buds can either become latent buds or develop into branches

(Gerrath and Posluszny, 1989c). Serial accessory buds are present in Ampelopsis brevipedunculata as the overwintering buds, the regular axillary buds normally abscise at the end of the growing season (Gerrath and Posluszny, 1989a). The serial accessory buds are hidden in the petiole base and not externally visible; they have been seldom reported in Vitaceae, possibly because of the difficulty in perceiving them. Supernumerary buds were reported in , which differ from the serial accessory buds of A. brevipedunculata in the spatial

113

direction of their sequential development in the same leaf axil (Timmons, Posluszny, and

Gerrath, 2007b). It is unknown whether those buds specifically develop to vegetative- or inflorescence-branches. The growth patterns of the above-mentioned deciduous species of Vitis,

Parthenocissus occuring in North temperate regions exhibit different strategies to synchronize

reproduction with the favored environmental condition. The development of axillary buds of

other taxa is not well known; typically, the fate of an axillary bud is not as predictable as that of

Vitis.

The inflorescence-branches of Vitis typically have two to four inflorescences born at the basal nodes; the shoot apices remain when flowering and produce tendrils in the upper nodes.

The inflorescence-branches in most sampled Ampelocissus, Pterisanthes, Nothocissus,

Ampelopsis and Cissus, in contrast to those of Vitis, produce only inflorescences but not tendrils, although the shoot apices of inflorescence-branches usually remain at anthesis and the inflorescence-branches can get very long. In Parthenocissus, tendrils are not present on the inflorescence-branches; the shoot apices of inflorescence-branches usually stop developing when flowering, and the inflorescence-branches have shorter internodes comparing to vegetative- branches. Some species of Parthenocissus have inflorescence-branches possessing only three to four nodes.

The inflorescence-branches of Tetrastigma are usually highly reduced; in most species they process only two nodes with one inflorescence at the upper node. Leaves are usually lost on the inflorescence-branches of Tetrastigma, leaving only conspicuous and persistent stipules. The inflorescence-branches of Cayratia and Cyphostemma have a distinct feature makes them very easy to recognize. The second internodes are not elongate so that the second node overlaps the first node (compressed inflorescence-branch second internode, Character 37). In species with

114

persistent stipules, two pairs of stipules are present at the first node. Leaves are usually present

on the inflorescence-branches, therefore the first node appears to have a pair of opposite leaves.

Sometimes, on the same plant, the second internode is uncompressed or incompletely-

compressed; in such inflorescence-branches, the inflorescence is present at the second node and

is opposite the leaf. The developing shoot is either persistent or abscised/aborted at the second

node. When a shoot is persistent, the inflorescence-branch appears to possess a pair of leaves,

with one inflorescence, and one developing shoot at the first node (Figure 2-9); if the shoot lost,

the whole inflorescence-branch appears to have one node with a pair of opposite leaves and one

inflorescence in the center. In either case, usually only one inflorescence is produced on one

inflorescence-branch, the shoot apex produces only tendrils at the rest of the nodes.

In Vitaceae, usually the inflorescence-branches start producing inflorescences at any

basal first to fourth nodes, following the three nodes per unit, interrupted or not interrupted

pattern. However, in most observed Cayratia, Cyphostemma, and Tetrastigma, inflorescences

start developing strictly from the second node. Some specimens show that species of these three

genera can produce vegetative-branches with only tendrils, and the highly reduced inflorescence- branches were developed from the axillary buds of the vegetative-branches. Highly reduced inflorescence-branches of Tetrastigma, Cayratia, or Cyphostemma have been frequently

interpreted as single inflorescences, hence in the literature they have been described as

"inflorescences axillary". Sometimes "terminal", "pseudo-axillary" or "pseudo-terminal" have been used to describe the inflorescence of Cayratia or Cyphostemma. Besides Cayratia,

Cyphostemma, and Tetrastigma, several unsampled African species of Cissus, e.g., C. producta,

C. trothae, C. welwitschii, C. petiolata, C. ruspolii, were described as having axillary inflorescences or terminal cymes (Verdcourt, 1993).

115

All observed species of Leea have terminal inflorescences and no inflorescence is

produced at any other node of the same branch. The leaves are spirally arranged along the branch, a conspicuous axillary bud is present at every node, enclosed within the petiole base. The terminal node usually has two inflorescences arranged in various angle to each other, and one leaf without a visible axillary bud. A previous study on Leea reported the same growing pattern; when two inflorescences are present at the shoot terminal, one of the inflorescences was interpreted as terminal and the other as axillary (Gerrath, Lacroix, and Posluszny, 1990). What may commonly happened is that shoot apical meristem (SAM) activity can be terminated by some unknown regulatory process, and whatever organ nearest SAM will overgrown SAM and become terminal. The condition frequently observed in Tetrastigma, Cayratia, and

Cyphostemma, i.e., that the terminal node of the reduced inflorescence-branch containing a single inflorescence, is more likely due to the loss of the shoot apex, because frequently in the same plant some inflorescence-branches still possess young developing shoots. The presence of two inflorescences and a leaf at the terminal node of a shoot represents a condition different from that observed in Tetrastigma, Cayratia, and Cyphostemma. The condition of having two- inflorescences and one leaf at the terminal node was also observed in some Vitaceae, including the tendril-bearing species such as Cissus granulosa, C. striata, C. penninervis, C. sterculiifolia, and Nothocissus, and the tendril-less erect herbs Cyphostemma junceum. Unlike Leea, in these four species of Cissus with anomalous seeds, the leaf-opposed inflorescences are still produced in the non-terminal nodes. In Nothocissus, typically the node below the terminal node also produces a leaf-opposed inflorescence, but no inflorescence is present in other lower nodes. In

C. junceum, the inflorescence occurs strictly in the terminal position; the terminal node of the plant has a reduced leaf and one or two inflorescences. The growing pattern of C. junceum is

116

very similar to that of Leea, and this similarity contributed to C. junceum's basal position in the present morphology-based cladistic analyses. and C. mappia, erect succulent shrubs without tendrils, were also observed to have terminal inflorescences (Wilson,

Gerrath, and Posluszny, 2006). Observation with epi-illumination light microscopy showed that the SAM bifurcates and then develops into an inflorescence in these two species. The authors concluded that the general shoot development of C. juttae and C. mappia is similar to that of

Leea (Lacroix, Gerrath, and Posluszny, 1990), except that in the shoot apex of Leea the SAM is much less prominent than the developing leaf base. The shoot apex of the inflorescence- branches producing terminal inflorescences possibly all share the following features: a leaf primodia is initiated first, then the SAM bifurcates and both parts of the bifurcation develop into inflorescences. Whether the axillary bud of the uppermost leaf is initiated is unknown because the later development of the leaf axil was not followed in the microscopic investigations. The bifurcate inflorescence-first-axis was frequently observed in C. junceum. The conditions observed in the terminal node of a branch of C. junceum included: one inflorescence with bifurcate first-axis; one inflorescence with multi-chasial first-axis; two inflorescences both with bifurcate first-axis, two inflorescences both with multi-chasial first-axis. All observed specimens have a reduced leaf at terminal node. It was speculated that after the initial SAM bifurcation, the internode between the leaf primodia and the bifurcation point elongates, resulting in a bifurcate inflorescence. This elongation may or may not occur, or further bifurcation may occur, before the formation of the multi-chasial organization. Although only obviously present in a few sampled species, the presence of the two terminal inflorescences is possibly more common in the tendril-bearing species than the survey conducted as part of this study indicated. Many species retain a developing shoot when flowering, and the fate of the terminal node was not caught on

117

the herbarial materials. Whether the presence of two inflorescences at the terminal node results

from a distinct developmental process and is phylogenetically significant is unknown.

Based on the microscopic studies conducted by Gerrath and colleagues (cited in

Introduction), the formation of the phyllotaxis of Vitaceae can be summarized as: in tendril-less

plants producing only terminal inflorescences, the SAM bifurcation occurs only once in the same

shoot, at the terminal node, and both parts of the bifurcation develop into inflorescences. In

other members of Vitaceae, the SAM bifurcation is not restricted in the terminal node. The

bifurcation can occur right after a leaf initiation, with the center portion remaining as SAM and

the outer part developing into an inflorescence or tendril. A new leaf is initiated in the alternate

position, and the elongation of internodes between leaves places the inflorescence or tendril in a

leaf-opposed position. The SAM bifurcation can occur at every leaf initiation, producing one

tendril/inflorescence at every node. Alternatively, the SAM bifurcation may be missing every 2

or 3 leaf initiations, so the inflorescence/tendril is absent in every 2 or 3 nodes. An axillary bud

can be initiated at every leaf axil, or missing every 2 or 3 leaf axils, matching Patterns 2 to 4

(Gerrath and Posluszny, 2007). The continued SAM activity after its bifurcation is the key innovation in Vitaceae; this condition is absent in Leea. It is possibly associated with viny habit,

a key familial adaptation. Many leaf-opposed inflorescences can be generated in one plant,

hence increasing the chance of propagation, and the modification of inflorescences into twining

tendrils provides a means for climbing toward the light source.

Inflorescences architecture

As mentioned earlier, inflorescences and tendrils are thought to have a homologous

origin; intermediate forms of tendrils and inflorescences were frequently observed. The present

study shows that the formation of the intermediate forms is phylogenetically informative. The

basal part of the inflorescence usually retains the monochasial organization like the tendrils from

118

the same plants in genera with 5-merous flowers (Figure 2-10 A-D). In Ampelocissus and

Pterisanthes, the inflorescences keep branching in the first tendril arm only, the other inflorescence-tendril arms do not have further branching. Those inflorescence-tendril arms with free ends are usually twining, like the tendril arms. Inflorescence-tendril arms with free ends were sometimes observed in some species of Vitis, Cissus simsiana, Clematicissus angustissima,

Rhicissus tridentata, and Cissus trianae. Occasionally, the inflorescence-tendrils are twining even though no free end is present, as observed in some Ampelopsis, Clematicissus, Rhoicissus, and Cissus antarctica. On the contrary, the inflorescence-tendril of Cissus species with perichalazal seeds, and in Tetrastigma, Cayratia, and Cyphostemma, usually does not have a

monochasial organization like their tendrils (Figure 2-10 E-F), and twining inflorescences do not

occur in those taxa. The properties of tendrils and inflorescences are more strongly

differentiated in these genera.

The inflorescence-axes of Vitaceae are either racemose or cymose. The racemose or

cymose organization repeats several times, and the terminal part of the inflorescence usually

consists of clustered flowers with either an umbellate, dichasial, or double cincinus organization.

Racemose inflorescence structure unites the Ampelocissus-Pterisanthes-Nothocissus-Vitis clade;

racemose inflorescences do not occur in other taxa. In Vitis, the racemose organization has one

or two orders; whereas Ampelocissus usually has more than four orders of racemose branching.

Racemose inflorescences are usually elongate; nevertheless, the inflorescences of Ampelocissus

can be compact or lax and not elongate, depending on the length of the inflorescence-axes. The

shape of the inflorescences sometimes has been used to recognize species of Ampelocissus. The

inflorescences of Ampelocissus robinsonii are elongate and have only one to two orders of

racemose organization, as in Vitis. The similarities of inflorescence and seed morphology with

119

Vitis resulted in the placement of A. robinsonii sister to all species of Ampelocissus (Figures 2-1

and 2-2). The Malesian endemic Ampelocissus, Pterisanthes, and Nothocissus have distinct inflorescence structures. The inflorescences of Ampelocissus sect. Kalocissus (Miq.) Planch. are racemes of spikes; there are 2-3 orders of racemose organization, the flowers are sessile and spirally arranged on the last inflorescence-axes. The inflorescence-axes of Pterisanthes are flattened, with sessile flowers scattered on both side of the lamina. In addition to the pedicel-less flowers, some species of Pterisanthes have flowers with long pedicels on the margin of the lamina. Nothocissus has long bifurcate whip-like inflorescences. The first inflorescence-axes of

Nothocissus are racemose, and the second order axes produce an umbellate cluster of three flowers; the basic architecture is similar to that of Vitis. What makes the inflorescence of

Nothocissus unusual is that both inflorescence-tendril arms are equally developed so two racemes are present in a single inflorescence.

Among the inflorescences without racemose organization, the inflorescence-first-axes of

Cayratia and Cyphostemma clearly have a tri- or tetra-chasial organization. The higher order

inflorescence-axes are dichasial. The side axes of the dichasium can have equal or unequal

length, and the two paraclades can have equal or unequal branching order numbers. In some

species the extremely unequal development of the two paraclades occurs in continuous seven to

eight branching orders, making the inflorescence appear lax with several long arms. All other

genera (Cissus, Tetrastigma, Ampelopsis, Rhoicissus, Parthenocissus and Yua) have an umbel

with three to five arms organization in the inflorescence-first-axes. Dichasia and double cincina

are common types of inflorescence-axes organization above the first-axes in Cissus, Ampelopsis,

Clematicissus, and Rhoicissus. Inflorescence-axes of Tetrastigma, Parthenocissus and Yua

usually can only be discerned as umbellate organization at all order levels. The umbellate units

120

of the mature inflorescence may have a dichasial origin: in the Vitis species that have been observed (Posluszny and Gerrath, 1986), distal inflorescence-axes have a dichasial developmental pattern. The umbellate organization is possibly the result of the fast developing rate of the lateral flowers, or the short time interval between the generation of terminal and lateral flowers.

The phylogeny of this study indicates a transition from distinct tendril and inflorescence structures to tendril and inflorescence sharing the same basal monochasial structure in the same plant (Figure 2-11). Cymoid inflorescences are prevalent in this family, possibly an ancestral state, with racemose inflorescences derived later. Understanding the mechanism of the formation of inflorescence and tendril architectures is undoubtedly the key to understand the intrafamilial relationships of Vitaceae. A GAI1 mutant grape cultivar produced inflorescences instead of tendrils at the nodes of the main shoot and the shoot from latent bud (Boss and

Thomas, 2002), a phenotype resembling Ampelopsis instead of Vitis. Gibberellins are very likely involved in the formation of tendril/inflorescence structures.

Interestingly, the morphology-based phylogeny of this study shares the basic frame work of the GAI1 phylogeny (Wen et al., 2007). Knowledge of the functional genetics of the development of tendrils/inflorescences will provide an independent line of evidence on the evolution of Vitaceae.

Floral morphology

The flowers of Vitaceae have cup-shaped calyces and 4-6 petals; the number of stamens is equal to the number of petals, and the stamens are opposite the petals. The calyx margin is entire, irregularly lobed, to symmetrically lobed with lobe number equal to petal numbers; this variation is frequently observed in flowers from the same individual. The margin of the petals has a fold-up overgrowth on the adaxial side; the anthers are introrse and tucked in the

121

compartment formed by the overgrowth of the petal when flowers are in buds. At anthesis the petals flare outward, showing the boat-shaped apex on the adaxial surface. In most species of

Cayratia, Cyphostemma, and Tetrastigma, the apices of the petals are convex to hood-shaped; when flowers open, the flared petals are spoon-like at the apices. In some species of Cayratia

and Tetrastigma the hood-shaped petals are pointed at the hooded apex so the flower buds appear

to have four horns. Petals of Vitis are connected to form a calyptra by interdigitation of the

epidermal cells (Gerrath and Posluszny, 1988a). Calyptras fall off at anthesis and the petals are

separated only at the base. The color of the petals range from greenish-white, yellowish-white,

to red. Red color in petals is frequently present in species of Ampelocissus and Cyphostemma.

Papillae were observed on the outer surface of most petals. Hairs on the abaxial surface of petals

mostly occurs in species of Cyphostemma.

Shape of nectary discs and carpels clearly distinguishes some genera of Vitaceae. Most

genera (Ampelopsis, Cayratia, Cissus, Rhoicissus) have a dish shaped nectary disc in which the

ovary is embedded; the linear style protrudes from the center of the disc. In some species the

edge of the disc is folded upward forming a rim to hold ample nectar. The outer margin of the

disc is always grooved and the filaments are pressed against the grooves; sometimes the grooves

are deep so the disc appears lobed. In Cyphostemma the discs are prominent and deeply

dissected so they look like four large glands sitting between the filaments. Vitis and Tetrastigma

are dioecious with functionally pistillate/staminate flowers; carpels are missing in staminate

flowers, but the disc remains. The stamens are present in the pistillate flowers and their size is

usually much smaller compared to those of staminate flowers. Their carpels are wine-bottle-

shaped; the disk is a ring of tissues at the base of the carpels. Parthenocissus has bottle-shaped

carpels, however, the nectary tissues are usually inconspicuous. In species with more prominent

122

nectaries the tissues are cup-shaped and cover most of the ovary. The carpels of Ampelocissus are urn-shaped with a short conical style, and the disk is conspicuous, tall, and cup-shaped, wrapping around the ovary. On the lateral surface of the disk an extra groove is present between the grooves against the filaments, therefore the disc appears 10-folded when the stamens are shed. The 10 folds are extended to the surface of the style. Flowers of Nothocissus are similar to

those of Ampelocissus, with extremely tall disk-ovary structures. Pterisanthes on the other hand

has a shallow disk which, along with the ovary, is embedded in the fleshy laminar inflorescence-

axes. Hairs are frequently present on the ovary surface of Cyphostemma. The stigma is usually

truncate or discoid in the family, however a deeply four-lobed stigma is present in all species of

Tetrastigma. Leea has larger flowers, distinct from those of Vitaceae. A prominent staminodial

tube is present in the position of the disk of a flower of Vitaceae; the staminodial tube is comparable to the disk of Vitaceae in early development (Gerrath, Lacroix, and Posluszny,

1990), hence was treated as homologous to the disk in this study. In observed mature flowers, the disk of Leea is adnate to the petals, the stamens appear adnate to the middle of the disk, and anthers are hooked over the top margin of the disk. Anthers are connected to each other laterally, and are usually still connected when filaments abscised from the disk.

The ontogenesis of the floral organs has been observed microscopically in some species of Vitis, Parthenocissus, Ampelopsis, Cissus, and Cyphostemma (see cited works of Gerrath,

Posluszny, Timmons, and Wilson). Typically, the floral organs are initiated first in the outer whorl. are either developed individually, or in a calyx ring preceeding the primodia.

Petals and stamens may or may not share the initial primordia. The carpels are initiated from a ring-shaped primodium; in some taxa five bumps were observed before the formation of the ring- shaped primodium. Two septa divide the gynoecium to two compartments; septa are either

123

touching or not touching in later developmental stages. Usually two anatropous ovules are

formed in each locule, with the funiculus positioned at the junction of the septa and the base of

the carpel wall, with the micropyle initially facing the lateral carpel wall. The disk sometimes

can be discerned as separate bumps flanking the developing carpel ring. The outgroup Leea

guineensis develops six septa in the gynoecium instead of two. A set of three septa develop first,

carrying two ovules on the base of each septum; the other set of three septa develop later between two ovules that are not separated by the first set of septa. Changes occured so septal number and ovule number were reduced in Vitaceae, and spatial differentiation in cell poliferation resulted in the shape differences in the floral organs.

Floral morphology is usually consistent within genera of Vitaceae, and is phylogenetically informative: the floral disk morphology supports the monophyly of the

Ampelocissus-Nothocissus-Pterisanthes clade, the monophyly of Parthenocissus, and the monophyly of Cyphostemma. The monopyly of Tetrastigma is supported by their four-lobed stigma; and the monophyly of Vitis is supported by the presence of calyptras. Floral merosity is resolved as important in the high-level relationships within Vitaceae by the morphology-based phylogenetic analyses conducted as part of this study. The outgroup, Leea, have mostly 5 or 6- petaled flowers; a few species produce 4-petaled flowers (Ridsdale, 1974). The 4-petaled condition is primitive in Vitaceae, and the 5-petaled condition was derived three or four times

(Figure 2-12). Reversal to the 4-petaled condition occurs in the clade containing Ampelocissus, and likely also in Ampelopsis: Cissus simsiana, a species that closely resembles Ampelopsis, has

4-merous flowers; Ampelopsis orientale (Lam.) Planchon (not sampled) from Turkey was reported to have 4-merous flowers (Davis, 1967).

124

Pollen morphology

Pollen grains of Leea and Vitaceae are tricolporate with a pitted to reticulate surface;

when reticulate the brochi usually decrease in size and disappear toward the colpi. Variations

among taxa mainly come from pollen size, ratio between the polar axis and the equatorial

diameter (oblate to prolate in shape), and the maxium lumen (of pit or reticulum) diameter. The

two species of Leea included in the analyses here have relatively large and oblate pollen grains,

which can be easily distinguished from those of Vitaceae. A study of pollen of 31 taxa of Leea

(Tarnavschi and Petria, 1968) also concluded that Leea can be separated from Vitaceae based on pollen morphology. Within Vitaceae, Cissus and Parthenocissus mostly have large, prolate pollen grains. Pollen grains of Cissus are usually pitted, and those of Parthenocissus are

reticulate. Ampelocissus, Nothocissus, Pterisanthes, Vitis, and Tetrastigma have relatively small

and pitted pollen grains. The variation of pollen morphology among genera has been noticed in

previous palynological studies of Vitaceae (Reille, 1967; Patil, 1998), although these studies are

limited by their less than comprehensive sampling of genera.

Fruits

Fruits of Leea and Vitaceae are berries. The fruit pedicels become woody with lenticels

in some, when fruits mature. Fruits of Leea are either usually with four seeds or six to nine seeds

(Ridsdale, 1976). Fruits of Vitaceae are usually 1-4-seeded. In some taxa, 1-2-seeded fruits are

prevalent. Plants producing strictly 1-seeded fruits occur in all observed species of

Cyphostemma, Acareosperma, Tetrastigma obtectum and most species of Cissus. The eight

species of Cissus with anomalous seeds have 1-4-seeded or 1-2-seeded fruits. Cissus palmata is

the only species in the major monophyletic Cissus clade with 1-4-seeded berries.

Fruit shapes are either oval/fusiform or globose/compressed globose. The disk scars are

usually present in fruits as a thin ring near pedicels; in Cyphostemma the four gland-like disk

125

scars are very prominent in fruits. Fruit colors were described as dark black purple, bronze,

maroom, red, fuschia red, brown yellow, pink, pinkish white, translucent white, to green. Some

species of Ampelopsis have distinct iridescent hue of blue and purple fruits. Lenticels on the

fruit surface are prominent and dense in some taxa but not others. The character survey in the

present study showed that dense lenticels on the fruit occur in most taxa producing 5-merous flowers except Vitis, and the species of Cissus with anomalous seeds (Figure 2-13). Fruits without dense lenticels are resolved as the ancestral condition of Vitaceae.

The outer epidermis of the fruits are usually smooth, although fruits with hairs are common in the genus Cyphostemma. The hairs on the fruit surface are uniseriate with two to ten cells; hair length and density varies among taxa. Sometimes large multiseriate glandular hairs are also present, in addition to the uniseriate hairs. Acareosperma is the only taxon with hairy

fruits other then Cyphostemma in this study, although some un-sampled African Cissus also have hairy fruits (Verdcourt, 1993). The hairs on fruit surface of Acareosperma are moderately dense, mostly 2-celled, around 100 µm long, and shorter then that on fruits of most

Cyphostemma (0.2-0.7 mm). Similar short uniseriate hairs are present in the fruits of

Cyphostemma laza, at a much lower density. Stomata are present on the fruit outer epidermis of some species of Cayratia, Cyphostemma, and Tetrastigma. The mesocarp of contains

several layers of parenchyma; mucilages, druses, raphids and sometimes granular prismatic

crystals are common cell contents. Inner layers of parenchyma are usually compressed;

sometimes fibers or elongate sclereids with reticulate thickening were observed in the inner layers of the fruit wall.

Seeds

Seed characters were described in Chapter 1. Although seeds from certain genera can be distinguished by combined diagnostic characters, most seed characters exhibit multiple parallel

126

or reversal evolution when optimized onto the morphological phylogenies presented in this study. Compared to other seed characters, testa anatomical features are more informative regarding high-level relationships within the family. Endotesta sclereid shape is rectangular or polygonal in the basal 4-merous flowered groups and columnar in genera producing 5-merous flowers (Figure 2-14). The presence of stomata on the outer epidermis of the seed is a character restricted to the 4-merous flowered genera Cyphostemma, Cayratia, and Tetrastigma (Figure 2-

15). Large diameter tracheidal cells are present mainly in genera with 4-merous flowers (Figure

2-16). Among the characters of external seed morphological characters, chalaza shape is more or less correlated to floral merosity. In general, 4-petaled genera have linear chalazal seeds, although oval chalazal seeds can occur in Acareosperma, Cayratia and Tetrastigma; 5-petaled genera generally have oval chalazal seeds — nevertheless Rhoicissus has seeds with a linear chalaza (Figure 2-17). The perichalazal condition is present strictly in Cissus, Cyphostemma, and Leea (Chapter 1), and there is a trend of chalaza length reduction within the 5-petal clade.

The basal position of Cyphostemma in Vitaceae is supported by the seed character ventral infolds covered by endotesta (133), a feature also present in Leea.

Concluding Remarks

The morphology-based phylogeny of Vitaceae conducted as part of this study indicates that the 4-petaled genera Cyphostemma, Tetrastigma, Cayratia, and Cissus are basal lineages within the family, and the primarily 5-petaled genera Ampelocissus, Vitis, Ampelopsis,

Parthenocissus, and Yua form a clade. Inflorescence-branch, inflorescence, and seed morphology support the intrafamilial division by petal number. Rhoicissus and some species of

Cissus without perichalazal seeds have inflorescences similar to those of the 5-petaled genera, nevertheless they have seeds like those of Tetrastigma. The combination of characters from 4- petaled and 5-petaled genera places them as successively sister to the 5-merous clade (Figure 2-

127

1) or to Parthenocissus (Figure 2-2). Nevertheless, most branches of the morphology-based phylogeny do not have statistical support. A recent molecular phylogeny with detailed taxon sampling (Wen et al., 2007) shared the basic structure as the morphology-based phylogeny — 4- petaled genera are earlier divergent lineages and are sister to the 5-petaled genera. An analysis of multiple sequences with extensive taxon sampling will better resolve the intrafamilial relationships of Vitaceae.

The leaf-opposed tendrils or inflorescences are unique to Vitaceae. The inflorescences of the 5-petaled genera retain the structure of tendrils, and those of the 4-petaled genera mostly do not have a tendril-like structure. It is of interest to know the factors controling the fate of an uncommitted primodium, and the mechanisum of the formation of the tendril/inflorescence structure. GAI1 has been shown to be involved in determining the fate of the uncommitted primodium (Boss and Thomas, 2002); and some floral and inflorescence morphological traits were located in the same linkage group as the sex determination locus Sex (Marguerit et al.,

2009). Molecular genetic study of Vitis vinifera, an economical important crop, is accumulating

(Carmona et al., 2007; Carmona et al., 2008), and the draft genome sequence of V. vinifera is available (Jaillon et al., 2007), which may provide new genome-derived tools for molecular genetic study. New knowledge on the molecular genetics of the development of inflorescences and tendrils may lead to new phylogenetic hypotheses relating to generic relationships.

128 Ampelocissus abyssinica Nothocissus spicifera petal number: 5 Ampelocissus acetosa 4 100 62 Pterisanthes cissioides 92 Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata 66 Ampelocissus javalensis 60 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii 79 Vitis aestivalis Vitis rotundifolia Vitis flexuosa 86 Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis arborea 79 95 Parthenocissus dalzielii 85 Parthenocissus laetevirens Parthenocissus quinquefolia 67 Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus palmata Cissus assamica Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense 81 Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla 100 Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 2-1. Strict consensus of 516 shortest trees from the morphological dataset in which the continuous characters were treated with discrete coding. Numbers above the branches are bootstrap values > 50%. Character floral merosity (54) is mapped onto the tree.

129 100 Pterisanthes cissioides 80 Pterisanthes polita petal number: 5 Ampelocissus botryostachys 4 Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 68 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii 54 Vitis flexuosa 50 Vitis tsoi Vitis piasezkii 95 Vitis betulifolia Vitis vinifera 51 Vitis aestivalis Vitis rotundifolia 66 Cissus simsiana 51 Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea 52 Clematicissus angustissima Clematicissus opaca 81 99 Parthenocissus dalzielii 90 Parthenocissus laetevirens Parthenocissus quinquefolia 53 Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 58 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis 74 Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 66 Tetrastigma bioritsense Tetrastigma planicaule 71 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 88 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 62 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-2. The shortest tree from the morphological dataset in which the continuous characters were treated with GW coding. Numbers above the branches are bootstrap values > 50%. Character floral merosity (54) is mapped onto the tree.

130 Vitis vinifera Vitis rotundifolia Pterisanthes cissioides Pterisanthes polita Vitis piasezkii Nothocissus spicifera Vitis flexuosa Ampelocissus ochracea Vitis betulifolia Vitis aestivalis Ampelocissus abyssinica Ampelocissus botryostachys Ampelocissus acetosa Ampelocissus latifolia Ampelocissus africana Vitis tsoi Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis

Ampelocissus erdvendbergiana 31: 0->1 32: 0->1 36: 0->1 Ampelocissus robinsonii 40: 0/2->2 44: 0/1->0/1 19: 1->2 45: 0/1->0 40: 0/2->0 59: 0->1 44: 0/1->1 60: 0/1->1 45: 0/1->1 66: 0/1/2->0 62: 0->2 78: 1->0 66: 0/1/2->2 102: 0/1->1 68: 0->1 113: 1->0 69: 1->0 120: 0->1 84: 0->1 122: 0->1

14: 0/1/3->0 25: 0/1->0 28: 0->1 Parthenocissus dalzielii Cissus simsiana 46: 0->2 Parthenocissus laetevirens

48: 1->2 Parthenocissus quinquefolia 49: 2->0 Parthenocissus vitacea 51: 2->1 53: 2->1 60: 0->0/1 Ampelopsis grossedentata 66: 1->0/1/2 Yua chinensis Yua austro orientalis 70: 0->1 Ampelopsis delavayana 71: 1->0

74: 0/1->1 Ampelopsis glandulosa 100: 1->0 Ampelopsis cordata Ampelopsis cantoniensis 102: 0->0/1 11: 0->0/1 13: 0->0/1 24: 0->0/1 36: 0->1 40: 0->2

Ampelopsis arborea 45: 0/1->0 48: 1->0 49: 2->0 61: 0->1 14: 1->3

67: 0->1 Clematicissus angustissima 17: 1->0

70: 0->1 Clematicissus opaca 22: 0/1->0 25: 0->1 74: 0/1->1 45: 0/1->0/1 91: 0->1 111: 1->0 100: 1->0 113: 0/1->1 113: 0/1->0 114: 0/1->0 114: 0/1->1

22: 1->0/1 74: 0->0/1 45: 0/1->1 86: 0/1->1 46: 0->1 93: 0->1 89: 0->1 97: 0->1 90: 1->0 unique, uniform above 109: 0/1->0 109: 0/1->1 unique, with change above 120: 0->1 114: 0/1->1 homoplasy above 5: 1->0 16: 1->0 homoplasy outside 33: 0->1 41: 1->0 homoplasy above and outside Cissus striata ssp. argentina 45: 0->0/1 ambigous change 54: 0->1 86: 0->0/1 114: 0->0/1 Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus tridentata Cissus trianae Rhoicissus digitata Cissus antarctica

11: 0->1 25: 0->0/1 33: 0/1->1 43: 0->1 47: 1->0/1 57: 0/1->0 75: 0->2 76: 1->0 89: 0->1 101: 1->0 106: 1->0 109: 1->0/1 110: 1->0 117: 2->1

Figure 2-3. Character changes over selected branches on one of the shortest trees obtained from the morphological dataset in which the continuous characters were treated with discrete coding. The tree is extended to the next page via the broken line.

131 Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma bioritsense Tetrastigma serrulatum Tetrastigma planicaule Cayratia cardiophylla Cayratia trifolia Cayratia japonica

16: 0/1->0/1 Cayratia triternata 18: 1->2 31: 0->1 37: 1->0 Cayratia geniculata Cayratia oligocarpa 46: 0/1->0 Acareosperma spireanum

48: 1->0/1 Cayratia maritima 49: 1->0 63: 2->1/2 65: 0->1 66: 1->0 32: 0/1->1 68: 0->1 33: 0/1->1 69: 1->0 13: 1->0 34: 1->0 14: 1/2->1 70: 0->0/1 46: 0/1->1 43: 0->1 71: 1->0 75: 0/2->2 46: 0/1->1 76: 0/1->0 73: 1->0 77: 0/1->1 95: 0->0/1 81: 0/1->0/1 97: 0/1->1 86: 0->1 114: 0/1->0/1 105: 1->0 88: 0->1 126: 1->0 112: 0->1 97: 0/1->0/1 128: 0/1->0 114: 0/1->0 129: 1->0/1 137: 0->1 103: 1->2 108: 1->0 Cissus biformifolia

Cissus mirabilis 112: 0->1 10: 0->1 115: 0->1 Cissus palmata Cissus alata Cissus paullinifolia 14: 1/2/3->1/2 Cissus obovata 16: 0->0/1 14: 1/2/3->2 35: 0->1

Cissus assamica 32: 0->0/1 Cissus fuliginea Cyphostemma adenocaule Cissus reniformis Cyphostemma hereroense Cissus quadrangularis

38: 1->0 Cyphostemma buchananii Cissus descoingsii 33: 0->0/1 75: 0/2->2 84: 0->1

Cissus cornifolia 76: 0/1->0

93: 0/1->0 Cyphostemma paucidentatum Cissus verticillata Cissus campestris 77: 0->0/1 107: 2->0

97: 0/1->0/1 114: 0/1->0 Cyphostemma setosum Cyphostemma lageniflorum 128: 1->0/1 117: 2->1 Cyphostemma odontadenium Cyphostemma laza 1: 0/1->0 14: 1/3->1/2/3 5: 0->0/1 57: 1->0 11: 1->0 75: 0->0/2 14: 0/1/3->0 76: 1->0/1 Cyphostemma microdiptera 20: 0->1 80: 0/1->0 39: 1->0 87: 1->0 40: 1->0 93: 1->0/1 46: 0/1->0 97: 0->0/1 10: 0->2 56: 1->0 101: 1->0 30: 0->1 57: 1->0 110: 1->0 46: 0/1->1 73: 1->0 114: 1->0/1 80: 0/1->0/1 80: 0/1->0 132: 0->1 81: 0/1->0 130: 1->0 133: 1->0 111: 0->1 133: 1->0 1: 0/1->0 14: 1/3->1/3 34: 0->1 37: 0->1 46: 0/1->0/1

81: 1->0/1 Cyphostemma junceum Leea guineensis 1: 1->0/1 5: 2->0 16: 1->0 Leea tetramera 39: 2->1 40: 2->1 41: 1->0 42: 1->0 46: 0/1/3->0/1 66: 2->1 67: 1->0

11: 0/1->1 11: 0/1->0 14: 1/3->1/3 14: 1/3->3 18: 0/1->1 18: 0/1->0 46: 0/1/3->0/1/3 46: 0/1/3->0 48: 0/1->1 48: 0/1->0 55: 0/1->0 55: 0/1->1 56: 0/1->1 56: 0/1->0 72: 0/1->0 72: 0/1->1 74: 0/1->0 74: 0/1->1 75: 0/3->0 75: 0/3->3 76: 0/1->1 76: 0/1->0 77: 0/1->0 77: 0/1->1 80: 0/1->0/1 80: 0/1->0 94: 0/1->0 94: 0/1->1 103: 0/1->1 103: 0/1->0 104: 0/1->1 104: 0/1->0 106: 0/1->1 106: 0/1->0 112: 0/1->0 112: 0/1->1 117: 0/2->2 117: 0/2->0 118: 0/1->0 118: 0/1->1 119: 0/1->0 119: 0/1->1 124: 0/1->1 124: 0/1->0 130: 0/1->1 130: 0/1->0

Figure 2-3. Continued.

132 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea 3 Yua chinensis 1 Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia 2 Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata 4 Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-4. Character changes over selected branches (labeled 1-4) on the shortest tree obtained from the morphological dataset in which the continuous characters were treated with GW coding.

133 5: 1->0 5: 0->1 7: 3->3/4/5/6 10: 0/2->0/2 1 13: 6->9/a 2 7: 3/4/5/6->3/4/5/6 3 10: 0/2->0 4 13: 5/6->5/6/7 24: 0->1 17: 0->1 13: 5/6->4/5/6 20: 0->1 40: 0->2 22: 3/4/5->2/3/4/5 42: 8/9/a->8/9 22: 3/4/5->3 48: 0/1->0 42: 8/9->8 43: 0->1 23: c/d/e->5/6/7/8/9/a 49: 2->0 67: 4->4/5 53: j->h 61: 8/9->d 61: 7/8/9->d 70: 6->7 66: 4/5->5 66: 4/5->4 68: 2/3->3 72: 7->7/8/9 67: 3/4->4 67: 3/4->3/4 69: b/c/d/e/f/g->b/c 78: d/e->d/e/f/g/h/j 68: 1/2->1/2 68: 1/2->1 70: 7->a 86: 5->2/3/4/5 70: 5/6->6 69: g->l 71: f->f/g 87: d->d/e 73: 3/4->4 70: 5/6->5 73: 4->6/7 88: 4/5/6/7->2/3/4/5/6 78: 4/5/6/7->d/e 71: f->h/j 78: j/k/l/m/n->j 89: b/c/d->b/c/d 82: g/h->g/h 73: 3/4->3/4 81: a/b->a/b 90: e->f 89: b/c/d->b/c/d 81: 9->9/a/b 82: b/c->b 91: 9->a 92: c/d->b/c/d 82: g/h->6/7/8/9/a/b/c/d 90: f->e 93: b/c/d/e->b/c/d/e 93: c/d/e->b/c/d/e 88: 4/5/6/7->7 91: d/e/f/g/h->g/h 94: 5/6->4 94: 5/6/7->5/6 89: b/c/d->8 95: a/b->a/b 95: 7->a/b 95: 6/7->7 91: 9->7/8/9 109: j/k/l/m/n/p/q/r->j 97: a/b/c/d/e->a/b/c/d 97: d/e->a/b/c/d/e 92: c/d->c/d 117: d/e/f/g/h/j/k/l->j/k/l 101: 5/6->5/6 98: b/c->b/c/d/e/f/g/h 93: c/d/e->f/g/h/j 118: 7/8/9->7/8/9 104: 2/3/4/5/6/7/8/9->2/3/4/5/6/7/8/9 99: 5/6->d/e/f/g/h 94: 5/6/7->7 119: 2/3->2 106: e/f/g/h/j/k/l/m/n/p-> 100: 4/5->g 95: 6/7->4 120: 7/8->8 4/5/6/7/8/9/a/b/c/d/e/f/g/h/j/k/l/m/n/p 103: b/c->d/e/f/g/h/j 96: c->c/d/e/f 122: 1/2->1/2 111: 2/3->4/5/6 107: f/g/h/j/k/l->r 97: d/e->d/e 126: 2/3->1 112: d/e->a/b/c/d 112: e->d/e 98: b/c->3/4 127: g/h/j->g/h/j 114: b/c->b 113: d->j 99: 5/6->3 131: 5/6->2 117: q/r->q/r 114: b/c->b/c 101: 5/6->g 118: 8->8/9 117: q/r->q/r 103: b/c->9 119: 0/1/2->0/1/2/3 118: 5/6/7->8 104: 2/3/4/5/6/7/8/9->2 121: 2/3->2 121: 2/3/4->2/3 105: l->h 122: 1/2->1/2 126: 3/4/5->2/3 106: e/f/g/h/j/k/l/m/n/p->r 124: a->7/8/9/a 128: 3/4/5/6/7/8->3 110: 7->e 127: g/h/j->g/h/j 131: 7/8/9/a->6 113: d->6 114: b/c->g/h 117: q/r->r 119: 0/1/2->0 120: 7/8->a 121: 2/3/4->4 122: 1/2->1 126: 3/4/5->5 unique, with change above 127: g/h/j->j homoplasy above 128: 3/4/5/6/7/8->e homoplasy outside homoplasy above and outside ambigous change

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

Figure 2-4. Continued.

134 135 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea tendril interrupted in three-node modularity Ampelocissus botryostachys tendril not interrupted Ampelocissus barbata no tendril Ampelocissus javalensis Ampelocissus acapulcensis tendril interrupted in two-node modularity Ampelocissus erdvendbergiana Equivocal Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-6. The optimization of the character phyllotaxy (character 5) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

136 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana tendril interrupted in three-node modularity Nothocissus spicifera tendril not interrupted Ampelocissus abyssinica no tendril Ampelocissus acetosa Ampelocissus latifolia tendril interrupted in two-node modularity Ampelocissus acapulcensis Equivocal Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-6. Continued.

137 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata simple Ampelocissus javalensis Ampelocissus acapulcensis palmate Ampelocissus erdvendbergiana pedate Ampelocissus robinsonii pinnate Vitis aestivalis Vitis rotundifolia Equivocal Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-7. The optimization of the character leaf form (character 14) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

138 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica simple Ampelocissus acetosa Ampelocissus latifolia palmate Ampelocissus acapulcensis pedate Ampelocissus erdvendbergiana pinnate Ampelocissus javalensis Ampelocissus robinsonii Equivocal Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-7. Continued.

139 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia A Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata absent or rarely 1 or 2 teeth present in the whole leaf Ampelocissus javalensis 0-2 tooth between two secondary veins Ampelocissus acapulcensis Ampelocissus erdvendbergiana 2 or more between two secondary veins Ampelocissus robinsonii Equivocal Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-8. The optimization of the character leaf teeth density (character 19) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

140 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera 0 Ampelocissus abyssinica 1 Ampelocissus acetosa 2 Ampelocissus latifolia Ampelocissus acapulcensis 3 Ampelocissus erdvendbergiana 4 Ampelocissus javalensis 6 Ampelocissus robinsonii Vitis flexuosa 7 Vitis tsoi 8 Vitis piasezkii 9 Vitis betulifolia Vitis vinifera 10 Vitis aestivalis 12 Vitis rotundifolia 13 Cissus simsiana Ampelopsis cordata 16 Ampelopsis glandulosa 18 Ampelopsis delavayana 21 Ampelopsis cantoniensis Ampelopsis grossedentata 25 Ampelopsis arborea Equivocal Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-8. Continued.

141 142 143 144 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia A Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys different from tendril organization Ampelocissus barbata monochasial with 2-3 arms Ampelocissus javalensis Ampelocissus acapulcensis monochasial with 4 or more arms Ampelocissus erdvendbergiana umbel Ampelocissus robinsonii Vitis aestivalis Equivocal Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-11. The optimization of the character inflorescence-tendril organization (character 43) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

145 Pterisanthes polita Pterisanthes cissioides Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Nothocissus spicifera Ampelocissus africana different from tendril organization Ampelocissus abyssinica Ampelocissus acetosa monochasial with 2-3 arms Ampelocissus latifolia monochasial with 4 or more arms Ampelocissus acapulcensis umbel Ampelocissus erdvendbergiana Ampelocissus javalensis Equivocal Ampelocissus robinsonii Vitis tsoi Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis rotundifolia Vitis aestivalis Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis arborea Ampelopsis cantoniensis Ampelopsis grossedentata Clematicissus angustissima Clematicissus opaca Parthenocissus laetevirens Parthenocissus dalzielii Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Rhoicissus tridentata Cissus antarctica Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus paullinifolia Cissus biformifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus reniformis Cissus quadrangularis Cissus obovata Cissus mirabilis Cissus fuliginea Cissus verticillata Cissus campestris Cissus alata Cissus palmata Tetrastigma planicaule Tetrastigma bioritsense Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia oligocarpa Cayratia maritima Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma odontadenium Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-11. Continued.

146 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys mostly four Ampelocissus barbata mostly five, six or seven Ampelocissus javalensis Ampelocissus acapulcensis Equivocal Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-12. The optimization of the character floral merosity (character 54) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

147 Pterisanthes polita Pterisanthes cissioides Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Nothocissus spicifera Ampelocissus africana mostly four Ampelocissus abyssinica Ampelocissus acetosa mostly five, six or seven Ampelocissus latifolia Equivocal Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis tsoi Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis rotundifolia Vitis aestivalis Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis arborea Ampelopsis cantoniensis Ampelopsis grossedentata Clematicissus angustissima Clematicissus opaca Parthenocissus laetevirens Parthenocissus dalzielii Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Rhoicissus tridentata Cissus antarctica Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus paullinifolia Cissus biformifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus reniformis Cissus quadrangularis Cissus obovata Cissus mirabilis Cissus fuliginea Cissus verticillata Cissus campestris Cissus alata Cissus palmata Tetrastigma planicaule Tetrastigma bioritsense Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia oligocarpa Cayratia maritima Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma odontadenium Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-12. Continued.

148 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys not dense (< 25) Ampelocissus barbata dense (> 25) Ampelocissus javalensis Ampelocissus acapulcensis Equivocal Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-13. The optimization of the character lenticel density on fruit surface (character 78) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

149 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea B Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica 0 Ampelocissus acetosa 1 Ampelocissus latifolia 2 Ampelocissus acapulcensis Ampelocissus erdvendbergiana 3 Ampelocissus javalensis 4 Ampelocissus robinsonii 7 Vitis flexuosa Vitis tsoi 8 Vitis piasezkii 9 Vitis betulifolia 11 Vitis vinifera Vitis aestivalis 12 Vitis rotundifolia 13 Cissus simsiana 14 Ampelopsis cordata Ampelopsis glandulosa 15 Ampelopsis delavayana 16 Ampelopsis cantoniensis 17 Ampelopsis grossedentata Ampelopsis arborea 18 Clematicissus angustissima 20 Clematicissus opaca 21 Parthenocissus dalzielii Parthenocissus laetevirens 22 Parthenocissus quinquefolia 24 Parthenocissus vitacea 25 Yua chinensis Yua austro-orientalis Equivocal Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-13. Continued.

150 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys < 0.4 Ampelocissus barbata > 0.4 Ampelocissus javalensis Ampelocissus acapulcensis Equivocal Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-14. The optimization of the character endotesta sclereid width/length ratio (character 126) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

151 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera 0 Ampelocissus abyssinica Ampelocissus acetosa 1 Ampelocissus latifolia 2 Ampelocissus acapulcensis 3 Ampelocissus erdvendbergiana Ampelocissus javalensis 4 Ampelocissus robinsonii 5 Vitis flexuosa 6 Vitis tsoi Vitis piasezkii 7 Vitis betulifolia 8 Vitis vinifera 9 Vitis aestivalis Vitis rotundifolia 10 Cissus simsiana 11 Ampelopsis cordata 12 Ampelopsis glandulosa Ampelopsis delavayana 25 Ampelopsis cantoniensis Equivocal Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-14. Continued.

152 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys absent Ampelocissus barbata present Ampelocissus javalensis Ampelocissus acapulcensis Equivocal Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-15. The optimization of the character stomata on sarcotesta (character 130) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

153 Pterisanthes polita Pterisanthes cissioides Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Nothocissus spicifera Ampelocissus africana absent Ampelocissus abyssinica Ampelocissus acetosa present Ampelocissus latifolia Equivocal Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis tsoi Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis rotundifolia Vitis aestivalis Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis arborea Ampelopsis cantoniensis Ampelopsis grossedentata Clematicissus angustissima Clematicissus opaca Parthenocissus laetevirens Parthenocissus dalzielii Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Rhoicissus tridentata Cissus antarctica Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus paullinifolia Cissus biformifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus reniformis Cissus quadrangularis Cissus obovata Cissus mirabilis Cissus fuliginea Cissus verticillata Cissus campestris Cissus alata Cissus palmata Tetrastigma planicaule Tetrastigma bioritsense Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia oligocarpa Cayratia maritima Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma odontadenium Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-15. Continued.

154 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys < 10 µm Ampelocissus barbata > 10 µm Ampelocissus javalensis Ampelocissus acapulcensis Equivocal Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-16. The optimization of the character tracheidal cell diameter (character 131) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

155 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera 0 Ampelocissus abyssinica Ampelocissus acetosa 1 Ampelocissus latifolia 2 Ampelocissus acapulcensis 3 Ampelocissus erdvendbergiana Ampelocissus javalensis 4 Ampelocissus robinsonii 5 Vitis flexuosa 6 Vitis tsoi Vitis piasezkii 7 Vitis betulifolia 8 Vitis vinifera 9 Vitis aestivalis Vitis rotundifolia 10 Cissus simsiana 11 Ampelopsis cordata 13 Ampelopsis glandulosa Ampelopsis delavayana 14 Ampelopsis cantoniensis 15 Ampelopsis grossedentata 16 Ampelopsis arborea Clematicissus angustissima 17 Clematicissus opaca 19 Parthenocissus dalzielii 21 Parthenocissus laetevirens Parthenocissus quinquefolia 22 Parthenocissus vitacea 24 Yua chinensis 25 Yua austro-orientalis Cissus hypoglauca Equivocal Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-16. Continued.

156 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys < 0.5 Ampelocissus barbata > 0.5 Ampelocissus javalensis Ampelocissus acapulcensis Equivocal Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-17. The optimization of the character chalaza circularity (character 98) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

157 Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys B Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera 0 Ampelocissus abyssinica Ampelocissus acetosa 2 Ampelocissus latifolia 3 Ampelocissus acapulcensis 4 Ampelocissus erdvendbergiana Ampelocissus javalensis 5 Ampelocissus robinsonii 6 Vitis flexuosa 7 Vitis tsoi Vitis piasezkii 8 Vitis betulifolia 9 Vitis vinifera 10 Vitis aestivalis Vitis rotundifolia 11 Cissus simsiana 12 Ampelopsis cordata 13 Ampelopsis glandulosa Ampelopsis delavayana 14 Ampelopsis cantoniensis 15 Ampelopsis grossedentata 16 Ampelopsis arborea Clematicissus angustissima 17 Clematicissus opaca 18 Parthenocissus dalzielii 19 Parthenocissus laetevirens Parthenocissus quinquefolia 20 Parthenocissus vitacea 21 Yua chinensis 22 Yua austro-orientalis Cissus hypoglauca 23 Cissus antarctica 24 Rhoicissus tridentata 25 Rhoicissus digitata Cissus sterculiifolia Equivocal Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 2-17. Continued.

158

CHAPTER 3 THE BIOGEOGRAPHICAL HISTORY OF VITACEAE INFERRED FROM FOSSIL SEEDS

Introduction

Vitaceae (the grape family) are mostly lianas with leaf-opposed tendrils and contain around 900 species, 15 genera, with a worldwide distribution. Their fruits are berries, principally

dispersed by fruit-eating birds, bats, or mammals (Tiffney and Barghoorn, 1976; Moran,

Catterall, and Kanowski, 2009). Some seeds can float and have the potential to be water-

dispersed (Tiffney and Barghoorn, 1976). Vitaceae are sister to Leeaceae, which contains only

Leea, a genus of 34 species (Ridsdale, 1974). Species of Leea are shrubs or small trees,

contrasting with the viny habitat of Vitaceae. In some treatments, for example, APG III (2009),

Leea was placed in Vitaceae. The monophyly of Leea and its close relationship to Vitaceae is well supported by molecular data (Ingrouille et al., 2002) and morphology (Ridsdale, 1974). The currently accepted placement of these two families is sister to the other rosids (Wang et al.,

2009). Several DNA-based phylogenies of Vitaceae have been published (Ingrouille et al., 2002;

Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007); however, a molecular phylogeny including all genera is not yet available. Morphology-based phylogenies including all genera of Vitaceae have been provided (Chapter 2). The taxon sampling was designed to covered the distributional range of each genus; the resulting phylogeny has a basic

framework similar to those of the phylogenies compiled from three chloroplast sequences

(Soejima and Wen, 2006) and GAI1 sequences (Wen et al., 2007). In this chapter, this phylogenetic framework is applied in order to infer biogeographic history of the extant genera.

Vitaceae exhibit an intriguing pattern of geographic distribution. The family includes both tropical and temperate elements, and some of the temperate elements show the famous

Asian-North American disjunction pattern. This geographic disjunction is shared by many

159

temperate plant species, and has long been a subject of interest (Wen, 1999; Donoghue, Bell, and

Li, 2001; Wen, 2001; Xiang and Soltis, 2001; Donoghue and Smith, 2004). Vitaceae are special because the majority of the family are lianas, contrasting with most studied families with an

Asian-North American disjunction pattern — deciduous trees or perennial herbs (Wen, 1999). A biogeographic theory of Vitaceae will contribute to our understanding of this shared temperate disjunct pattern. Biogeographic history can be inferred from a well supported phylogeny. In addition, fossils provide direct evidence of the past distributional area of lineages. Vitaceae have an extensive fossil record from the Tertiary. The majority of the fossils reported to belong to this family are seeds. Seeds of extant Vitaceae can be recognized to generic level (Chapter 1), and some seed characters are important in interpreting infrafamilial relationships (Chapter 2). Fossil vitaceous seeds therefore are potentially reliable for inferring the past intra-family geographical distributions. Hence, Vitaceae provide a rare opportunity to infer the biogeography of a major clade from both phylogeny and fossil records.

Proper identifications are essential for making inference of the ancestral distribution of lineages from fossils. Seeds of Vitaceae have distinct characters, including a pair of ventral infolds and a dorsal chalaza, which distinguish them from seeds of other plant families (Chapter

1). Fossil vitaceous seeds were usually assigned to extant genera, indicating their similarity (e. g., Reid and Chandler, 1933; Kirchheimer, 1938; Dorofeev, 1963; Manchester, 1994).

Occasionally an extinct genus was established for fossils with unusual characters not observed in extant seeds; for example, Palaeovitis (Reid and Chandler, 1933) and Palaeocayratia (Gregor,

1977). The number of extant seeds observed by the workers influenced greatly how the fossils were interpreted. A fossil might be assigned to one modern genus when identical seeds might occur in other genera; features thought to be unique and defining an extinct genus might be

160

present among extant species not studied by the investigators. The generic-delimitation of vitaceous seeds may vary among different workers, depending on which extant seeds were sampled, how the seed characters were perceived, and what characters were thought to be diagnostic by the observers. Identifications in previous works were mostly based on comparisons to a limited number of extant seeds, therefore the affinities of some fossil seeds may not be properly assigned. In order to better identifying fossil seeds, an extensive survey of extant seeds of Vitaceae, covering a quarter of species in the family, was completed (Chapter 1). Fifty seven characters were recorded from seeds sampled from properly identified herbarium specimens. The continuous characters were measured and analyzed for objective comparisons; characters for distinguishing each genus were recognized. The fossil vitaceous seeds were re- evaluated and classified into several seed types based on the results of the extant seed survey.

Missing data in the fossils sometimes can be an impediment for an unequivocal assignment of fossil affinity. The proper way to identify fossils is to carefully investigate all available characters of the fossils and compare them to those of the modern close relatives.

Nevertheless, the diagnostic characters needed for an accurate identification are not always available in every fossil. A great number of fossil vitaceous seeds do not have well preserved internal structures, and the identification can only rely on the external characters. The affinities of these fossils may still be estimated properly, because some external characters are diagnostic at the generic level (Chapter 1). To accommodate the condition of most fossil vitaceous seeds, for which internal structure is not available, the classification of the fossil vitaceous seeds in this study was heavily based on the external characters.

In this study, past history within Vitaceae is inferred based on the affinities, geographic distribution, and age of the fossil seeds, with reference to the morphology-based phylogeny of

161

the family. Other fossil organs of Vitaceae frequently exhibit inter- and intrafamilial convergence (pollen and leaves) and therefore are not used here for inferring biogeography.

Wood anatomy of Vitaceae is potentially phylogenetically informative, and a few fossil with Leeaceae or Vitaceae affinities have been reported (Wheeler and Lapasha, 1994). However, a broader survey is needed to identify the characters shared by closely related groups.

Materials and Methods

Fossil vitaceous seeds from the Tertiary worldwide were compared to the extant seeds of

Vitaceae. Diagnostic characters that distinguish vitaceous seeds to generic-level were observed from published images showing both ventral and dorsal sides of the fossils. Some specimens were observed physically in the museum (Florida museum of Natural History, Natural History

Museum, London, Smithsonian, Paris Museum) or though specimen loans (Smithsonian, fossils from Belen, Peru; Senckenberg Museum, fossils from Messel, Germany).

Based on the observation of the 252 extant seeds (Chapter 1), available diagnostic characters from ventral and dorsal view of the seeds included chalaza length (C21), chalaza circularity (C18), chalaza to notch distance (C22), apical notch angle (C5), ventral infold width

(C35), ventral infold length (C9), ventral infold divergence angle (C15), external rugosity (C24), and constricted rim on ventral side (C57). Ventral infolds covered by endotesta (C53) was additionally used for differentiation within one of the seed types. These characters are defined as in Chapter 1. Ventral infold width (C35) was originally measured from cross sections of extent seeds (Chapter 1). In this study, ventral infold width (C35) of fossils was measured from the ventral view instead of in cross section; the value measured from the two views should be the same. External rugosity (C24) was estimated by comparing images of fossils to those of extant seeds. Fossils preserved as internal casts of the seed coat were assessed as intact seeds, assuming an even thickness of the seed coat thoughout the external surface. Fossils known only from

162

transverse sections (e.g., Cevallos-Ferriz and Stockey, 1990) were evaluated with diagnostic

characters such as ventral infold thin part ratio (C32), ventral infold thin part circularity (C33),

and number of endotesta sclereid layers (C48). Constricted rim on the ventral side (C57) is a

presence/absence character; other diagnostic characters are continuous. The continuous

characters of the fossil seeds were compared to the critical values that distinguish extant seeds to

groups of genera (Table 1-2, Chapter 1), except endotesta sclereid layers (C48), for which the critical value was changed to accommodate the fossil conditions. Continuous characters were scored as three conditions: larger than (>), smaller than (<) or similar to (ambiguous) the critical values; when similar to the critical value, the character was treated as either larger, equal, or smaller than the critical value. The extant seeds from the seed survey (Chapter 1) sharing the

same combination of character conditions as those of the fossils were selected; six fossil seeds

with the measurement of all available characters, Parthenocissus clarnensis (UF 6539, UF 6540,

UF 9583), Vitis magnisperma (v. 30257), Palaeovitis paradoxa (v. 62712), Ampelopsis rooseae

(UF 6536, UF 9575), Vitis tiffneyi (UF 6533, UF 9573), Ampelocissus wildei (Me 5730, Me

8786), were also included in the selection of shared combination of character conditions, to

accommodate the possibility that the fossils may possess combinations of characters observed

only in other fossils but not in the extant seeds. Acareosperma spireanum and Clematicissus

angustissima were excluded from the comparison because they possess unique characters not

seen in observed fossils, i.e., rugae whorled (C54), and one ventral infold (C55), respectively

(Chapter 1). Fossils resulted the selection with the same composition of extant taxa were placed in the same "Seed Group"; seed groups containing similar composition of extant taxa were placed in the same "Seed Type" (st) (see Tables 3-1 to 3-15 for clarification).

163

The seed type classification in this study was based on limited characters, therefore

taxonomic revision was not performed; the original name attached to the published fossil images

is retained. Each named and described specimen was treated as one "Seed Form", the smallest

unit of this classification. Similar seed forms were grouped under the same "Seed Group"(equal

to the column Group in Tables 3-1 to 3-13, and 3-15), and similar seed groups were placed in the

same "Seed Type"(see Table 3-15). However, if variation of diagnostic characters was discerned

among seeds from the same locality published under the same name, they were evaluated as

different seed forms. Age of the localities follows that from recent data (age of the Brandon

Lignite followed Tiffney, 1994; for localities in England, see Collinson and Cleal, 2001a; 2001b; for localities in Siberia, see Nikitin, 2006; others see Materials and Methods in Chen and

Manchester, 2007); if no age revision was known, the original published assignment for age was followed.

Five species of Cissus from South America, C. granulosa, C. simsiana, C. striata, C.

trianae, C. tweedieana, and five species of Cissus from Australia, C. antarctica, C. oblonga, C.

hypoglauca, C. penninervis, C. sterculiifolia, have seeds dramatically different from other

Cissus; some of them are not closely related to other Cissus in the morphology-based phylogeny

(Chapter 2). These ten species of Cissus are referred informally as "Austrocissus" (a name

borrowed from Dr. Jackes; personal communication) in the text to avoid confusion when

discussing seed types.

The original literature to which the following text refers is cited in the accompanying

tables.

164

Results and Discussion

Classification of Fossil Vitaceaous Seeds

Vitaceous seeds from more than 62 Tertiary localities worldwide were evaluated. Fossil seeds are categorized into 13 seed types, named with the prefix "st-", listed in Tables 3-1 to 3-13 and described in the following paragraphs. Fossil seeds lacking enough of information to be classified into the 13 defined seed types are listed in Table 3-14. Taxa sharing the same combination of characters with fossils are presented in Table 3-15.

1) st-Ampelocissus-wide infolds

This seed type has wide ventral infolds in the form of prominent concavities occupying most of the ventral surface; the dorsal side has an oval to round chalaza located in the center or near the apical notch. This combination of characters is present in extant species of

Ampelocissus and Pterisanthes (Table 3-1; Groups 1-4, Table 3-15). This seed type is present in four localities from the and Eocene of North America, the Eocene of South America, and the Early Eocene of southern England (Table 3-1). Ampelocissus bravoi from Belen, Peru

(Chen and Manchester, 2007) and Vitis excavata from England (Chandler, 1962) are represented by single specimens; however, Ampelocissus parvisemina and Ampelocissus auriforma are common fossil seeds in Clarno Formation (Chen and Manchester, 2007).

2) st-Ampelocissus-rugose

The seed surface is rugose, with narrow, moderate to long ventral infolds and an oval chalaza positioned in the center of the dorsal side. This combination of characters is present in extant species of Ampelocissus, Nothocissus spicifera, Cayratia triternata, Tetrastigma, Yua austro-orientalis; Groups 5 and 8 also correspond to extant Vitis seeds because fossils are less rugose (Table 3-2; Groups 5-10, Table 3-15). The specimens identified as Paleovitis paradoxa from Paris Basin (Blanc-Louvel, 1986) are preserved as the internal casts of the seed coat. The

165

type material of Palaeovitis paradoxa from the London Clay (Reid and Chandler, 1933) has a very thick endotesta and smooth seed surface; some specimens have part of the endotesta abraded away, showing the slightly rugose surface of the internal cast. Aside from the distinct thick endotesta, the fossil seed casts resemble rugose Ampelocissus seeds. Some fossil seeds classified here have an apical notch around 60° (see Comment in Table 3-2); however, apical notches of sampled extant rugose Ampelocissus or Tetrastigma usually do not have sharp angles.

Ampelocissus wildei from Messel belongs to this seed type; however, the cross section showed that the endotesta of this fossil is unusually thick.

Seed type st-Ampelocissus-rugose is present in at least 13 localities in Europe and Asia, some of them Eocene and others or Pliocene (Table 3-2). Most fossils with this seed type were named Tetrastigma by Chandler (see Table 3-2). I examined specimens from the

London Clay; most of these pyritic fossils had decayed, so the seed surface characters are not as clear as the images from the original publication. Therefore the characters of the Tetrastigma from London Clay were scored from the original photos.

3) st-Ampelopsis-smooth

Seeds of this category have smooth surface, linear ventral infolds, and an oval chalaza near the shallow apical notch. This seed type includes the extant Ampelopsis, "Austrocissus" striata, Cayratia sp. (Peng 6346), Clematicissus opaca, and Yua chinensis (Table 3-3; Groups

11-15, Table 3-15). Groups 12 and 15 contain Cayratia sp. (Peng 6346) and Clematicissus opaca, which have long ventral infolds compared to others. Fossil seeds belonging to these two groups have longer ventral infolds. The fossil seeds classified here greatly resemble the extant representatives, with the exception of Ampelopsis macrosperma (see Comment in Table 3-3) from the Miocene of Siberia (Dorofeev, 1963), which possesses features unusual in extant

Ampelopsis: large seed size (5.3-7.2 mm vs. 3.2-5.7 mm), and large chalaza (chalaza width to

166

seed width ratio 0.5 vs. 0.26-0.4). Fossils of st-Ampelopsis-smooth occur in more than 24

Tertiary beds in Europe, Siberia, Japan, and North America, including the oldest known occurrence of a vitaceous seed in Europe from the Paleocene of Germany (Table 3-3).

4) st-Ampelopsis-rugose

This seed type is characterized by a rugose surface, narrow ventral infolds, and an oval chalaza near the shallow apical notch. Extant seeds meeting these criteria include species of

Ampelocissus, Ampelopsis, "Austrocissus", Cayratia, Rhoicissus, and Tetrastigma (Table 3-4;

Groups 16-23, Table 3-15). Fossil seeds belonging to Group 19 have wider ventral infolds and hence also resemble extant Ampelocissus robinsonii. When seeds are less rugose, smooth-seeded

Ampelopsis and Yua chinensis would also be included among the corresponding extant seeds

(Table 3-4; Groups 18, 21-23, Table 3-15). Cross section configuration and seed coat anatomy can distinguish extant Ampelopsis seeds from other genera despite their similar external appearance (Chapter 1); however, fossil seeds are not always well enough preserved to provide informative cross sections. This fossil seed type was found in at least 12 localities of Eocene,

Miocene, or Pliocene age in Europe and Japan (Table 3-4).

5) st-Ampelopsis-xs

Fossils from the Princeton Chert of British Columbia were permineralized with cellular details but not free from the matrix (Cevallos-Ferriz and Stockey, 1990). The transverse section of two of the described seed forms have the typical configuration of extant Ampelopsis— the ventral infold cavity is lined with thick endotesta near the ventral infold openings, but inside the ventral infold cavities, the endotesta is less well developed. The part of ventral infold cavities lined with thinner endotesta is round in outline. Ampelocissus similkameenensis shows well preserved, 1- 2 layered elongate endotesta sclereids (Fig. 5, Cevallos-Ferriz and Stockey, 1990); the endotesta sclereids of type 1 seed were not well preserved but can be discerned as more than

167

two layers (Fig. 16, Cevallos-Ferriz and Stockey, 1990). The combination of these three

characters is present in some species of extant Ampelopsis and "Austrocissus" (Table 3-5; Group

24, Table 3-15).

6) st-Vitis

This seed type has an oval chalaza positioned at the center of the dorsal side and moderate to short ventral infolds, the seed surface is smooth to slightly rugose. Most extant Vitis species have seeds belonging to this seed type (Table 3-6; Groups 25-29, Table 3-15). Extant seeds of Cayratia triternata and Yua austro-orientalis also correspond to Seed Group 25, which represents the seeds with general features of Vitis but with a slightly rugose surface.

Ampelocissus scottii (Manchester, 1994) of the Clarno Formation is placed in this seed type; however, it has a dorsiventrally compressed lens-like seed shape, which has not been observed in any sampled extant seed (see Comment in Table 3-6). The Vitis seed type occurs in at least 25 localities thoughout the Tertiary of Europe, North America, and Siberia.

7) st-Vitis-Ampelopsis

This seed type has a smooth surface; the ventral infolds are short to moderate in length, and the oval chalaza is located at the upper part of the dorsal side. Among the sampled extant seeds, Ampelopsis and Vitis correspond in these characters (Table 3-7; Groups 30-34, Table 3-

15). Group 30 includes fossils with longer ventral infolds hence also resemble Cayratia sp.

(Peng 6346) and Clematicissus opaca. Most Ampelopsis have the chalaza positioned near the notch, whereas Vitis typically has a centered chalaza. The ambiguous position of the chalaza on the fossil seeds make them appear similar to both Vitis and Ampelopsis. The extant seeds of Vitis and Ampelopsis can be easily distinguished by several characters in the cross section view

(Chapter 1); however, the cross section of fossils were not observed. This seed type has been identified from 14 localities of the Tertiary in North Hemisphere. Palaeovitis paradoxa from

168

London Clay, fossil seeds with an unusually thick endotesta, is also classified here (see

Comment in Table 3-7).

8) st-Vitis rotundifolia

This seed type includes seeds with a smooth to faintly rugose surface, a shallow apical

notch, ventral infolds that are long, narrow and parallel, and a centrally positioned oval chalaza.

This seed type differs from st-Ampelocissus-rugose by the less well developed rugosity, and it

differs from st-Vitis by having longer ventral infolds. Extant Vitis rotundifolia has this type of

seed (Table 3-8; Group 35, Table 3-15). This seed type occurs in the Eocene and the Miocene of

Europe and the Miocene of North America. Extant V. rotundifolia belongs to Vitis subgenus

Muscadinia, which differs from subgenus Vitis in the simple tendrils, short infructescences, and

rugose oblong seeds (Brizicky, 1965). Seeds of the native species V. rotundifolia do not have a

strongly rugose surface; however, cultivars such as Scuppernong have a relatively rugose surface

and long, parallel ventral infolds, thus being very similar in overall morphology to a rugose

Ampelocissus seed (observed but not sampled in database). The concept of a “Muscadine” seed

type used by some paleobotanists (for example, Mai, 2000) may differ from the concept of st-

Vitis rotundifolia as delimited in this study by degree of rugosity.

9) st-Parthenocissus

This seed type is characterized by a sharp apical notch, an oval chalaza near the notch,

and long, divergent linear ventral infolds. The sampled extant Parthenocissus seeds all belongs

to this seed type (Table 3-9; Group 36, Table 3-15). The fossils Tetrastigma sheppeyensis

(Chandler, 1978) and Vitis ludwigi (Czeczott and Skirgiełło, 1959) are classified as this seed

type, however, the surface of the seeds is more rugose compared to the sampled extant

Parthenocissus seeds (see Comment in Table 3-9). Ampelocissus parachandleri (Chen and

Manchester, 2007) seeds are preserved as the internal cast of the seed coat. The long and

169

divergent ventral infolds and deep apical notch resemble those of Parthenocissus seeds; however, the deeply sunken chalaza of the fossil seeds are not present in sampled extant

Parthenocissus seeds. The previous assignment of this fossil to Ampelocissus (Chen and

Manchester, 2007) based partly on the deeply sunken chalaza is now considered questionable because the combination of linear long divergent infolds and deep apical notch is not present in sampled extant Ampelocissus seeds. This fossil seed type occurs in four European Tertiary beds and in the Clarno Formation of North America (Table 3-9).

10) st-Parthenocissus clarnensis

This seed type is smooth, with a shallow apical notch, an oval chalaza centered or near apical notch, and long, linear ventral infolds, which are more or less divergent (Table 3-10;

Groups 37-39, Table 3-15). The seed type is distinguished from st-Vitis rotundifolia by its more divergent infolds, and from st-Parthenocissus because it lacks a sharp apical notch. When the ventral infolds are strongly divergent, the combination of the characters are not present in extant seeds but they do occur in fossil seeds, such as Parthenocissus clarnensis of the Clarno

Formation (Group 38). When the divergence angle of the ventral infolds is not strong, the fossil

seeds also resemble extant Cayratia sp. (Peng 6346), Clematicissus opaca, and Vitis rotundifolia

(Groups 37, 39). Cayratia sp. (Peng 6346) and Clematicissus opaca have the chalaza positioned

near the apical notch, whereas Vitis rotundifolia seeds have a centered chalaza. Many fossil

seeds named Parthenocissus have long and divergent ventral infolds without a sharp apical

notch; those fossils are classified here. Vitis magnisperma from London Clay and Clarno

Formation (see Comment in Table 3-10) is categorized here although it is larger than sampled

extant smooth seeds (7-10.3 mm vs. 6.3 mm), and the long narrow ventral infolds are unusually

closely spaced, a feature found in Clematicissus opaca and Tetrastigma (vi space mid <0.15, vi

170

w<0.2, vi l >0.6). Fossil seeds of this type were found in 14 localities in the Tertiary of Europe,

Siberia, and North America.

11) st-Cayratia

The seed type is concave on the ventral side; the lateral edge of the seed is constricted and forms a continuous rim so the seed appears to have a hole, small to large, occupying the central part of the ventral surface. This character is present in some species of Cayratia, which

Sussenguth (1953) recognized as Section Koilosperma based on this distinctive seed character.

Fossil seeds with this character have wide ventral infolds, resembling extant species of Cayratia from Malesia and Australia (Table 3-11; Group 40, Table 3-15). The fossils were found in two

Miocene localities in Europe and in the Late Oligocene/ Early Miocene of Siberia (Table 3-11).

12) st-Tetrastigma

Seeds of this category are rugose, with a linear chalaza near the shallow apical notch, and long narrow ventral infolds. Extant species of Tetrastigma and the Australian "Austrocissus" have this type of seed (Table 3-12; Group 41, Table 3-15). Fossil seeds of this type occur in

Oligocene of Australia. Similar seeds were collected from Early Eocene of Australia (Carpenter et al., 2004); however, the ventral side of the specimens was not exposed (classified in Table 3-

14).

13) st-perichalaza

This seed type is characterized by having a long, narrow chalaza extending from the dorsal to the ventral side; in lateral view length of the chalaza is 1.4 time longer than the maximum length of the seed (character defined in Chapter 1) (Table 3-13; Groups 42-43, Table

3-15). The perichalazal condition is present exclusively in all sampled seeds of Leea,

Cyphostemma, and Cissus (except "Austrocissus"). Extant Leea and Cyphostemma can be distinguished from Cissus by the presence of extra sclereid layers covering the opening of the

171

ventral infolds on the seed surface (C53, Table 3-13). Fossil seeds with perichalaza were found in the Eocene of Belen, Peru and the Miocene of Panama. Carpolithus olssoni (, 1927; image from Manchester) from Belen was preserved as an internal cast, therefore the condition of its testa is unknown. A pair of elongate grooves is present on each lateral side of Carpolithus olssoni. The lateral scars can be interpreted as the unbranched lateral infolds present in some species of Leea. Cissus willardi (Berry, 1929) from Belen does not have lateral infolds; its round seeds conform closely to some extant species of Cissus (specimens observed). Cissus sp. from

Miocene of Panama (Carvalho et al., unpublished) resembles extant Cissus seeds in many aspects. Fossil vitaceous seeds with perichalaza were also present in the Miocene Rusinga flora of Lake Victoria, (Collinson, unpublished data; specimens not observed therefore classified in Table 3-14). ? Vitis excavata (Chandler, 1978), a single seed from London Clay, shows a long and narrow chalaza resembling the perichalazal condition. However, the surface of the fossil seed is badly abraded and its affinity is uncertain (Table 3-14).

14) uncertain specimens with affinity to Vitaceae

This category accommodates incompletely known specimens, those with surface obscured by abrasion, those with only one side of the seed exposed, or those for which identifications were published without images (Table 3-14). These fossil seeds may be recognized as Vitaceae; however, more characters are needed for seed type classification. A special seed form was recognized in this category. Vitis platysperma from the Dorset Pipe Clays of England is laterally compressed, with a straight and sharp raphe ridge. The seed form resembles that of Leea with 12-seeded fruits, such as Leea papuana. The chalaza of the fossils is elongate oval, sunken in the medium of the dorsal side, differing from the perichalaza of Leea.

The lateral facets of the fossils have an obscure linear mark, which Chandler interpreted as the ventral infolds. The position of the mark on the fossil seed conforms to that of lateral infolds on

172

a Leea seed. The ventral infolds of the Leea seeds are linear and closely spaced in the region of

the sharp raphe, the surface of the infolds is covered up by sclereids and sometimes may not be

easily discerned externally. A close examination is needed to confirm the affinity of this fossil

seed; it is also possible that the seed does not even belong to Vitaceae.

Summary of seed type classification

The object of this study is to infer the past distribution of genera with fossils, and provide

a seed type classification accommodating most fossil seeds. The internal characters are not well

preserved for most of the fossils; therefore only external characters were evaluated (except for st-

Ampelopsis-xs) in this survey. Seed types such as st-Ampelopsis-rugose and st-Vitis-Ampelopsis

showed that without the characters from the cross section, the external morphology of a fossil

seed can resemble seeds from more than one extant genus.

The preservational condition of the fossil seeds can also affect the interpretation of the

available characters. The compressed fossil seeds may have ventral infolds that appear shorter then the actual length, or a misplaced/distorted chalaza. For fossils preserved as an internal cast

of the seed coat (indicated in the tables), the real extent of surface rugosity is unknown, so the

estimates of rugosity in these instances may not be accurate. The cross section of an extant

rugose vitaceous seed shows that typically the endotesta is thicker at the ruga apex and thinner at

the ruga sinus; very rarely the endotesta may be thicker at the ruga sinus (C44 and C45, Chapter

1). A rugose seed presumably would have a rugose seed coat internal cast although the degree of

rugosity may not be the same. Palaeovitis paradoxa represents a case where the seed surface is

smooth but the seed cast surface is rugose, a condition not noticed in the extant vitaceous seed

survey (Chapter 1). A cross section does not show the surface rugosity well if the degree of the

rugosity is low, and the best way to observe the surface rugosity of a seed coat internal cast is to

173

remove the seed coat, which has not been done in the investigation of extant vitaceous seeds

(Chapter 1).

In addition to the limitations due to preservational condition of the fossils, classification of vitaceous seeds is complicated by the continuous nature of most diagnostic characters.

Because most characters show continuous variation, the boundary between seed types is not always distinct. One of the more obvious examples from this seed type classification is degree of rugosity. Some seed forms are positioned in the transition between st-Ampelocissus-rugose and st-Vitis; others are ambiguous between st-Ampelopsis-smooth and st-Ampelopsis-rugose.

With the method applied here for seed type classification, these slightly rugose fossil seeds would match extant seeds from multiple genera.

The diagnostic criteria were based on the measured extant seeds, in order to identifying fossil seeds to extant genera. Sample size of the extant seeds is therefore a factor effecting the criteria for grouping. st-Parthenocissus is an example showing the effect of sampling on the delimitation of a seed type. In the extant seed survey (Chapter 1), all sampled Parthenocissus seeds have a pair of long, divergent infolds and an oval chalaza near a sharp apical notch.

Chalaza positioned near a sharp apical notch was not considered when paleobotanists identified fossils as Parthenocissus; hence their concept of a Parthenocissus seed includes only long and divergent infolds and oval chalaza (see the references cited for the fossils named Parthenocissus in Table 3-10). Fossil seeds with long divergent infolds but without a sharp apical notch are here classified under seed type st-Parthenocissus clarnensis (Table 3-10) in this study. The sharp apical notch was overlooked as a diagnostic character possibly because the sarcotesta usually obscures this character in extant seeds. Eight species of the total 16 extant species of

Parthenocissus were sampled in the seed survey. It remains possible that the un-sampled

174

Parthenocissus may include seeds that do not have a sharp apical notch. Further study including

all extant species of Parthenocissus to the seed comparison can better delimit st-Parthenocissus

and st-Parthenocissus clarnensis.

Some examined fossil seed forms have special features not found in the extant

representatives of the same seed types (see Comment in Tables 3-1 to 3-14). Since only one

fourth of the species of extant Vitaceae was sampled, the possibility of non-sampled extant seeds

with characters found in these fossils still exists. Increased sampling, with proper assessment of

within taxon variation, and carefully examination of all characters of the fossil seeds, may help

determine whether those fossil seeds with special features actually conform to extant forms.

Geographic Distribution of Fossil and Extant Vitaceous Seeds

The distribution of the fossil and extant vitaceous seed types is listed in Tables 3-16 to 3-

19. Detailed fossil information under each seed type can be found in Tables 3-1 to 3-14. Fossil

species (seed forms) may not be well delimited because the delimitation of seed forms may

varies greatly among the observers. Some authors, like Chandler (1925-1926; 1957; 1961a;

1961b; 1962, 1963, 1964; 1978), defined seed form strictly, so that seeds with minor variation

were set apart as different species. This is among the reasons why the number of fossil vitaceous

seed forms from the London Clay is unusually high (Table 3-16) compared to other fossil floras.

Extant species can be defined by other plant parts and the intra-specific variation of the seeds can

be examined. On the contrary, there is no objective way to relate fossil seed forms to a single

extinct species. After all, the organ itself is the only reference for species delimitation. One

should bear in mind that the number of seed forms in each seed type (number in each cell of

Tables 3-16 to 3-19) from the same locality can be interpreted differently by different observers and may not represent the real species diversity.

175

Europe

Abundant vitaceous seeds were reported in the Tertiary of Europe; records from 33 localities were reviewed in this study (Table 3-16). The earliest recognizable seed type is st-

Ampelopsis-smooth from the Paleocene of Gonna, Germany (Vitis venablesi Chandler, Mai,

1987). By Early Eocene, they were more diverse; the localities from southern England (Dorset

Pipe Clays, London Clay, Oldhaven Beds) have yielded nine identifiable seed types with oval chalaza, and smooth or rugose surfaces. The same nine seed types persist to the Miocene of

Europe, with a different seed type, st-Cayratia, occurring in two Miocene localities in Central

Europe (Köflach-Voitsberg, Austria and Hauptzwischenmittel, Germany). The majority of the fossil seeds have an oval chalaza; the fossil seeds with an unambiguous linear chalaza, st-

Cayratia, are relatively rare in the Tertiary of Europe. Seed types st-Vitis, st-Ampelopsis- smooth, st-Ampelocissus-rugose, and st-Parthenocissus clarnensis are common in the Tertiary of

Europe, and they frequently co-occurred in the same localities. Most fossil seeds from Europe resemble extant seeds without discernable differences, nevertheless, some of the examined fossil seeds have features not present in the extant seeds of the same seed types. Some fossils classified as st-Ampelocissus-rugose have a sharp apical notch, uncommon in extant representatives (Table 3-2); Ampelocissus wildei from the Middle Eocene of Messel, Germany

(Table 3-2) and Palaeovitis paradoxa from the Early Eocene of the London Clay (Table 3-7) have unusually thick endotesta; some st-Parthenocissus type fossil seeds have a rugose surface

(Table 3-9); Vitis magnisperma from the Early Eocene of the London Clay is large and with closely spaced ventral infolds (Table 3-10); the dubious specimen of Vitis platysperma from the

Early Eocene of Dorset Pipe Clay is laterally compressed as seeds from 9-10-seeded fruits (Table

3-14). Such a diversity of Vitaceae clearly does not exist in the present day flora of Europe.

Vitis vinifera is widely cultivated. The species collected from the wild environment in Europe

176

was identified as V. vinifera (Webb, 1968), or V. sylvestris Gmelin, which often was treated as a variety or subspecies of V. vinifera (Davis, 1967). It is uncertain whether the present wild species has originated from cultivation escape.

Siberia

Fossil vitaceous seeds from 12 localities in Siberia were reviewed (Table 3-17). Five identifiable seed types occur from the Early Eocene to Miocene in Siberia. The earliest occurrences are st-Ampelopsis-smooth and st-Vitis-Ampelopsis in the Early and Middle Eocene of West Siberia (Nikitin, 2006). In addition to these two seed types, st-Vitis, and st-

Parthenocissus clarnensis are also present in several Oligocene and Miocene sites. st-Cayratia

occurred in only one locality in Late Oligocene/Early Miocene (Nikitin, 2006). All of the fossil

seeds from Siberia have an oval chalaza except st-Cayratia. st-Ampelopsis-smooth, st-Vitis, and

st-Vitis-Ampelopsis are prevalent in Tertiary Siberia, but the strongly rugose seed type is not

present. Most of the fossil seeds do not differ from the extant vitaceous seeds externally, except

for A. macrosperma which has a very large round chalaza (Table 3-3). A few species of Vitis,

Ampelopsis, and Parthenocissus occurs in the forests of the border region of Russia and

northeastern China today (Kozhevnikov and Nedoluzhko, 2006; Denisov, 2007). Most of fossil

seeds are from western Siberia, outside the range of most extant Vitaceae.

Asia

Fossil vitaceous seeds with an age earlier than the Pliocene are not known from eastern

Asia. Seed types st-Ampelocissus-rugose, st-Ampelopsis-smooth, st-Ampelopsis-rugose, st-Vitis,

and st-Parthenocissus clarnensis are present in the Pliocene of Japan (Table 3-17). In the

present day of Japan, several species of Vitis, Ampelopsis, Parthenocissus, and Cayratia

japonica grow in the temperate to sub-tropical forests. These extant taxa produce seed types

resembling the Pliocene fossil seeds; however, st-Ampelocissus-rugose is not linked to the extant

177

species in Japan. Present day Asia has highly diversified members of Vitaceae in temperate to tropical regions. With the exception of the Australian endemic Clematicissus and African endemic Rhoicissus, every extant genus has representatives distributed in Asia and Malesia.

North America

Fossil vitaceous seeds from 13 localities in North America were reviewed (Table 3-18).

In North America, fossil vitaceous seeds were uncovered from the Paleocene of western North

America (Bullion Creek Formation, Fort Union Formation), Eocene of western (Princeton chert,

Clarno Formation, Blue Rim, Green River Formation, Wilcox, Chalk bluffs) and eastern

(Fisher/Sullivan site) North America, Miocene of northeastern North America (Brandon Lignite), and Miocene of western North America (Remington Hill, Yakima Canyon). The oldest specimens are Ampelocissus parvisemina from the Paleocene of Bullion Creek Formation, North

Dakota, belonging to st-Ampelocissus-wide infolds, and the specimen from the Paleocene of Fort

Union Formation, Montana (Robinson and Honey, 1987; locality information only), belonging to st-Vitis. Seeds from the Early Eocene of Fisher/Sullivan site, and Wilcox, are similar to extant Vitis. Several different vitaceous seed forms occur in the early Middle Eocene of the Clarno Formation, including seed types st-Vitis, st-Parthenocissus, st-Ampelopsis-smooth, and st-Ampelocissus-wide infolds. Seeds with noticeable deviation from the observed modern seed forms were also present, such as the lens-shaped Ampelocissus scottii (Table 3-6),

Ampelocissus parachandleri with deeply sunken chalaza (Table 3-9), the unusually large Vitis magnisperma with closely spaced infolds (Table 3-10). Permineralized vitaceous seeds were reported from the Middle Eocene of Princeton chert; two of the seeds showed the features of

Ampelopsis in transverse section (Table 3-5). Other Tertiary sites in North America have st-

Vitis, st-Vitis-Ampelopsis, st-Vitis rotundifolia seed types. The specimens from Miocene Yakima

Canyon, Washington (Tcherepova and Pigg, 2005) and Remington Hill, California (Condit,

178

1944), reported to have Vitis and/or Ampelopsis affinity, were not observed for this study. Three

seed forms similar to Vitis were reported from the Latest Miocene/Early Pliocene of the Gray

Fossil Site, , US (Gong, Karsai, and Liu, 2009; specimens not observed). All fossil

vitaceous seeds from North America have oval or round chalaza, and none of them are strongly

rugose.

Three temperate genera of Vitaceae occur today in North America: Vitis subgenus Vitis

(several species thoughout North America, V. tiliifolia HBK. extending to northern South

America), Ampelopsis (three species, two in central-southern North America, 1 restricted in

Mexico to Guatemala), and Parthenocissus (three species, two with wide distribution north from

Quebec, south to Texas; 1 strictly in Texas) (Brizicky, 1965). Vitis and Parthenocissus produce st-Vitis and st-Parthenocissus seed types respectively. Interestingly, species of Ampelopsis

producing rugose seeds are all from Asia; all the species in North America produce smooth

seeds, and A. denudata, the one that occurs in Mexico and Guatemala, has wide ventral infolds

(Fig. 7f, Chen and Manchester, 2007). Other occurrences of extant Vitaceae in North America

are in the southern region, including Vitis subgenus Muscadinia, Cissus, and Ampelocissus. Vitis

subgenus Muscadinia has a single species (Vitis rotundifolia) endemic in southeastern North

America, and possibly another in Mexico and Guatemala (Brizicky, 1965). Two to three species of Cissus mainly occur in southeastern North America. Four species of Ampelocissus occur in

Central America; A. acapulcensis and A. erdvendbergiana extend north to Mexico. These two

species of Ampelocissus produce rugose, wide or narrow ventral infolded seeds. Fossil seed

types from North America mostly can be found in present day of North America not far from the

fossil localities, except the st-Ampelocissus-wide infolds and st-Vitis rotundifolia, which were

179

uncovered from fossil localities (Bullion Creek Formation, Clarno Formation, Brandon Lignite) further north than the nearest current distribution area in southern North America.

Central and South America

Seeds of st-Ampelocissus-wide infolds and st-perichalaza are found in the Eocene of

Belen, Peru (Table 3-19). One of the st-perichalaza seeds, Carpolithus olssoni, has characters of

Leea; the other, Cissus willardi, resembles extant Cissus. The seeds collected recently from

Miocene of Panama (Carvalho et al., unpublished) are similar to extant Cissus seeds. In present day Central and South America, Cissus (ca. 80 spp. described) is the major representative of

Vitaceae. At least five species of South America-endemic Cissus do not have the typical perichalazal seeds ("Austrocissus"); they produce st-Ampelopsis-smooth, st-Ampelopsis-rugose, or st-Tetrastigma seed types (see Chapter 1 for details). Four species of Ampelocissus and one species of Ampelopsis (A. denudata) occur in Central America; their seeds belong to st-

Ampelocissus-wide infolds and st-Ampelocissus-rugose seed types. Leea is not native in North,

Central or South America today. If the fossil from Peru is correctly identified then it indicates the presence of this genus in Eocene time.

Africa

The fossil vitaceous seeds from the Miocene of Lake Victoria, Kenya, Africa are similar to extant Cissus seeds (Collinson, unpublished) (Table 3-19). In present day Africa and

Madagascar region, Cissus (ca. 200 spp.) and Cyphostemma (250 spp.) are widespread and highly diversified. Rhoicissus is a genus with 12 species, all endemic to this region.

Ampelocissus (30 spp.), Cayratia (7 spp.) and Leea (2 spp.) also occur in this area (Descoings,

1972). Habitats of these African Vitaceae include riverine forest, evergreen forest, dry forest, bushland, or grassland. Cissus, Cyphostemma, and Leea produce st-perichalaza type of seeds.

Some species of Rhoicissus produce seeds that can be classified as st-Ampelopsis-rugose.

180

Ampelocissus in Africa produce seeds that are more or less rugose, with long ventral infolds

range from narrow to wide. Seeds of African Cayratia fit to the st-Ampelopsis-rugose seed type

defined in this study; species of Cayratia in Africa do not produce the st-Cayratia seed type

(Table 3-19).

Australia

Vitaceous seeds from two fossil localities in Australia were evaluated (Table 3-19).

Cissocarpus jackesiae from Oligocene of Capella, central Queensland, Australia (Rozefelds,

1988) belongs to seed type st-Tetrastigma (Table 3-12). A seed from Early Eocene of Hotham

heights, Victoria, Australia was identified as aff. Cissocarpus jackesii (Carpenter et al., 2004)

(Table 3-14). Five species of Tetrastigma and the Australian endemic species of Cissus

("Austrocissus"), C. antarctica, C. oblonga, C. hypoglauca, C. penninervis and C. sterculiifolia, are distributed in eastern Australia (Jackes, 1988b, 1989a), not far away from the Oligocene locality in Capella where fossils with similar seed type were found. Other extant members of

Vitaceae in Australia include the eight species of Cissus with perichalazal seeds, Cayratia (8

spp.) with st-Ampelopsis-rugose or st-Cayratia type of seeds, Ampelocissus (3 spp.) with st-

Ampelocissus-rugose type of seeds, and the endemic Clematicissus (2 spp.) with st-Ampelopsis- smooth type of seeds (Jackes, 1984, 1987b, 1988b, 1989b, 1989a; Jackes and Rossetto, 2006)

(Table 3-19).

Summary of seed type distribution

The majority of the fossil vitaceous seeds are from Europe, North America, and Siberia.

The earliest occurrences are from the Paleocene, a st-Ampelopsis-smooth seed from Europe, a st-

Ampelocissus-wide infolds seed and a st-Vitis seed from North America. Fossils from the northern continents have more or less similar composition, with slight variation. Fossils of st-

Ampelopsis-smooth seed type are relatively abundant (occurred in more localities) in Europe and

181

Siberia, but less frequent in North America. Rugose seeds with an oval chalaza are common in

the Tertiary Europe but not other regions. The st-Parthenocissus seed type is missing in Siberia.

Fossil seed type composition from the southern continents are very different from those from

Europe, North America, and Asia. Most of them have a linear chalaza; only Ampelocissus

bravoi of Belen, Peru has an oval chalaza. The diversity of seed types in Early Eocene of Europe

is comparable to that of Asia now but lacks seeds with a linear chalaza or perichalaza. This

richness in vitaceous seed types diminished in the Late Miocene to Pliocene period. By seed

type comparison, one can relate the reduced diversity to glacial activities in the later Pliocene and Pleistocene. Climatic cooling had a severe effect on the flora of Vitaceae in Europe. Seed types formerly widespread in Siberia are now distributed in the southeastern border of Siberia.

In North America, seed type diversity has not strongly changed, but two of the fossil seed types are now confined to the southern area.

Phylogeny of Vitaceae

Two coding strategies were applied to the continuous characters in the morphological cladistic analyses (Chapter 2). The morphological phylogeny with discrete coding (Figure 3-1) is used for hypothesizing biogeography because its topology resembles those of recent molecular phylogenies (Soejima and Wen, 2006; Wen et al., 2007) more than the phylogeny with GW coding (Chapter 2). The morphological phylogeny indicates a close relationship of

Ampelocissus, Vitis, Ampelopsis, Parthenocissus, Yua, and Clematicissus. Nothocissus and

Pterisanthes are nested within Ampelocissus; this clade is closely related to Vitis. Yua is grouped

with Parthenocissus; Ampelopsis and the Parthenocissus-Yua clade are sequentially sister to the

Ampelocissus-Vitis clade. These genera mostly bear 5-merous flowers, inflorescences with

tendril-like structure, seeds with an oval chalaza, and an endotesta with elongate sclereids and

small diameter tracheidal cells. Rhoicissus and Cissus are sister to the oval chalazal clade. Both

182

Rhoicissus and Cissus are paraphyletic, although Cissus with perichalaza is monophyletic when

the GW coding method was applied (Chapter 2). Cayratia, Tetrastigma, Acareosperma, and the

majority of Cyphostemma form a clade sister to rest of the family; they are united by unique

characters in inflorescence-bearing branch, frequently stomated sarcotesta, short endotesta

sclereids, and large-diameter tracheidal cells in the seed coat. This phylogeny has the basic

framework of the phylogenies estimated by chloroplast and GAI1 sequences (Soejima and Wen,

2006; Wen et al., 2007), except for the placements of Rhoicissus and Cissus. These two DNA-

based phylogenies indicate a close relationship of Rhoicissus, Ampelopsis, and C. striata; the

monophyly of Cissus with perichalazal seeds is well supported by the molecular data, and the

clade occupied a position sister to the oval chalazal clade. However, the Australian endemic

Cissus and Clematicissus were not included in these molecular phylogenies.

Phylogenetic Signals of the Seed Types

Chalaza shape and seed coat anatomy are associated with higher level groupings within

Vitaceae. In the oval chalazal clade, there is a trend that the later divergent groups, Vitis and

Ampelocissus, have a centrally-positioned chalaza whereas the earlier divergent groups,

Parthenocissus and Ampelopsis, have the chalaza near the apex. Other seed shape characters,

such as those used to classify fossil seeds in this study, also contribute to the grouping of

Ampelocissus, Vitis, Ampelopsis, and Parthenocissus. Within the clade that contains

Cyphostemma, Cayratia and Tetrastigma, Cayratia and Tetrastigma do not have a perichalaza

but the chalaza is still linear and long in most sampled extant seeds (Chapter 1). Most genera

have diverse seed types, such as Ampelocissus, Vitis, Ampelopsis, Cayratia, and Tetrastigma.

Seed type is not strictly correlated with the intrageneric relationships or geographical

distribution, except for Cayratia, where the species with st-Cayratia seeds (C. cardiophylla and

C. geniculata) are phylogenetically distant from others (Figure 3-1). Within Ampelocissus, seed

183

types are somewhat related to the infrageneric groups (Chen and Manchester, 2007); for

example, those Ampelocissus with inflorescences that are racemes of spike from Malesian

rainforests all have flat seeds with wide ventral infolds.

To link extant species to the fossil seeds, seeds of the terminal taxa in the morphological

phylogeny are classified into seed types the same way as the fossil seeds in this study. The

extant seeds that did not fit in to the seed types defined for fossils are given different seed type names (Figure 3-1). A great number of the fossil vitaceous seeds are indistinguishable from the extant representatives externally, such as seed types st-Ampelopsis-smooth, st-Vitis, st-

Parthenocissus, and st-perichalaza. Some well-preserved fossil seeds show remarkable resemblance to the extant representatives in all available characters including transverse section, such as Ampelopsis rooseae of the Clarno Formation (Chapter 4). These fossils imply that the extinct taxa may have an overall morphology very similar to that of the extant taxa bearing the same seed types. Although other plant parts of the fossil taxa are unknown, one can tentatively use seed types to infer fossil affinity. Nevertheless, some seed types delimited here contain species from multiple genera (Table 3-15). Some genera with the same seed types have a close relationship as indicated by morphological and molecular data, such as Pterisanthes and

Ampelocissus (st-Ampelocissus-wide infolds seed type), Nothocissus and Ampelocissus (st-

Ampelocissus-rugose seed type) (Figure 3-1). Since these three genera form a clade, their seed types can infer the past distribution of this clade. Vitis and Ampelopsis are closely related, hence the st-Vitis-Ampelopsis seed type was used to indicate the presence of either Vitis or Ampelopsis.

Other genera with the same seed types are not immediately related, such as Ampelocissus and Cayratia/Tetrastigma (st-Ampelocissus-rugose seed type), or Ampelopsis and

Cayratia/Tetrastigma (st-Ampelopsis-rugose seed type) (Table 3-15; Figure 3-1). Cayratia and

184

Tetrastigma mostly have linear chalaza seeds (Chapter 1), however, some species have shorter chalaza and therefore are not distinguishable from st-Ampelopsis-rugose or st-Ampelocissus- rugose defined here. Their external seed characters exhibit interesting convergence, nevertheless, the testa anatomy usually can distinguish extant Cayratia and Tetrastigma from

Ampelocissus. Since the anatomical characters are lacking, fossil st-Ampelocissus-rugose seed types are equally likely to be associated with Ampelocissus, Tetrastigma or Cayratia, and st-

Ampelopsis-rugose can be associated with Ampelopsis, Tetrastigma, or Cayratia. All probabilities were considered in the discussion of biogeography.

The two sampled Yua species have different seed types: Y. chinensis has the st-

Ampelopsis-smooth seed type, and Y. austro-orientalis has the st-Ampelocissus-rugose seed type

(Table 3-15; Figure 3-1). When comparing all seed characters, the seeds of Y. chinensis are not

differentiated from those of Ampelopsis, and seeds of Y. austro-orientalis share numerous

features of those of Ampelocissus (Chapter 1). The monophyly of Yua and Parthenocissus is

supported by both morphological (Figure 3-1; Chapter 2) and molecular data (Wen et al., 2007).

The seeds of Yua indicates that sometimes the seed morphology can be different from that of the

other members within the monophyletic group and resemble that of other genera. It may be

hypothesized that seeds of Yua preserved the ancestral characters of this clade, and the

Parthenocissus seed type was derived later. Fossil records of Yua are not formally recognized

here, but the fossils with seed types st-Ampelopsis-smooth and st-Ampelocissus-rugose may be

related to Yua.

Some fossil seeds are not fully comparable to the extant seeds, such as seed type st-

Parthenocissus clarnensis and those indicated in column "Comment" in Tables 3-1 to 3-14.

Those fossil seeds all have oval chalaza, possibly indicating the greater diversity of the oval

185

chalaza clade in the past. More discussion about the possible extinct seed forms can be found in

Chapter 4. Tentatively, these possible extinct forms are hypothesized to be related to extant taxa

with the same assigned seed types, and st-Parthenocissus clarnensis seed type is viewed as stem

group Parthenocissus.

Clematicissus, "Austrocissus", and Rhoicissus still do not have a firm placement in the

phylogeny. There are two species of Clematicissus endemic to Australia. Clematicissus

angustissima has only one ventral infold, unusually different from other seeds in the family

(Chapter 1). No fossil seeds with this morphology are known. Another species, C. opaca, has st-Ampelopsis-smooth seed type. Inflorescence and floral structures of Clematicissus are also similar to those of Ampelopsis, and the cladistic analysis suggested a position sister to other genera with oval chalaza seeds (Figure 3-1). Among "Austrocissus", those from Australia all have st-Tetrastigma seed type, and those from South America have st-Ampelopsis-smooth, st-

Ampelopsis-rugose, or st-Tetrastigma seed types (Figure 3-1; Chapter 1). One of the

"Austrocissus" from South America, C. simsiana, is morphologically very similar to Ampelopsis, its seeds belong to st-Ampelopsis-rugose seed type. This species is probably directly related to

Ampelopsis, and not closely related to other "Austrocissus". Rhoicissus tridentata has slightly shorter chalaza therefore can be classified as st-Ampelopsis-rugose seed type; other Rhoicissus have seeds similar to Tetrastigma with divergent infolds (Chapter 1). "Austrocissus" and

Rhoicissus have inflorescences similar to those in the oval chalazal clade, however, they have 4- merous flowers, and some have seeds resembling Tetrastigma. Because of the uncertainty of their phylogenetic placement, the fossil seeds associated with these species are not considered in this study.

186

Biogeographical History

Extant species are linked to fossils by seed types, and the estimated past distribution is shown in Figure 3-2. The distribution of extant species is summarized in Table 3-20.

Vitis, Ampelocissus, Ampelopsis, and Parthenocissus

The three temperate genera Vitis, Ampelopsis, and Parthenocissus present an Asian-North

American disjunct pattern. These genera share a common ancestor (Figure 3-2). Vitis is

monophyletic, with the North American species forming a clade nesting within the Asian

species. Ampelopsis is paraphyletic. Both Ampelopsis and Parthenocissus-Yua clade have

species from the two regions intermingled without an area related pattern (Figure 3-2). In the

trnL-F phylogeny, the Asian species of Vitis formed a weakly supported clade nested within

North and Central American species of Vitis (Soejima and Wen, 2006); in the GAI1 phylogeny

the differentiation of Vitis by geographical area is not evident (Wen et al., 2007). Hence, the

geographical pattern within Vitis shown in the morphology-based phylogeny (Figure 3-2) is not

considered. No molecular phylogeny indicated the infra-generic geographical pattern of

Ampelopsis and Parthenocissus. Interestingly, within Ampelocissus, the four species from

Central America are sister to the species from Asia, Malesia, and Africa (Figure 3-2). The sister

position of Central American A. javalensis to other Ampelocissus is well-supported by the

chloroplast sequence data (Soejima and Wen, 2006). The fossils indicate the presence of

Ampelocissus, Vitis, Ampelopsis, and Parthenocissus in the Early Eocene of Europe (Table 3-16)

and the early Middle Eocene of North America (Table 3-18) (Figure 3-2). Vitis and Ampelopsis

are also present in the Early Eocene of Siberia (Table 3-17) (Figure 3-2). These fossil species

may have favored the warm Eocene climate and co-existed in the same forests, as their remains are frequently recovered together in the same fossil localities. Vitis, Ampelopsis, and

Parthenocissus later adapted to the cooling in late Tertiary (Zachos et al., 2001). Ampelocissus

187

possibly did not evolve the tolerance to cold, as implied from the disappearance of its fossils in

Europe since Late Miocene, when temperatures became cooler (Table 3-16).

The more distant relationship of extant Central American/Mexican Ampelocissus to other

Ampelocissus from Asia and Africa may be explained by this scenario: the South American

Eocene Ampelocissus fossil may be more closely related to the North American Paleocene and

Early Eocene Ampelocissus, indicating a wider distribution range of Ampelocissus in the New

World in the Early Tertiary. These Ampelocissus species failed to persist or diversify in

America, but might have been ancestral to the four species surviving in Central American today.

Ancient European Ampelocissus spread to Africa and southern Asia and diversified. A higher

speciation rate is associated with warm temperatures (Francis and Currie, 2003; Currie et al.,

2004), plus other biotic and abiotic variations in the environmnets, the differences between the

American and African/Asian Ampelocissus gradually accumulated to a level that is more readily

detected in modern species.

Vitis, Ampelopsis, and Parthenocissus probably experienced similar climate variation

though time in the North Hemisphere in the Tertiary, and it is likely that a certain degree of

intercontinental exchange remained, since 1) the small sized berries/seeds can be dispersed by

traveling animals such as birds; 2) Beringia connected Asia and North America through much of

the Tertiary, the North Atlantic Land Bridge did not separate till the Late Eocene, and the retreat

of Turgai sea in the Early Oligocene removed the barrier between Asia and Europe (Tiffney and

Manchester, 2001). This may explain why little infrageneric variation can be detected from the

taxa distributed in separate continents today. The later glacial activities destroyed the wild

grapes in Europe and hence left a North American-Asian disjunction pattern for Vitis,

Ampelopsis, and Parthenocissus. Alternatively, the glacial activities could have brought a total

188

extirpations of Vitaceae in the northern regions, and the current North American-Asian

disjunction pattern would then be due to the post glacial intercontinental re-dispersals from

southern refugia. The past diversity in Europe, however, has not recovered since the ice age.

Clematicissus, "Austrocissus", and Rhoicissus

These species are possibly sequentially sister to the monophyletic oval chalazal lineage

(Figure 3-1) but this relationship is not well supported. Nevertheless, the suggested pattern that

the species immediately sister to the oval chalazal clade are all distributed in the south (Figure 3-

2) is intriguing. Their mixed morphology may represent the characters of the stem lineage of the

oval chalaza clade. Fossil seeds were not linked to these taxa, nevertheless, a twig from the

Early Eocene of London Clay was reported to have similar wood anatomy to that of Rhoicissus

(Poole and Wilkinson, 2000). The oldest known fossils of the oval chalaza clade are from the

Paleocene, suggesting a divergence time in or earlier than Paleocene for these southern species.

One scenario is that once there was a worldwide distributed oval chalaza clade, which later

became more adapted to the temperate environments except Ampelocissus. Parthenocissus,

Ampelopsis, and Vitis diversified in the northern continents. Representatives in the southern

continents also adapted the temperate climate in the southern regions in the Tertiary, and evolved to become Clematicissus, "Austrocissus", or Rhoicissus.

Perichalazal seeds: Cissus, Cyphostemma, and Leea

Among the rest of the family, the two genera with perichalazal seeds, Cissus and

Cyphostemma, are large genera containing more than half of the species in the family. Cissus currently is widespread pantropically; it is highly diverse in South America and Africa.

Cyphostemma is mostly restricted in tropical and subtropical Africa, only one or two species occur in southern Asia. No fossil seeds were assigned to Cyphostemma. A seed internal cast from the Eocene of Peru was recognized as Leea (Table 3-13). Seeds of Cissus were found in

189

the Eocene of South America, Miocene of Central America (Table 3-13; Figure 3-2), and

Miocene of Africa (Table 3-14). The perichalazal seeds were never found in the Tertiary localities in the Northern Hemisphere, where extensive paleontological investigation have been conducted since the past century. The evidence from the fossil seeds strongly suggest that

Cissus, Cyphostemma, and Leea were confined to the southern continents thoughout the Tertiary and have not spread to the northern temperate zones. However, the lack of the typical diagnostic characters on the seed surface of Cyphostemma and Leea could be the reason that no fossil has been identified to these genera.

The confinement of fossil perichalazal seeds in the southern continents and Central

America is in sharp contrast to the northern distribution of the majority of the fossil seeds. It implies that the fossil taxa with perichalazal seeds have long been strictly thermophilic and had very little tolerance to the cooling of the late Tertiary (Zachos et al., 2001), which was presumably more severe in the high altitudes. Alternatively, the northward spreading of the taxa with perichalazal seeds may be extremely unfavored by the factors related to seed dispersal.

Tetrastigma and Cayratia

Tetrastigma, Cayratia, and Acareosperma form a clade with Cyphostemma based on morphological data (Figure 3-1, 3-2). The monophyly of a Tetrastigma-Cayratia-Cyphostemma clade is well supported by molecular data (Soejima and Wen, 2006; Wen et al., 2007). Fossil seed types st-Ampelocissus-rugose and st-Ampelopsis-rugose may be interpreted as Tetrastigma and Cayratia. Assuming those fossils are Tetrastigma and Cayratia, then the divergence of these two genera in the Early Eocene and their distribution in Europe is implicated (Table 3-16; Figure

3-2). Tetrastigma may have also been distributed in Australia in the Tertiary, if the fossil st-

Tetrastigma from Australia is considered as Tetrastigma instead of "Austrocissus". Unequivocal

Cayratia fossils with st-Cayratia seed type appeared in the Miocene of Europe and the Late

190

Oligocene/Early Miocene of Siberia, indicating that the genus formerly existed in the far north,

outside its current range (Table 3-20). The genus is usually found in tropical and subtropical forests, however, C. japonica has a wide range of habitat and also is commonly found in temperate region in Asia. It is possible that the fossil species of Cayratia can survive in the temperate climate in the mid Tertiary of Siberia. The appearance of st-Cayratia fossil seeds

coincide with the Late Oligocene/Early Miocene warm phase (Zachos et al., 2001); this may also

explain the existence of extant tropical elements in the more northern regions in the mid Tertiary.

The large ventral hole of st-Cayratia holds air if the sarcotesta is intact, so the seeds usually

float. Dispersal across the Turgai sea, even before its drying out in the Early Oligocene,

therefore is possible. Extant Tetrastigma shares a similar distribution as that of Cayratia, but is

not present in Africa. These two genera are not native in North, Central, and South America at

this time, and there are no fossil seeds indicating their former presence in these regions (Figure

3-2). Assuming the taxa with perichalazal seeds, including Cyphostemma, have not spread to the

northern continents in the Tertiary since their divergence from the common ancestor, the

monophyly of Cyphostemma, Cayratia, and Tetrastigma would implicate an origin of the

equatorial/southern continents for Cayratia and Tetrastigma. The Tertiary appearance of

Cayratia, and possibly Tetrastigma, in Europe/Siberia then is likely the results of dispersal.

Cayratia and Tetrastigma are not native in North America, but they survive in Africa, Asia,

Malesia, and Australia today.

Origin of the family: Timing? North? South?

The oldest fossil seeds of Vitaceae are from the Paleocene, a st-Ampelopsis-smooth seed

from Germany (Mai, 1987), a st-Ampelocissus-wide infold seed from North Dakota, North

America (Chen and Manchester, 2007), and a st-Vitis seed from Montana, North America

(Manchester, unpublished). Judging from the structure of the phylogeny (Figure 3-2),

191

Ampelocissus and Vitis are relatively recently divergent groups, hence the appearance of their fossils in the Paleocene implies that most genera in the family, and the common ancestor of

Cyphostemma, Cayratia, Tetrastigma, and Acareosperma, had diverged by the Paleocene. The splitting of Vitaceae from Leea possibly occurred prior to the Paleocene. The divergence time of

Cayratia and Tetrastigma could be as early as Early Eocene, based on the fossils in the London

Clay. Early Eocene Vitaceae representatives in Europe have a composition similar to the extant representatives in southern Asia, but lack taxa with perichalaza. The Early Eocene high diversity in Europe curiously coincides approximately with the Paleocene-Eocene thermal maxium. The divergence of most genera may have occurred in the Paleocene, and the intrageneric diversification may have peaked in the Early Eocene.

The currently held view that Vitaceae are sister to Rosids suggests that they diverged long prior to the earliest known Vitaceae fossils (Wang et al., 2009). Given the readily preserved nature of seeds of Vitaceae and Leeaceae and easily recognized diagnostic characters, the absence of Vitaceae is perplexing. Perhaps the early history of the lineage occurred in areas less likely to be preserved (e.g., arid climate) or in areas where Cretaceous age sediments are not available or not yet studied.

Leea have relatively few fossil records compared to Vitaceae. Only one seed from the

Eocene of Peru may be assigned to Leea. Fossil woods with affinity to Leea have been reported from Deccan Intertrappean Beds, , with uncertain age of Late Cretaceous or Early Tertiary

(Prakash and Dayal, 1964), Miocene of Japan (Watari, 1951), and Neogene of Java (Kramer,

1974). However, woods of extant Rhoicissus and Leea are similar (Wheeler and Lapasha,

1994), casting doubt on the generic identity of these fossil woods. Lacking fossils of Leea,

Cyphostemma, and Cissus, the earlier divergent groups of the family, in the northern continents

192

may appear to favor the theory that Vitaceae originated from the tropical equatorial or southern lands. The taxa with perichalazal seeds persisted in the tropics, while others spread in the warm

Early Eocene of Europe, North America, and North Siberia; later only cold-tolerant species survived in the now temperate regions. However, the earliest unequivocal presence of fossil perichalazal seeds is in the Eocene, some 10 million years after the divergence of most genera in the Paleocene. This leaves room for the theory that the family diversified in the warm Paleocene of northern landmasses, likely southern Europe/Asia, since the diversity of seed types is high in the Early Eocene of Europe. Some species spread across the Tethys seaway, including those with perichalazal seeds, Rhoicissus, "Austrocissus", and possibly also Ampelocissus (as evidenced by the fossil in Eocene of Peru). Species of perichalazal seeds became rare in the northern continents but remained in the southern continents in the Tertiary. Fossil seeds do not strongly hint at the area of origin, nevertheless, they strongly suggest the earlier divergent groups occurred in tropical environments. Genetic properties, and dispersal-/climate-related factors have restricted the taxa with perichalazal seeds to tropical and southern regions since Eocene untill today.

Adaptation, ecology, and biogeography

The most obvious novel attribute of Vitaceae is the climbing habit. The divergence of

Vitaceae involved the transition to a viny habit, possibly initiated by the competition for light in thick forests. Some species of Cyphostemma have an erect habit and the same kind of terminal inflorescences as those of Leea, showing that the extant members of Vitaceae can possess some of the defining characters of Leea. Very likely the viny habit did not become dominant in

Vitaceae right after the divergence of the family. The rapid rise of angiosperm-dominated forests (Wang et al., 2009) may have placed heavy selection for the climbing growth form. The evolution of climbing in Vitaceae is associated with the formation of multiple leaf-opposed

193

inflorescences at one branch, and the modification of inflorescences to tendrils (Chapter 2).

Forming multiple inflorescences in one branch provides additional benefit that many flowers can

be produced in a short time, favoring pollination, and an ample supply of berries enhances the

chance of biotic dispersal. Presumably, lignified tissue and perennial growth provided

mechanical support while plants spreading and reaching the tree top. Although extant lianous

species had already evolved a suite of stem anatomical characters that strictly associate them

with forest habitat, at their initial divergence the climbing species may have retained the plasticity of surviving in a wide ranges of environments. This may explain the relatively widespread distribution and diversity of Vitaceae compared to Leea.

Berry/Seed shapes and size may effect their dispersal. Presumably, frugivorous birds, bats, or mammals may eat the berries of wild grapes. Nevertheless, the frugivores may select against some properties of the berries/seeds. The abundance, habit, spatial scale of forage and the gut passage rate of the frugivores also determines the success of the dispersals (Moran,

Catterall, and Kanowski, 2009). Some seeds may be better dispersed though water than others, such as st-Cayratia. These factors possibly contributed to the biogeography of Vitaceae.

However, little is known about which factors are pivotal and how they are related to the phylogeny. The seed-related synapomorphies of major groups, such as chalaza shape, endotesta sclereids shape and exotegmic tracheidal cell diameter, are not obviously associated with a particular function. Seed coat anatomy may be correlated with its mechanical properties and therefore effect the function of seed storage or germination, which is related to the establishment in the new environment after a successful dispersal (Moran, Catterall, and Kanowski, 2009).

These hypotheses should be tested experimentally.

194

The plants' interaction with pollinators may be one of the restrictive factors for the

distribution range of a species. Variation in nectarous disc morphology exists in Vitaceae,

however, its correlation to pollination syndromes is not known. Flowers of Vitis, with small

floral disk which produce very little nectar, were visited by insects such as beetles, Halyctids,

honeybees, and Syrphids (Branties, 1978). Some species of Vitis were reported to be pollinated

by wind (Kevan, Longair, and Gadawski, 1985). Flowers of Ampelopsis, which produce large

amount of nectar held by a dish-shaped floral disk, are frequently visited by small flies and

wasps (field observation). Leea, with an elongate floral disc shaped like long tube, was reported

to be pollinated by bees, wasps, syrphid flies (Molina, Green, and Struwe, 2006). There is no

obvious correlation between floral morphology and pollination. Floral disc and carpel

morphology more or less support the monophyly of genus Ampelocissus, Parthenocissus, and

Cyphostemma, but not to the higher level groupings within the family.

Succulence occurs in some Cyphostemma, Cayratia, Tetrastigma, and Cissus. This

physical property is usually linked to crassulacean acid metabolism, which occurs in many plant

families including a wide range of growth forms for adaptation to drought (Dodd et al., 2002).

The morphology-based phylogeny does not suggest a common origin of succulence in this

family (Chapter 2). Hairs usually are associated with defense against herbivory, or retaining the

microclimate of leaf surface. Arachnoid hairs are usually present in Vitis and Ampelocissus, and

malpighian hairs are common in hairy Cissus, "Austrocissus", and Rhoicissus. Whether different

hair types are specialized for different functions is unknown.

Conclusion

Based on the fossil records and the morphological phylogeny, the biogeographic history

of Vitaceae can be hypothesized. The earlier divergent groups, Cyphostemma, Tetrastigma,

Cayratia, and Cissus, are now diverse in warm climate regions. The fossil records imply that the

195

stem lineages of Cissus favored a warm environment. Cyphostemma diversified in and is mainly confined to Africa nowadays, while Cayratia and Tetrastigma are now mostly confined to southern Asia and Malesia. Some stem group Cayratia were less constrained by temperature and spread as far north as Siberia in the Late Oligocene or the Early Miocene. Cissus likely attained its pantropical distribution during the Tertiary, since its fossils are found in the Tertiary of South

America, Central America, and Africa. The phylogenetic positions of Rhoicissus,

"Austrocissus", and Clematicissus are still uncertain; nevertheless, the suggested sister positions of these southern species to other members of the oval chalaza clade implies a worldwide spread of the stem lineage of the oval chalazal clade in ancient time. Members of the oval chalazal clade were highly diversified in the Early Eocene of Europe and the Eocene of North America, as indicated by fossil seeds. Fossil seeds also indicate the presence of Vitis and Ampelopsis in the Early Eocene of Siberia. Very likely Parthenocissus, Ampelopsis, Vitis, and Ampelocissus occupied Europe, Asia, and North America throughout the Tertiary, until later the climate change extinguished a great number of them, leaving Parthenocissus, Ampelopsis, and Vitis with a North

American-Asian disjunction pattern. Ampelocissus had a different fate; this lineage retained the thermophilic nature and became widespread in Africa, southern Asia, and Malesia. However, the ancient species in North and South America did not persist or diversify and now just four species remain in Central America. Since there are scanty vitaceous fossils from the warmer regions, the details of the establishment of Cayratia, Tetrastigma, and Ampelocissus in Africa,

Madagascar, Asia, Australia are largely unknown. Nevertheless, these genera can be linked to the Tertiary fossil seeds in Europe and Asia, suggesting an Eurasian origin for these extant species.

196

Assigning fossil seeds to extant genera implies the morphology of a lineage remained

unchanged though many generations untill present time. This seeming morphological stasis may not be true. Seeds of fossil taxa may be comparable to those of extant taxa, nevertheless there is chance that the other morphological characters of the fossil taxa were different from those of the corresponding extant taxa. Seeds of Yua are either similar to Ampelocissus or Ampelopsis

(Chapter 1), nevertheless, flowers of Yua are same as those of Parthenocissus (Chapter 2), and

the monophyly of Yua and Parthenocissus is supported by both morphological (Chapter 2) and

molecular data (Soejima and Wen, 2006; Wen et al., 2007). This incongruence of organ

morphology in a monophyletic group leads to the speculation that species with mixed characters

of extant genera may have existed in the past. The genera in the oval chalazal clade may not have been well differentiated from each other in early Tertiary. The fossil seeds suggests that

Parthenocissus, Ampelopsis, and Vitis have co-occurred in the same forests in North Hemisphere

since the Eocene. Is it possible that Parthenocissus, Ampelopsis, and Vitis were not as well

separated in the Tertiary as they are today? Or is it more likely that they were as distinct as they

are now, and they co-existed in the same forests remaining unchanged for 55 million years? If

the former case is true, then what made them become morphologically distinct through time? Is

it possible that the stem lineages of these three genera simultaneously evolved to the same three

morphologically distinct groups (Parthenocissus, Ampelopsis, and Vitis) in different regions

(Europe, Asia, and North America)? This case here only represents one of many unresolved enigmas about evolution and biogeography of Vitaceae. Missing data of the fossils cannot be

ignored; multiple lines of evidence have to be considered when discussing biogeography.

The phylogeny can greatly influence both the assignment of fossil affinities and the

interpretation of the biogeographical history. However, the infrafamilial relationships of

197

Vitaceae are not full resolved (Chapter 2), especially the positions of Rhoicissus, Clematicissus, and "Austrocissus". Biogeography of Vitaceae should be reviewed again as more evidences of the relationships within the family become available.

198 Table 3-1. Fossils classified as seed type st-Ampelocissus-wide infolds. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Ampelocissus parvisemina Paleocene North America Bullion Creek Chen and Fig. 8a apex embedded < 1.4 > 0.5 ambig > 60 > 0.2 > 0.6 < 25 < 0.2 a 4 Chen & Manchester Formation, ND, US Manchester, 2007 in rock Vitis excavata Chandler Early Eocene Europe Dorset Pipe Clays, Chandler, 1962 Plate 15, one side broken < 1.4 > 0.5 < 0.1 ambig > 0.2 ambig < 25 < 0.2 a 1 England Fig. 29-30 Ampelocissus auriforma Early Middle North America Clarno Formation, Chen and Fig. 8e < 1.4 > 0.5 > 0.1 > 60 > 0.2 > 0.6 < 25 < 0.2 a 3 Manchester Eocene OR, US Manchester, 2007 Ampelocissus parvisemina Early Middle North America Clarno Formation, Chen and Fig. 8b < 1.4 > 0.5 < 0.1 > 60 > 0.2 > 0.6 < 25 < 0.2 a 1 Chen & Manchester Eocene OR, US Manchester, 2007 Ampelocissus bravoi Berry Eocene South America Belen, Peru Chen and Fig. 8h internal cast < 1.4 > 0.5 > 0.1 > 60 > 0.2 > 0.6 < 25 ambig a 2 Manchester, 2007 C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

199 Table 3-2. Fossils classified as seed type st-Ampelocissus-rugose. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

? Tetrastigma lobata Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. 35-38s < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6 England Tetrastigma ? elliotti Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 28-29s < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig ambig a 8

Tetrastigma corrugata Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 24-25s internal < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig ambig > 0.2 a 7 sharp apical cast notch Tetrastigma davisi Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 22-23s < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 > 0.2 a 6 sharp apical notch Tetrastigma globosa Reid & Early Eocene Europe London Clay, England Reid and Chander, Plate 19, Fig. 6-8s internal < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig > 0.2 a 10 Chandler 1933 cast Tetrastigma sheppeyensis Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 26-27s internal < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig ambig > 0.2 a 7 sharp apical cast notch Paleovitis paradoxa Reid & Early Eocene Europe Paris Basin, France Blanc-Louvel, Plate 1, Fig. 2-7; internal < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 ambig a 5 Chandler 1986 Plate 2, Fig. 1-9s cast Ampelocissus cf. lobatum Middle Europe Messel, Germany Chen and Fig. 8ms < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6 (Chandler) Chen & Manchester* Eocene Manchester, 2007 Ampelocissus wildei Chen & Middle Europe Messel, Germany Chen and Fig. 8n-ps < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6 thick testa Manchester Eocene Manchester, 2007 Tetrastigma lobata Chandler Late Eocene Europe Hordle Headon Hill, Chandler, 1925- Plate 5, Fig. 3a-c < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 > 0.2 a 6 sharp apical England 1926 notch Tetrastigma lobata Chandler Late Eocene Europe Hordle Headon Hill, Chandler, 1961a Plate 28, Fig. 96-97 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig > 0.2 a 7 England Vitis uncinata Chandler Late Eocene Europe Hordle Headon Hill, Chandler, 1925- Plate 5, Fig. 4a-b; < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 > 0.2 a 6 sharp apical England 1926 text-fig. 14 notch Tetrastigma cf. lobata Chandler Early Europe Köflach-Voitsberg, Meller, 1998 Plate 20, Fig. 4 < 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 < 25 > 0.2 a 9 sharp apical Miocene Austria notch Tetrastigma chandleri Kirchheimer Early Europe Turów, Poland Czeczott and Plate 18, Fig. 2-4 < 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 < 25 > 0.2 a 9 sharp apical Miocene Skirgiello, 1959 notch Ampelocissus chandleri Early Europe Wiesa, Germany Chen and Fig. 8ls < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 > 0.2 a 9 (Kirchheimer) Chen & Manchester* Miocene Manchester, 2007 Tetrastigma chandleri Kirchheimer Early Europe Wiesa, Germany Kirchheimer, 1938 Fig. 17-18 < 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 < 25 > 0.2 a 9 sharp apical Miocene notch Tetrastigma chandleri Kirchheimer Early/Middle Europe Berzdorf, Upper Lusatia, Czaja, 2003 Plate 13, Fig. 1 < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 > 0.2 a 9 Miocene Germany Tetrastigma lobatum Chandler Middle/Late Europe Meuroer/Rauno Mai, 2001 Plate 29, Fig. 7-8 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6 Miocene sequences, Germany Tetrastigma lobata Chandler Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 7-8 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 6 Miocene Tetrastigma japonica Miki Pliocene Asia Sika, Japan Miki, 1956 Fig. 6 A-D, Plate I- < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig > 0.2 a 7 K Tetrastigma tazimiensis Miki Pliocene Asia Simoiguta, Japan Miki, 1956 Fig. 6E, Plate I < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig > 0.2 a 7

s *Ampelocissus cf. lobatum (Chandler) Chen & Manchester basionym = Tetrastigma lobata Chandler; Ampelocissus chandleri (Kirchheimer) Chen & Manchester basionym = Tetrastigma chandleri Kirchheimer; specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

200 Table 3-3. Fossils classified as seed type st-Ampelopsis-smooth. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis venablesi Chandler Paleocene Europe Gonna, Germany Mai, 1987 Plate 17, Fig < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Vitis ambigua Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. 27-28 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig ambig < 0.2 a 15 England Vitis poolensis Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. 16-19 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11 England Vitis pygmaea Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 14, Fig. 5-31 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14 England Ampelopsis monasteriensis Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Kirchheimer* 31 s Ampelopsis rotundata Reid & Early Eocene Europe London Clay, England Reid and Plate 19, Fig. 11- < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13 Chandler Chandler, 1933 17 s Vitis subglobosa Reid & Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, Fig. 14-17 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14 Chandler Vitis venablesi Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, Fig. 31-32 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11

Ampelopsis sp. 3 Early Eocene Siberia Bartonskih sediment on Nikitin, 2006 Plate 11, Fig. 36-39 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14 Tym river, Russia Ampelopsis rooseae Manchester Early Middle North Clarno Formation, Manchester, Plate 44, Fig. 8-9s < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Eocene America OR,US 1994 Ampelopsis rotundata Chandler Late Eocene Europe Hordle Headon Hill, Chandler, 1925-6 Plate 5, Fig. 5a-c < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 England Parthenocissus boveyana Oligocene Europe The Bovey Tracey Chandler, 1957 Plate 15, Fig < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13 Chandler lignite, England 125 Vitis hookeri Heer Oligocene Europe The Bovey Tracey Chandler, 1957 Plate 15, Fig < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13 lignite, England 127 Ampelopsis pedunculata Oligocene Siberia Tougan, Russia Dorofeev, 1963 Plate 37, Fig. 6-8 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Dorofeev Ampelopsis rotundata Chandler Oligocene Siberia 10 sites in West Siberia Nikitin, 2006 Plate 11, Fig. 21-26 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Miocene Russia Ampelopsis cf. rotundata Early Europe Köflach-Voitsberg, Meller, 1998 Plate 20, Fig. 3 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14 Chandler Miocene Austria Ampelopsis rotundata Chandler Early Europe Spremberger sequence, Mai, 2000 Plate 7, Fig.3-7 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig ambig < 0.2 a 15 Miocene Lusatia, Germany Vitis globosa Mai Early Europe Spremberger sequence, Mai, 2000 Plate 8, Fig. 1 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14 Miocene Lusatia, Germany Ampelopsis sp. Early Europe Turów, Poland Czeczott and Plate 19, Fig. 1-3 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 12 Miocene Skirgiello, 1959 Ampelopsis rotundata Chandler Early Europe Zittau Basin, Czech Teodoridis, 2003 Plate 7, Fig. 5-6 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13 Miocene Ampelopsis cf. aegirophylla Early Siberia Yekaterininskoye, Russia Dorofeev, 1963 Plate 37, Fig. 1-2 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 (Bge.) Planch. Miocene Ampelopsis tertiaria P. Dorof. Early Siberia Yekaterininskoye, Russia Nikitin, 2006 Plate 11, Fig. 27-29 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 ex V. P. Nikitin Miocene

201 Table 3-3. Continued. Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Ampelopsis rotundatoides Early Siberia Kozyulino, Russia Dorofeev, 1963 Plate 37, Fig. 9-12 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Dorofeev Miocene? Ampelopsis rotundata Chandler Early/Middle Europe Berzdorf, Upper Lusatia, Czaja, 2003 Plate 12, Fig. 12 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11 Miocene Germany Ampelopsis rotundata Chandler Early/Middle Europe Lettengraben, Germany Mai, 2006 Plate 5, Fig. 2-4 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Miocene Ampelopsis malvaeformis Middle Europe Salzhausen, Vogelsberg, Mai and Gregor, Plate 21, Fig. 2-3 < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 < 0.2 a 13 (Schlotheim) Mai Miocene Germany 1982 Ampelopsis tertiaria Dorofeev Middle Europe Salzhausen, Vogelsberg, Mai and Gregor, Plate 21, Fig. 4-8 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Miocene Germany 1982 Vitis teutonica A. Braun Middle Europe Salzhausen, Vogelsberg, Kirchheimer, Fig. 1 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11 Miocene Germany 1938 Ampelopsis macrosperma Middle Siberia Irtysh, Russia Dorofeev, 1963 Plate 37, Fig. 16-21 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 large seed, Dorofeev Miocene? big chalaza Vitis teutonica A. Braun Miocene Europe Markvartice and Bžek, Holy, and Plate 7, Fig. < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11 Veseliko, Czech Kvacek, 1976 text-Fig. 6 Ampelopsis brevipedunculata Pliocene Asia Simosibutani, Japan Miki, 1956 Fig. 2B-L, Plate H < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 13 Trautn. Vitis cf. silverstris Gmelin Pliocene Europe Reuver, Netherlands Kirchheimer, Fig. 11 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14 1938 Vitis cf. silverstris Gmelin Pliocene Europe Swalmen, Netherlands Kirchheimer, Fig. 12 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 11 1938 Vitis cf. silverstris Gmelin Pliocene Europe Tegelen, Netherlands Kirchheimer, Fig. 14 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 14 1938 s *Basionym = Ampelopsis rotundata Reid & Chandler; specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

202 Table 3-4. Fossils classified as st-Ampelopsis-rugose. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Vitis goodharti Chandler Early Eocene Europe Dorset Pipe Clays, Chandler, 1962 Plate 14, Fig. 32-44 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig ambig a 18 England Ampelopsis crenulata Reid Early Eocene Europe London Clay, Chandler, 1978 Plate 6, Fig. 13-16 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19 & Chandler England Ampelopsis crenulata Reid Early Eocene Europe London Clay, Reid and Plate 19, Fig. 11-12s internal < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig < 25 > 0.2 a 16 & Chandler England Chandler, 1933 cast Ampelopsis turneri Reid & Early Eocene Europe London Clay, Chandler, 1961b Plate 25, Fig. 32-33 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 > 25 ambig a 22 Chandler England Tetrastigma sheppeyensis Early Eocene Europe London Clay, Chandler, 1978 Plate 6, Fig. 19-20s < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig > 0.2 a 20 Chandler England Ampelopsis cf. malvaeformis Early Europe Köflach-Voitsberg, Meller, 1998 Plate 20, Fig. 8-10; < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 ambig a 21 (Schlotheim) Mai Miocene Austria Plate 21, Fig. 2-3 Ampelopsis ludwigii Early Europe Zittau Basin, Czech Teodoridis, 2003 Plate 6, Fig. 13, Plate < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 ambig a 23 (A. Braun) Dorofeev Miocene 7, Fig. 1-2 Ampelopsis ludwigii Early/Middle Europe Berzdorf, Upper Czaja, 2003 Plate 12, Fig. 10-11 < 1.4 > 0.5 < 0.1 > 60 ambig < 0.6 < 25 > 0.2 a 17 (A. Braun) Dorofeev Miocene Lusatia, Germany Ampelopsis malvaeformis Early/Middle Europe Lettengraben, Mai, 2006 Plate 5, Fig. 1; Plate < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig ambig a 18 (Schlotheim) Mai Miocene Germany 6. Fig. 11-13 Ampelopsis cf. ludwigii Miocene Europe Markvartice and Bžek, Holy, and Plate 8, Fig. 6-8, text- < 1.4 > 0.5 < 0.1 > 60 < 0.2 ambig > 25 ambig a 23 (A. Braun) Dorofeev Veseliko, Czech Kvacek, 1976 Fig. 7 Cayratia orbitalis Miki Pliocene Asia Itinohora, Japan Miki, 1956 Fig. 3F-H, Plate E < 1.4 > 0.5 < 0.1 > 60 ambig < 0.6 < 25 > 0.2 a 17

Ampelopsis leeoides Planch. Pliocene Asia Simosibutani, Japan Miki, 1956 Fig. 3B-E, Fig. 7B < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19

Cayratia japonica (Thunb.) Pliocene Asia Yono, Japan Miki, 1956 Fig. 3L-M, Plate D < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19 Gagn. Vitis ludwigii A. Braun Pliocene Europe Krocienko, Poland Kirchheimer, Fig. 16 < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig > 0.2 a 20 1938 Vitis ludwigii A. Braun Pliocene Europe Wetterau, Germany Kirchheimer, Fig. 15 < 1.4 > 0.5 < 0.1 > 60 < 0.2 < 0.6 ambig > 0.2 a 19 1938 sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

Table 3-5. Fossils classified as seed type st-Ampelopsis-xs. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality Country References Figures Condition C32 C33 C48 Group

Ampelocissus similkameenensis Middle North Princeton Canada Cevallos-Ferriz and Fig.1-9 transverse < 0.8 > 0.72 > 1 24 Cevallos-Ferriz & Stockey Eocene America chert Stockey, 1990 section type 1 seed Middle North Princeton Canada Cevallos-Ferriz and Fig. 14-17 transverse < 0.8 > 0.72 > 1 24 Eocene America chert Stockey, 1990 section C32 = ventral infold thin part ratio; C33 = ventral infold thin part circularity; C48 = number of endotesta sclereid layers.

203 Table 3-6. Fossils classified as seed type st-Vitis. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment cf. Vitis Paleocene North Union Fort Formation, Manchester, partially < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 America MT, US unpublished broken Vitis glabra Chandler Early Eocene Europe Dorset Pipe Clay, England Chandler, 1962 Plate 14, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Fig. 49-53 Vitis bilobata Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Fig. 22-24s Vitis obovoidea Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 Fig. 25-26 Vitis platyformis Chandler Early Eocene Europe London Clay, England Chandler, 1961b Plate 24, < 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 ambig < 0.2 a 28 Fig. 33-34 Vitis rectisulcata Chandler Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 9-10 Vitis subglobosa Reid & Early Eocene Europe London Clay, England Reid and Plate 18, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Chandler Chandler, 1933 Fig. 34-37s ? Vitis rectisulcata Chandler Early Eocene Europe Oldhaven Beds, England Chandler, 1964 Plate 2, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 7-8 Parthenocissus monasteriensis Early Eocene Europe Paris Basin, France Blanc-Louvel, Plate 3, Fig. internal < 1.4 > 0.5 > 0.1 ambig < 0.2 ambig < 25 < 0.2 a 28 (Reid & Chandler) Scott 1986 5-6s cast Vitis obovoidea Chandler Early Eocene Europe Paris Basin, France Blanc-Louvel, Plate 3, Fig. internal < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 1986 1-4s cast Vitis pygmaea Chandler Early Eocene Europe Paris Basin, France Blanc-Louvel, Plate 3, Fig. internal < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26 1986 7-11s cast Vitis aff. rectisulcata Chandler Early Eocene Europe Tienen Formation, Fairon-Demaret Plate 1, Fig. internal < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Belgium and Smith, 2002 6-7 cast Vitis sp. 1 Early Eocene North Fisher/Sullivan site, Tiffney, 1999 Plate 2, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 America VA, US 9-10 Vitis sp. 2 Early Eocene North Fisher/Sullivan site, Tiffney, 1999 Plate 2, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 America VA, US 11-12 Ampelocissites lytlensis Berry Early Eocene North Wilcox, TX, US Chen and Fig. 10s < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 America Manchester, 2007 Ampelocissus scottii Manchester Early Middle North Clarno Formation, Manchester, 1994 Plate 44, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 ambig a 25 dorsiventrally Eocene America OR, US Fig. 11-12s compressed Ampelocissus scottii Manchester Early Middle North Clarno Formation, Manchester, 1994 Plate 44, internal < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Eocene America OR, US Fig. 13-15s cast Vitis tiffneyi Manchester Early Middle North Clarno Formation, Manchester, 1994 Plate 44, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Eocene America OR, US Fig. 3s Vitis sp. Middle Eocene Europe Messel, Germany Manchester, Me 4025s < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 unpublished Vitis sp. Early Oligocene Europe Quercy, France De Franceschi Fig. 4as < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 et al., 2006 Parthenocissus eoquinquefolia Miocene North The Brandon Lignite, Tiffney and Plate 2, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 29 Tiffney & Barghoorn America VT, US Barghoorn, 1976 K Vitis eolabrusca Tiffney & Miocene North The Brandon Lignite, Tiffney and Plate 2, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Barghoorn America VT, US Barghoorn, 1976 A, C Vitis rostrata Tiffney & Miocene North The Brandon Lignite, Tiffney and Plate 2, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Barghoorn America VT, US Barghoorn, 1976 I Vitis cf. cordifolia Michx. Late Oligocene/ Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 38, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 28 Early Miocene Fig. 19-20

204 Table 3-6. Continued.

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis sp. 1 Late Oligocene/ Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 38, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Early Miocene Fig. 23-26 Vitis sp. 2 Late Oligocene/ Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 39, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Early Miocene Fig. 3-6 Vitis sp. 3 Late Oligocene/ Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 39, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Early Miocene Fig. 1-2 Vitis lusatica Czeczott & Early Miocene Europe Spremberger sequence, Mai, 2000 Plate 7, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Skirgiello Lusatia, Germany 8-9 Vitis teutonica A. Braun Early Miocene Europe Spremberger sequence, Mai, 2000 Plate 7, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26 Lusatia, Germany 15-18 Vitis lusatica Czeczott & Early Miocene Europe Turów, Poland Czeczott and Plate 17, < 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 ambig a 25 Skirgiello Skirgiello, 1959 Fig. 4-12 Vitis cf. teutonica A. Braun Early Miocene Europe Zittau Basin, Czech Teodoridis, 2003 Plate 5, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 22 Vitis tomskiana P. Dorof. ex V. Early Miocene? Siberia Kozyulino, Russia Nikitin, 2006 Plate 13, < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 P. Nikitin Fig. 11-12 Vitis lusatica Czeczott & Early/Middle Europe Lettengraben, Germany Mai, 2006 Plate 5, fig. < 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 < 0.2 a 27 Skirgiello Miocene 9-11 Vitis teutonica A. Braun Early/Middle Europe Lettengraben, Germany Mai, 2006 Plate 5, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26 Miocene 12-15 Vitis lusatica Czeczott & Middle/Late Europe Meuroer/Rauno sequences, Mai, 2001 Plate 27, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 29 Skirgiello Miocene Lusatia, Germany Fig. 9 Vitis palaeomuscadinia Mai Middle/Late Europe Meuroer/Rauno sequences, Mai, 2001 Plate 27, < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 Miocene Lusatia, Germany Fig. 10 Vitis parasilvestris Kirchheimer Middle/Late Europe Meuroer/Rauno sequences, Mai, 2001 Plate 27, < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 Miocene Lusatia, Germany Fig. 11-12 Vitis silvestris Gmel. foss. Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, < 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 < 0.2 a 27 Miocene Fig. 15-17 Vitis teutonica A. Braun Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Miocene Fig. 21-22 Vitis cf. silvestris Gmelin Miocene Europe Klettwitz, Senftenberg, Kirchheimer, Fig. 6 < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig ambig < 0.2 a 26 Germany 1938 Vitis rotundata Miki Pliocene Asia Hanataka, Japan Miki, 1956 Fig. 13A-J, < 1.4 > 0.5 > 0.1 > 60 < 0.2 ambig < 25 < 0.2 a 28 Plate B Cayratia megasperma (Miki) Pliocene Asia Osusawa, Japan Miki, 1956 Fig. 4, Plate < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 ambig < 0.2 a 28 Miki F-G Vitis labruscoidea Miki Pliocene Asia Osusawa, Japan Miki, 1956 Fig. 12A-D, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Plate A Vitis thunbergii S. et Z. Pliocene Asia Simosibutani, Japan Miki, 1956 Fig. 15E-Q, < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a 27 Plate M Vitis cf. silverstris Gmelin Pliocene Europe Brunssum, Netherlands Kirchheimer, Fig. 10 < 1.4 > 0.5 > 0.1 ambig < 0.2 < 0.6 < 25 < 0.2 a 27 1938 Vitis cf. silverstris Gmelin Pliocene Europe Krocienko, Poland Kirchheimer, Fig. 9 < 1.4 > 0.5 > 0.1 > 60 < 0.2 < 0.6 > 25 < 0.2 a 29 1938 sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

205 Table 3-7. Fossils classified as seed type st-Vitis-Ampelopsis. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures/ Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment specimens Palaeovitis paradoxa Early Eocene Europe London Clay, England Reid and Plate 19, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 thick endotesta Reid & Chandler Chandler, 1933 20-27 Vitis minuta Reid & Early Eocene Europe London Clay, England Reid and Plate 19, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 ambig < 25 < 0.2 a 30 Chandler Chandler, 1933 3-4 Ampelopsis sp. 1 Early Eocene Siberia Bartonskih sediment on Nikitin, 2006 Plate 13, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 Tym river, Russia 30-33 Ampelopsis sp. 2 Early Eocene Siberia Bartonskih sediment on Nikitin, 2006 Plate 13, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig < 0.2 a 33 Tym river, Russia 34-35 Vitis/Ampelopsis sp. Middle Europe Messel, Germany Manchester, Me 4025s < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 Eocene unpublished Parthenocissus sp. 1 Middle Siberia SCR. 1 on Tym river, Nikitin, 2006 Plate 13, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 ambig < 25 < 0.2 a 30 Eocene Russia 17-20 Vitis sp. Late Eocene North Blue Rim, WY, US Manchester, UF30946s impression < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 America unpublished Vitis brandoniana Miocene North The Brandon Lignite, Tiffney and Plate 2, Fig. <1..4 > 0.5 ambig > 60 < 0.2 ambig < 25 < 0.2 a 30 Tiffney & Barghoorn America VT, US Barghoorn, 1976 E, G Vitis sp.1 Miocene Siberia Kuznetsovka, Russia Dorofeev, 1988 Plate 25, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 7-10 Vitis cf. globosa Mai Early Europe Köflach-Voitsberg, Meller, 1998 Plate 20, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 Miocene Austria 5-7 Ampelopsis tertiaria Early Siberia Yekaterininskoye, Dorofeev, 1963 Plate 37, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 >25 < 0.2 a 32 Dorofeev Miocene Russia 3-5 Vitis tomskiana Early Siberia Kozyulino, Russia Dorofeev, 1963 Plate 38, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 ambig < 0.2 a 33 Dorofeev Miocene? 2-12 Vitis lusatica Czeczott Early/Middle Europe Berzdorf, Upper Czaja, 2003 Plate 13, Fig. < 1.4 > 0.5 ambig ambig < 0.2 < 0.6 < 25 < 0.2 a 34 & Skirgieo Miocene Lusatia, Germany 2 Vitis teutonica A. Middle Europe Salzhausen, Kirchheimer, Fig. 2 < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 Braun Miocene Vogelsberg, Germany 1938 Vitis lusatica Czeczott Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 & Skirgieo Miocene 11-13, 18, 19 Vitis parasilvestris Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. < 1.4 > 0.5 ambig > 60 < 0.2 < 0.6 < 25 < 0.2 a 31 Kirchheimer Miocene 14, 20 Vitis cf. silverstris Pliocene Europe Wetterau, Germany Kirchheimer, Fig. 8 < 1.4 > 0.5 ambig ambig < 0.2 < 0.6 < 25 < 0.2 a 34 Gmelin 1938 sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

206 Table 3-8. Fossils classified as seed type st-Vitis rotundifolia. Column "Group" refers to groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Vitis arnensis Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 England 20-26 Vitis lakensis Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 14, Fig. flattened < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 England 47-48 dorsiventrally ? Vitis arnensis Chandler Early Eocene Europe London Clay, Chandler, 1978 Plate 6, Fig. 1- < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 England 2 Tetrastigma ? longisulcata Early Eocene Europe London Clay, Reid and Chandler, Plate 19, Fig. internal cast < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 Reid & Chandler England 1933 9-10 Vitis rectisulcata Chandler Early Eocene Europe London Clay, Chandler, 1961b Plate 25, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 England 16-21s Vitis semenlabruscoides Reid Early Eocene Europe London Clay, Chandler, 1961b Plate 24, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 & Chandler England 18-21 Vitis macrochalaza Tiffney Miocene North The Brandon Tiffney, 1977 Fig. 6 < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 America Lignite, VT, US Vitis pseudo-rotundifolia Miocene North The Brandon Tiffney, 1976 Plate 1, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 Berry America Lignite, VT, US A, C, D, F, H Vitis palaeomuscadinia Mai Early/Middle Europe Berzdorf, Upper Czaja, 2003 Plate 13, Fig. < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 < 25 < 0.2 a 35 Miocene Lusatia, Germany 3 sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent.

Table 3-9. Fossils classified as seed type st-Parthenocissus. Column "Group" refers to groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis cuneata Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 14, Fig. < 1.4 > 0.5 < 0.1 < 60 < 0.2 > 0.6 ambig < 0.2 a 36 England 45-46 Tetrastigma sheppeyensis Early Eocene Europe London Clay, Chandler, 1978 Plate 6, Fig. < 1.4 > 0.5 < 0.1 < 60 < 0.2 > 0.6 ambig ambig a 36 more rugose than extant Chandler England 17-18s Parthenocissus Vitis elegans Chandler Early Eocene Europe London Clay, Chandler, 1961b Plate 24, Fig. < 1.4 > 0.5 < 0.1 ambig < 0.2 > 0.6 > 25 < 0.2 a 36 England 35-36 Ampelocissus parachandleri Early Middle North Clarno Formation, Chen and Fig. 8ks internal < 1.4 > 0.5 ambig < 60 < 0.2 > 0.6 > 25 ambig a 36 chalaza deeply sunken Chen & Manchester Eocene America OR, US Manchester, 2007 cast like some Ampelocissus Parthenocissus Early Middle North Clarno Formation, Manchester, 1994 Plate 45, Fig. internal < 1.4 > 0.5 ambig < 60 < 0.2 > 0.6 > 25 ambig a 36 more rugose than extant angustisulcata Scott Eocene America OR, US 6-7s cast Parthenocissus Vitis ludwigi A. Braun Early Europe Turów, Poland Czeczott and Plate 17, Fig. < 1.4 > 0.5 < 0.1 < 60 < 0.2 ambig ambig ambig a 36 more rugose than extant Miocene Skirgiello, 1959 1-3 Parthenocissus Vitis teutonica A. Braun Late Miocene Europe Naumburg, Bober, Kirchheimer, 1938 Fig. 4 < 1.4 > 0.5 < 0.1 ambig < 0.2 > 0.6 > 25 < 0.2 a 36 Germany sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

207 Table 3-10. Fossils classified as seed type st-Parthenocissus clarnensis. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Group Comment

Vitis symmetrica Chandler Early Eocene Europe Dorset Pipe Clay, England Chandler, 1962 Plate 15, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Fig. 6-7 Vitis triangularis Chandler Early Eocene Europe Dorset Pipe Clay, England Chandler, 1962 Plate 15, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Fig. 8-13 Cayratia ? monasteriensis Early Eocene Europe London Clay, England Reid and Plate 19, internal < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Reid & Chandler Chandler, 1933 Fig. 18-19 cast Parthenocissus jenkinsi Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Chandler Fig. 38-39 Parthenocissus monasteriensis Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 (Reid & Chandler) Scott Fig. 34-37 Vitis bilobata Chandler Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37 Fig. 3-4s Vitis bracknellensis Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, testa < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Chandler Fig. 1-5 polished Vitis longisulcata (Reid & Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37 Chandler) Chandler Fig. 8-15 Vitis magnisperma Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 large seed, ventral Chandler Fig. 5-6s infolds closely spaced Vitis aff. longisulcata Early Eocene Europe Tienen Formation, Belgium Fairon-Demaret Plate 1, internal < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 Chandler and Smith, 2002 Fig. 2-4 cast Parthenocissus clarnensis Early Middle North Clarno Formation, OR, US Manchester, 1994 Plate 45, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Manchester Eocene America Fig. 3-4s Vitis magnisperma Early Middle North Clarno Formation, OR, US Manchester, 1994 Plate 45, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 large seed, ventral Chandler Eocene America Fig. 12-13s infolds closely spaced Parthenocissus Late Eocene Europe Hordle Headon Hill, England Chandler, 1961a Plate 28, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 hordwellensis Chandler Fig. 90-95 Parthenocissus sp. Late Eocene Europe Hordle Headon Hill, England Chandler, 1925-6 Plate 6, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 Fig. 1a-c Parthenocissus britannica Oligocene Europe The Bovey Tracey lignite, Chandler, 1957 Plate 15, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 (Heer) Chandler England Fig. 119-122 Parthenocissus obovata V. Late Oligocene/Early Siberia Dunayevsky Yar outcrop, Nikitin, 2006 Plate 13, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 P. Nikitin Miocene Russia Fig. 13-16 Vitis cf. teutonica A. Braun Early Miocene Europe Zittau Basin, Czech Teodoridis, 2003 Plate 6, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37 Fig. 12 Parthenocissus elongata Early Miocene? Siberia Kozyulino, Russia Dorofeev, 1963 Plate 39, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 ambig < 0.2 a 37 Dorofeev Fig. 7-11 Parthenocissus britannica Early/Middle Europe Lettengraben, Germany Mai, 2006 Plate 5, < 1.4 > 0.5 > 0.1 ambig < 0.2 > 0.6 ambig < 0.2 a 39 (Heer) Chandler Miocene Fig. 5-8 Parthenocissus langsdorfii Middle Miocene Europe Salzhausen, Vogelsberg, Mai and Gregor, Plate 21, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 Mai Germany 1982 Fig. 9-13 Parthenocissus britannica Middle/Late Europe Meuroer/Rauno sequences, Mai, 2001 Plate 29, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 (Heer) Chandler Miocene Lusatia, Germany Fig. 4 Parthenocissus langsdorfii Middle/Late Europe Meuroer/Rauno sequences, Mai, 2001 Plate 29, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Mai Miocene Lusatia, Germany Fig. 5-6 Vitis sp.2 Miocene Siberia Volnaya summit, Russia Dorofeev, 1988 Plate 25, < 1.4 > 0.5 ambig > 60 < 0.2 > 0.6 > 25 < 0.2 a 38 Fig. 11-12 Vitis brachypoda Miki Pliocene Asia Tamodaira, Japan Miki, 1956 Fig. 12H-I, < 1.4 > 0.5 > 0.1 > 60 < 0.2 > 0.6 ambig < 0.2 a 39 Plate C sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

208 Table 3-11. Fossils classified as seed type st-Cayratia. Column "Group" refers to groups indicated in Table 3-15. Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

Ampelospermum Late Siberia Dunayevsky Yar Nikitin, Plate 13, Fig. < 1.4 < 0.5 < 0.1 > 60 > 0.2 ambig < 25 > 0.2 p 40 pulchellum V. P. Nikitin Oligocene/Early outcrop, Russia 2006 40-44 Ampelocissus jungii Early Miocene Europe Köflach-Voitsberg, Meller, Plate 20, Fig. 2 < 1.4 < 0.5 < 0.1 > 60 > 0.2 ambig < 25 > 0.2 p 40 (Gregor) Gregor* Austria 1998 Paleocayratia jungii Middle Miocene Europe Hauptzwischenmittel, Gregor, Plate 20, Fig. 1- < 1.4 < 0.5 < 0.1 ambig > 0.2 ambig < 25 > 0.2 p 40 Gregor Germany 1977 4; text-Fig. 8 *Basionym = Paleocayratia jungii Gregor; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; ambig = ambigous; p = present.

Table 3-12. Fossils classified as seed type st-Tetrastigma. Column "Group" refers to the groups indicated in Table 3-15. Fossil Age Region Locality References Figures C21 C18 C22 C5 C35 C9 C15 C24 C57 Group

s Cissocarpus jackesiae Oligocene Australia Capella, Rozefelds, Fig. 7A-G, L < 1.4 < 0.5 < 0.1 > 60 < 0.2 > 0.6 < 25 > 0.2 a 41 Rozefelds Queensland 1988 sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent.

Table 3-13. Fossils classified as seed type st-perichalaza. Column "Group" refers the groups indicated in Table 3-15. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 C53 Group

Carpolithus olssoni Berry Eocene South Belen, Peru Berry, 1929 Manchester, internal > 1.4 < 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a ambig 43 America unpublisheds cast Cissus willardi Berry Eocene South Belen, Peru Berry, 1929 Manchester, > 1.4 < 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a a 42 America unpublisheds Cissus sp. Miocene Central Cucaracha Carvalho et al., > 1.4 < 0.5 < 0.1 > 60 < 0.2 < 0.6 < 25 < 0.2 a a 42 America Formation, Panama unpublished sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; C53 = ventral infolds covered by edotesta; a = absent; ambig = ambigous.

209 Table 3-14. Fossil vitaceous seeds not classified in this study.

Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Comment

Ampelopsis cf. monasteriensis Paleocene Europe Waßmannsdorf, Mai, 1987 Plate 17, Fig. 9 incomplete Kirchheimer Germany specimens aff. Cissocarpus jackesii Early Eocene Australia Hotham heights, Carpenter, 2004 Fig. 77 dorsal side only < 1.4 < 0.5 ambig > 60 Rozefelds Australia Tetrastigma acuminata Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. surface obscure Chandler England 39-40 Vitis sp. Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. surface obscure England 31-32 Vitis triangularis ? Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. ventral side obscure < 1.4 > 0.5 < 0.1 a England 14-15 Vitis sp. Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. surface obscure England 33-34 Vitis platysperma Chandler Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 15, Fig. 1- surface obscure laterally England 5 compressed Vitis sp. Early Eocene Europe Dorset Pipe Clay, Chandler, 1962 Plate 26, Fig. surface obscure England 23-24 Vitis semenlabruscoides Reid Early Eocene Europe London Clay, England Reid and Plate 19, Fig. 1- ventral side obscure < 1.4 > 0.5 > 0.1 a & Chandler Chandler, 1933 2 Vitis sp. Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, Fig. 11- dorsal side obscure < 0.2 < 0.6 < 25 < 0.2 a 12 Paleovitis paradoxa Reid & Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. surface obscure Chandler 40-44 Vitis sp. Early Eocene Europe London Clay, England Chandler, 1961b Plate 25, Fig. 6- incomplete 7 specimens ? Vitis excavata Chandler Early Eocene Europe London Clay, England Chandler, 1978 Plate 6, Fig. 7- incomplete > 1.4 ? < 0.5 8 specimens Vitis bognorensis Reid & Early Eocene Europe London Clay, England Reid and Plate 19, Fig.5 internal cast; dorsal < 1.4> 0.5> 0.1 Chandler Chandler, 1933 side only Cf. Parthenocissus sp. Early Eocene Europe Tienen Formation, Fairon-Demaret Plate 1, Fig. 1 internal cast; dorsal < 1.4> 0.5> 0.1 < 0.2 Belgium and Smith, 2002 side only Ampelocissus auriforma Middle Eocene North Green River Formation, Chen and Fig. 8j mold of ventral side > 0.2 Manchester America Douglas Pass, CO, US Manchester, 2007 Carpolithus vitaceus Brown Middle Eocene North Green River Formation, Brown, 1934 Plate 15, embedded in rock; > 0.6 > 25 a America Kimball Creek, CO, US Fig.10 ventral side only type 2 seed Middle Eocene North Princeton chert, Canada Cevallos-Ferriz Fig. 18 transverse section; America and Stockey, 1990 incomplete Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. incomplete 24-27 specimens Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. ventral side obscure 18-19 Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. incomplete 22-23 specimens Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. surface obscure 20-21 Vitis pygmaea Chandler Late Eocene Europe Highcliffe, England Chandler, 1963 no image

210 Table 3-14. Continued. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Comment

Vitis sp. Late Eocene Europe Highcliffe, England Chandler, 1963 Plate 16, Fig. surface obscure 16-17 Ampelopsis rotundata Late Eocene Europe Hordle Headon Hill, Chandler, 1961a no image Chandler England Cissus pyriformis MacGinitie Eocene North Chalk Bluffs, Manchester, embedded in rock; < 0.2 America CA, US unpublished ventral side only Parthenocissus sp. Late Oligocene/ Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 39, Fig. ventral side obscure < 1.4 > 0.5 < 0.1 < 0.2 a Early Miocene 12-13 Vitis cf. silvestris Gmelin Late Oligocene/ Siberia Kireevskoe, Russia Dorofeev, 1963 Plate 38, Fig. dorsal side obscure < 0.2 < 0.6 < 25 < 0.2 a Early Miocene 21-22 Parthenocissus sp. Early Miocene Europe Köflach-Voitsberg, Meller, 1998 Plate 20, Fig. 1 dorsal side obscure < 0.2 > 0.6 ambig < 0.2 a Austria Vitis cf. teutonica A. Braun Early Miocene Europe Köflach-Voitsberg, Meller, 1998 Plate 21, Fig. 1 dorsal side only < 1.4 > 0.5 < 0.1 Austria Tetrastigma chandleri Early Miocene Europe Spremberger sequence, Mai, 2000 Plate 8, Fig. 2 ventral side obscure < 1.4 > 0.5 > 0.1 > 0.2 Kirchheimer Lusatia, Germany Ampelopsis malvaeformis Early Miocene Europe Spremberger sequence, Mai, 2000 Plate 7, Fig. 1- ventral side obscure < 1.4 > 0.5 ambig (Schlotheim) Mai Lusatia, Germany 2 Vitis palaeomuscadinia Mai Early Miocene Europe Spremberger sequence, Mai, 2000 Plate 7, Fig. 10- dorsal side only < 1.4 > 0.5 > 0.1 ambig ambig Lusatia, Germany 14 Tetrastigma lobatum Chandler Early Miocene Europe Spremberger sequence, Mai, 2000 no image Lusatia, Germany Vitis teutonica A. Braun Early Miocene Europe Turów, Poland Czeczott and Plate 16, Fig. 3- image obscure Skirgiello, 1959 7 Vitis cf. thunbergii Sieb. & Early Miocene Europe Turów, Poland Czeczott and Plate 16, Fig. image obscure Zucc. Skirgiello, 1959 8; text Fig. 6d Vitis cf. silvestris Gmelin Early Miocene Europe Turów, Poland Czeczott and Plate 16, Fig. 1- image obscure Skirgiello, 1959 2 Tetrastigma sp. Early Miocene Europe Zittau Basin, Czech Teodoridis, 2003 Plate 5, Fig. 27 incomplete specimens Vitis parasylvestris Early/Middle Europe Berzdorf, Upper Lusatia, Czaja, 2003 no image Kirchheimer Miocene Germany Vitis globosa Mai Middle Miocene Europe Salzhausen, Vogelsberg, Mai and Gregor, Plate 20, Fig. 3 surface obscure Germany 1982 Vitis teutonica A. Braun Middle Miocene Europe Salzhausen, Vogelsberg, Mai and Gregor, Plate 20, Fig. 4- dorsal side obscure Germany 1982 8 Ampelopsis/Vitis Middle Miocene North Yakima Canyon, Tcherepova and no image America WA, US Pigg, 2005 Vitis teutonica A. Braun Middle/Late Europe Meuroer/Rauno Mai, 2001 Plate 29, Fig. dorsal side only < 1.4 > 0.5 ambig Miocene sequences, Germany 13-14 Ampelopsis tertiaria Dorofeev Middle/Late Europe Meuroer/Rauno Mai, 2001 Plate 29, Fig. 1- ventral side obscure < 1.4 > 0.5 < 0.1 Miocene sequences, Germany 3 Ampelopsis rotundata Middle/Late Europe Meuroer/Rauno Mai, 2001 no image Chandler Miocene sequences, Germany Ampelopsis malvaeformis Middle/Late Europe Meuroer/Rauno Mai, 2001 no image (Schlotheim) Mai Miocene sequences, Germany Tetrastigma chandleri Middle/Late Europe Meuroer/Rauno Mai, 2001 no image Kirchheimer Miocene sequences, Germany

211 Table 3-14. Continued. Fossil Age Region Locality References Figures Condition C21 C18 C22 C5 C35 C9 C15 C24 C57 Comment

Ampelopsis sp. Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 4- ventral side obscure < 1.4 > 0.5 < 0.1 a Miocene 6 Ampelopsis ludwigii (A. Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 1- surface obscure Braun) Dorofeev Miocene 3 Vitis globosa Mai Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 Plate 13, Fig. 9- ventral side obscure < 1.4 > 0.5 a Miocene 10 Ampelopsis rotundatoides Middle/Late Europe Oberpfälzer, Germany Gregor, 1980 no image Dorofeev Miocene Cissus sp. Miocene Africa Lake Victoria, Kenya Collinson, no image unpublished Vitis teutonica A. Braun Miocene Europe Niederpleis, Lower Kirchheimer, 1938 Fig. 3 ventral side obscure < 1.4 > 0.5 > 0.1 Rhine, Germany Vitis bonseri Condit Miocene North Remington Hill, Condit, 1944 no image America CA, US Vitis sp. 3 Miocene Siberia Berezivka, Russia Dorofeev, 1988 Plate 25, Fig. 4 incomplete specimens Ampelopsis sp. Miocene Siberia Volnaya summit, Russia Dorofeev, 1988 Plate 25, Fig. 5- ventral side obscure < 1.4 > 0.5 < 0.1 < 0.2 6 Vitis sp. 1 Late Miocene/ North Gray Fossil Site, Gong, Karsai, and no image Early Pliocene America TN, US Liu, 2009 Vitis sp. 2 Late Miocene/ North Gray Fossil Site, Gong, Karsai, and no image Early Pliocene America TN, US Liu, 2009 Vitis sp. 3 Late Miocene/ North Gray Fossil Site, Gong, Karsai, and no image Early Pliocene America TN, US Liu, 2009 sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

212 Table 3-15. Groups of taxa sharing the same combinations of characters as the fossils listed in Tables 3-1 to 3-13. Column "Group" refers to groups indicated in Tables 3-1 to 3- 13. When more than 1, the number of collections examined and found to possess characters of each seed group is indicated in the parentheses. Fossil taxa are placed in square brackets.

Group Taxa sharing the same combinatin of characters Seed type

1 Ampelocissus botryostachys , Pterisanthes (5) st-Ampelocissus -wide infolds

2 Ampelocissus (19) st-Ampelocissus -wide infolds

3 Ampelocissus (7) st-Ampelocissus -wide infolds

4 Ampelocissus (8), Pterisanthes (5) st-Ampelocissus -wide infolds

5 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma triphyllum , Vitis (13), st-Ampelocissus -rugose Yua austro-orientalis , [P. paradoxa , V. tiffneyi , A. wildei ] 6 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma triphyllum , Yua austro- st-Ampelocissus -rugose orientalis , [A. wildei ] 7 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma (5), Yua austro- st-Ampelocissus -rugose orientalis , [A. wildei ] 8 Ampelocissus (10), Cayratia triternata , Nothocissus spicifera , Tetrastigma (5), Vitis (14), Yua st-Ampelocissus -rugose austro-orientalis , [P. clarnensis , V. magnisperma , P. paradoxa , V. tiffneyi , A. wildei ] 9 Ampelocissus (10), Nothocissus spicifera , Tetrastigma triphyllum st-Ampelocissus -rugose

10 Ampelocissus (10), Nothocissus spicifera , Tetrastigma (4) st-Ampelocissus -rugose

11 Ampelopsis (2) st-Ampelopsis -smooth

12 Ampelopsis (2), Cayratia sp. (Peng 6346), Clematicissus opaca st-Ampelopsis -smooth

13 Ampelopsis (6), "Austrocissus" striata , Yua chinensis , [A. rooseae ]st-Ampelopsis -smooth

14 Ampelopsis (8), "Austrocissus" striata , Yua chinensis , [A. rooseae ]st-Ampelopsis -smooth

15 Ampelopsis (8), Cayratia sp. (Peng 6346), "Austrocissus" striata , Clematicissus opaca , Yua st-Ampelopsis -smooth chinensis , [A. rooseae ] 16 Ampelocissus latifolia , Ampelopsis cantoniensis , Cayratia (2), "Austrocissus" granulosa st-Ampelopsis -rugose

17 Ampelocissus robinsonii, Ampelopsis (2), Cayratia (3), "Austrocissus" granulosa st-Ampelopsis -rugose

18 Ampelopsis (10), Cayratia (3), "Austrocissus" (4), Rhoicissus tridentata , Tetrastigma (5), Yua st-Ampelopsis -rugose chinensis , [A. rooseae ] 19 Ampelopsis (2), Cayratia (3), "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (5) st-Ampelopsis -rugose

20 Ampelopsis (2), Cayratia (4), "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (6), Yua st-Ampelopsis -rugose austro-orientalis , [A. wildei ] 21 Ampelopsis (3), Cayratia (2), "Austrocissus" granulosa st-Ampelopsis -rugose

22 Ampelopsis (7), Cayratia ciliifera , "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (5), Yua st-Ampelopsis -rugose chinensis , [A. rooseae ] 23 Ampelopsis (7), Cayratia ciliifera , "Austrocissus" (3), Rhoicissus tridentata , Tetrastigma (9), Yua st-Ampelopsis -rugose chinensis , [A. rooseae ] 24 Ampelopsis (9), "Austrocissus" (2), [P. paradoxa ]st-Ampelopsis -xs

25 Cayratia triternata , Vitis (12), Yua austro-orientalis , [P. paradoxa, V. tiffneyi, A. wildei ]st-Vitis

26 Vitis (14), [P. clarnensis , V. magnisperma , P. paradoxa , V. tiffneyi ]st-Vitis

213 Table 3-15. Continued.

Group Taxa sharing the same combinatin of characters Seed type

27 Vitis (12), [P. paradoxa , V. tiffneyi ]st-Vitis

28 Vitis (13), [P. paradoxa , V. tiffneyi ] st-Vitis

29 Vitis lanceolatifolia st-Vitis

30 Ampelopsis (2), Cayratia sp. (Peng 6346), Clematicissus opaca , V. tiffneyi , Vitis (13), [P. st-Vitis -Ampelopsis paradoxa ] 31 Ampelopsis (2), Vitis (12), [P. paradoxa , V. tiffneyi ]st-Vitis -Ampelopsis

32 Ampelopsis (6), "Austrocissus" striata , Vitis lanceolatifolia , Yua chinensis , [A. rooseae ]st-Vitis -Ampelopsis

33 Ampelopsis (8), "Austrocissus" striata , Vitis (13), Yua chinensis , [P. paradoxa , A. rooseae , V. st-Vitis -Ampelopsis tiffneyi ] 34 Ampelosis (2), Vitis (12), [P. paradoxa , V. tiffneyi ] st-Vitis -Ampelopsis

35 Vitis rotundifolia st-Vitis rotundifolia

36 Parthenocissus (8) st-Parthenocissus

37 Cayratia sp. (Peng 6346), Clematicissus opaca , Vitis rotundifolia , [P. clarnensis , V. magnisperma ] st-Parthenocissus clarnensis

38 [P. clarnensis ] st-Parthenocissus clarnensis

39 Vitis rotundifolia , [P. clarnensis, V. magnisperma ]st-Parthenocissus clarnensis

40 Cayratia (3) st-Cayratia

41 "Austrocissus" (3), Tetrastigma (2) st-Tetrastigma

42 Cissus (29) st-perichalaza

43 Cissus (29), Cyphostemma (7), Leea (13) st-perichalaza

214 *Vitis vinifera Table 3-16. The stratigraphicdistributionofthefossilvitaceousseedtypesfromEurope.Numberformsexamined Total 14 13 12 11 10 seed type seed 4 6 5 7 3 2 1 8 9 st- st- st- st- not classified not st-perichalaza st- st- st- st- st- st- st- st- Am Vitis Am Vitis-Am Tetrasti Am Am Am Vitis rotundi Ca Parthenocissus clarnensis Parthenocissus y p p p p p ratia elo elo elo elocissus elocissus p p p g p sis sis sis ma elo -xs -rugose -smooth in thegreencolumn.Seetextfordetails. (detailed in Tables 3-1to3-14)isindicatedineachcell. The presenceofseedtypesinpresentdayEuropeisindicated f p olia -rugose -wide infolds sis 111839143467137872565171191121121112169 34 1 Gonna Paleocene

6 1231 254 11 243 61 1 166 Waßmannsdorf 14 53112 211 27 11 1 32 2 1 21 1 151311 5 2 111 19 11 15123 1121 1 417 5 18 1 1 12 1 1 1 1 2 1 27 12 24 Dorset Pipe Clay Early Eocene

111219 112 1 21 London Clay Oldhaven Beds Paris Basin Tienen Formation Messel Middle Eocene Highcliffe Late Eocene

11113 111 2121 1 Hordle Headon Hill Quercy Early Oligocene The Bovey Tracey lignite Oligocene 1 11 Köflach-Voitsberg Early Miocene

215 Spremberger sequence, Lusatia Turów Wiesa

111 Zittau Basin Berzdorf, Upper Lusatia Early/Middle Miocene Lettengraben Hauptzwischenmittel Middle Miocene Salzhausen, Vogelsberg Meuroer/Rauno sequences, Lusatia Middle/Late Miocene Oberpfälzer Naumburg, Bober Late Miocene Klettwitz, Senftenberg Miocene 1 1 1 Markvartice and Veseliko

1 Niederpleis, Lower Rhine Brunssum Pliocene Krocienko

1 25 111 Reuver Swalmen Tegelen

112 Wetterau 44 2 1 Total

p* Present day Europe Table 3-17. The stratigraphic distribution of the fossil vitaceous seed types from Siberia and Japan. Number of seed forms examined (detailed in Tables 3-1 to 3-14) is indicated in each cell. The presence of seed types in present day Siberia and Japan is indicated in the green columns. See text for details. Early Eocene Eocene Middle Oligocene Oligocene/Miocene Late Oligocene/Early Miocene Early Miocene Early Miocene? Miocene? Middle Miocene Pliocene

seed type Bartonskih sediment on Tym river Bartonskih SCR. 1 on Tym river Tougan 10 sites in West Siberia Dunayevsky Yar outcrop Kireevskoe Yekaterininskoye Kozyulino Irtysh Berezivka Kuznetsovka, Red Bush Volnaya summit Total day Siberia Present Japan day Japan Present 1 st-Ampelocissus -wide infolds 2 st-Ampelocissus -rugose 2 3 st-Ampelopsis -smooth 111211 7p* 1 p 4 st-Ampelopsis -rugose 3 p 5 st-Ampelopsis - xs 6 st-Vitis 41 5p* 4 p 7 st-Vitis-Ampelopsis 21 11 1 6 8 st-Vitis rotundifolia 9 st-Parthenocissus p* p 10 st-Parthenocissus clarnensis 11 131 11 st-Cayratia 11 12 st-Tetrastigma 13 st-perichalaza 14 not classified 2114 Total 31112634111226 11 *southeastern Siberia

216 *southern NorthAmerica Table 3-18.ThestratigraphicdistributionofthefossilvitaceousseedtypesfromNorth Total seed type 10 11 12 14 13 1 2 3 4 5 6 8 7 9 st- st- st- st- st- st- st- st- st- st- st- st- not classified st-perichalaza Ampelocissus Ampelocissus Ampelopsis Ampelopsis Ampelopsis Vitis Vitis rotundifolia Vitis-Ampelopsis Parthenocissus Parthenocissus clarnensis Cayratia Tetrastigma indicated inthegreencolumn.Seetextfordetails. indicated ineachcell.ThepresenceofseedtypespresentdayNorthAmericais America. Numberofseedformsexamined(detailedinTables3-1to3-14)is -smooth -rugose -xs -wide infolds -rugose 1121102311611333 1 Fort Union Formation, MT Paleocene

12 Bullion Creek Formation, ND

213 Fisher/Sullivan site, VA Early Eocene

217 Wilcox, TA 11 22 22 Clarno Formation, OR Early Middle Eocene

111139 1 21 Green River Formation, CO Middle Eocene

22 Princeton chert, BC

12 11 Blue Rim, WY Late Eocene

Chalk Bluffs, CA Eocene 3 22 The Brandon Lignite, VT Miocene

Remington Hill, CA

Yakima Canyon, WA Middle Miocene

Gray Fossil Site, TN Late Miocene/Early Pliocene 10

3 Total p* p* p* p* p p p present day North America a" Table 3-19.ThestratigraphicdistributionofthefossilvitaceousseedtypesfromCentral Total Seed type Seed Austrocissus" Austrocissus" 10 11 12 14 13 5 4 2 1 6 3 7 8 9 st- st- st- st- st- st- st- st- st- st- st- st- not classified not st-perichalaza Ampelopsis Ampelopsis Ampelocissus Ampelocissus Vitis Ampelopsis Vitis-Ampelopsis Vitis rotundifolia Parthenocissus Parthenocissus clarnensis Cayratia Tetrastigma for details. in correspondingpresentdaycontinentsisindicatedthegreencolumns.Seetext (detailed inTables3-1to3-14)isindicatedeachcell.Thepresenceofseedtypes America, SouthAfrica,andAustralia.Numberofseedformsexamined spp.; -xs -rugose -smooth b Cayratia -rugose -wide infolds spp.; c opaca Clematicissus 12 1 1 1 3 1 Panama Miocene Central America

1 Belen Eocene South America p p p pp pp pp pp pp a a a Present day Central and South America 218

11 Lake Victoria Miocene Africa p

b Present day Africa

Hotham heights Early Eocene Australia

1 Capella Oligocene p p p p b c Present day Australia Table 3-20. Geographical distribution of extant genera of Vitaceae. Genus no. of Distribution species Ampelocissus 94 tropical Africa and Malesia, also in subtropical to temperate Nepal and India. 3 speceis in Australia, 4 speceis in Central America. Nothocissus 1 tropical rainforest in Malesia.

Pterisanthes 20 tropical rainforest in Malesia.

Vitis 60 mainly in temperate and subtropical Asia, around 10 species in temperate North America, 1species extending to Central America and nothern South America. Ampelopsis 25 mainly in temperate and subtropical regions. Asia has 19 species, 3 species in North America, 1 species in Central America. Parthenocissus 15 mainly in temperate and subtropical regions. 12 speices in Asia, 3 species in North America. Yua 3 warm temperate region of southern China and India.

Clematicissus 2 1 species endemic in western Australia, the other in eastern Australia.

Austrocissus 10 South America, Australia.

Rhoicissus 12 mainly in southern Africa, extending to Madagascar and Arabia.

Cissus 350 tropical and subtropical region world wide.

Cayratia 63 tropical to subtropical Africa, Madagascar, Asia, Malesia, and Australia.

Acareosperma 1Laos.

Tetrastigma 95 tropical to subtropical Asia, Malesia, and Australia.

Cyphostemma 250 tropical Africa and Madagascar, 1-2 species in India, Sri Lanka, and Thailand.

Leea 32 tropical southern Aisa and Malesia, 2 species in Africa and Madagascar.

219 Figure 3-1. The morphological phylogeny used for inferring the biogeography of Vitaceae in this study. The tree is the strict consensus tree of all shortest trees from the morphological data set with continuous characters treated by discrete coding (Chapter 2). Numbers above the branches are bootstrap values > 50%. Selected characters are mapped onto the tree. Character 1 = character 43, 2 = 54, 3 = 101, 4 = 98, 5 = 126, 6 = 130, 7 = 131 from the matrix presented in Chapter 2. Seeds of the terminal taxa are evaluated the same way as the fossil seeds are evaluated in this study and classified into seed types; seeds not matching the 14 seed type categories are given new seed type names in parentheses.

220 characters seed types 1234567 1. inflorescence : with tendril structure Ampelocissus abyssinica st-Ampelocissus-wide infolds without tendril structure Ampelocissus africana st-Ampelocissus-rugose 2. petal number: 5 Nothocissus spicifera st-Ampelocissus-rugose 4 Ampelocissus acetosa st-Ampelocissus-rugose 3. perichalaza: absent 100 Ampelocissus latifolia st-Ampelocissus-rugose present 62 Pterisanthes cissioides st-Ampelocissus-wide infolds 4. chalaza shape: oval 92 Pterisanthes polita st-Ampelocissus-wide infolds linear Ampelocissus ochracea st-Ampelocissus-wide infolds 5. testa sclereids shape: columnar Ampelocissus botryostachys st-Ampelocissus-wide infolds cuboidal Ampelocissus barbata st-Ampelocissus-wide infolds 6. stomata in sarcotesta : absent 66 Ampelocissus javalensis st-Ampelocissus-wide infolds present 60 Ampelocissus acapulcensis st-Ampelocissus-rugose 7. exotegmic tracheidal cell: narrow Ampelocissus erdvendbergiana st-Ampelocissus-wide infolds wide Ampelocissus robinsonii st-Ampelocissus-wide infolds 79 Vitis aestivalis st-Vitis Vitis rotundifolia st-Vitis rotundifolia Vitis flexuosa st-Vitis Vitis piasezkii st-Vitis 86 Vitis betulifolia st-Vitis Vitis vinifera st-Vitis Vitis tsoi st-Vitis Cissus simsiana st-Ampelopsis-rugose Ampelopsis grossedentata st-Ampelopsis-rugose Ampelopsis cantoniensis st-Ampelopsis-rugose Ampelopsis arborea st-Ampelopsis-smooth Ampelopsis delavayana st-Ampelopsis-smooth Ampelopsis glandulosa st-Ampelopsis-smooth Ampelopsis cordata st- -smooth 79 Ampelopsis 95 Parthenocissus dalzielii st-Parthenocissus 85 Parthenocissus laetevirens st-Parthenocissus Parthenocissus quinquefolia st-Parthenocissus 67 Parthenocissus vitacea st-Parthenocissus Yua chinensis st-Ampelopsis-smooth Yua austro-orientalis st-Ampelocissus-rugose Clematicissus angustissima (st-one infold) Clematicissus opaca st-Ampelopsis-smooth Cissus striata ssp. argentina st-Ampelopsis-smooth Cissus granulosa st-Ampelopsis-rugose Cissus penninervis st-Tetrastigma Cissus sterculiifolia st-Tetrastigma Cissus hypoglauca st-Tetrastigma Rhoicissus digitata (st-Tetrastigma-divergent infolds) Cissus trianae st-Tetrastigma Rhoicissus tridentata st-Ampelopsis-rugose Cissus antarctica st-Tetrastigma Cissus biformifolia (st-perichalaza-rugose) Cissus paullinifolia (st-perichalaza-rugose) Cissus alata st-perichalaza Cissus palmata st-perichalaza Cissus assamica st-perichalaza Cissus cornifolia (st-perichalaza-rugose) Cissus descoingsii (st-perichalaza-rugose) Cissus fuliginea (st-perichalaza-rugose) Cissus mirabilis (st-perichalaza-rugose) Cissus obovata st-perichalaza Cissus quadrangularis st-perichalaza Cissus reniformis st-perichalaza Cissus verticillata st-perichalaza Cissus campestris st-perichalaza Cyphostemma laza (st-perichalaza-rugose) Cayratia japonica st-Ampelopsis-rugose Cayratia trifolia st-Ampelopsis-rugose Cayratia triternata st-Ampelocissus-rugose Cayratia maritima (st-linear chalaza wide infolds) Cayratia oligocarpa (st-linear chalaza wide infolds) Tetrastigma bioritsense st-Ampelopsis-rugose 81 Tetrastigma planicaule st-Tetrastigma Tetrastigma obtectum st-Ampelocissus-rugose Tetrastigma rumicispermum st-Ampelopsis-rugose Tetrastigma serrulatum st-Tetrastigma Acareosperma spireanum (st-Acareosperma) Cayratia cardiophylla st-Cayratia 100 Cayratia geniculata st-Cayratia Cyphostemma adenocaule (st-Cyphostemma) Cyphostemma buchananii (st-Cyphostemma) Cyphostemma paucidentatum (st-Cyphostemma) Cyphostemma setosum (st-Cyphostemma) Cyphostemma hereroense (st-Cyphostemma) Cyphostemma lageniflorum (st-Cyphostemma) Cyphostemma odontadenium (st-Cyphostemma) Cyphostemma microdiptera (st-Cyphostemma) Cyphostemma junceum (st-Cyphostemma) Leea guineensis st-perichalaza Leea tetramera st-perichalaza

221 Figure 3-2. Geographic distribution of fossil and extant Vitaceae. The same tree from Figure 3- 1 is presented. The past distribution is inferred from the fossil seed types presented in Tables 3-16 to 3-19. P = Paleocene, E = Eocene, O = Oligocene, M = Miocene, Pl = Pliocene, Eu = Europe, As = Asia, NA = North America, CS = Central America (Panama), South America, Australia, or Africa. Black boxes indicate the presence of corresponding fossil seed types.

222 Extant taxa Fossil seeds

Ampelocissus abyssinica Africa Ampelocissus africana Africa Nothocissus spicifera SE Asia Ampelocissus acetosa Australia PEOMPl 100 Ampelocissus latifolia Asia Eu 62 Pterisanthes cissioides SE Asia 92 Pterisanthes polita SE Asia As Ampelocissus ochracea SE Asia NA SE Asia Ampelocissus botryostachys CS Ampelocissus barbata SE Asia 66 Ampelocissus javalensis Central America 60 Ampelocissus acapulcensis Mexico Ampelocissus erdvendbergiana Mexico Ampelocissus robinsonii Central America PEOMPl North America 79 Vitis aestivalis Eu Vitis rotundifolia North America Vitis flexuosa Asia As Vitis piasezkii Asia NA 86 Asia Vitis betulifolia CS Vitis vinifera Asia Vitis tsoi Asia Cissus simsiana South America PEOMPl Ampelopsis grossedentata Asia Eu Ampelopsis cantoniensis Asia Ampelopsis arborea North America As Ampelopsis delavayana Asia NA Ampelopsis glandulosa Asia CS Ampelopsis cordata North America 79 Asia 95 Parthenocissus dalzielii PEOMPl 85 Parthenocissus laetevirens Asia Parthenocissus quinquefolia North America Eu 67 Parthenocissus vitacea North America As Yua chinensis Asia NA Yua austro-orientalis Asia Clematicissus angustissima Australia CS Clematicissus opaca Australia Cissus striata ssp. argentina South America Cissus granulosa South America Cissus penninervis Australia Cissus sterculiifolia Australia Cissus hypoglauca Australia Rhoicissus digitata Africa Cissus trianae South America Rhoicissus tridentata Africa Cissus antarctica Australia Cissus biformifolia Central America Cissus paullinifolia South America Cissus alata Central America Cissus palmata South America PEOMPl Cissus assamica SE Asia Cissus cornifolia Africa Eu Cissus descoingsii Central America As Central America Cissus fuliginea NA Cissus mirabilis Central America Cissus obovata Central America CS Cissus quadrangularis Asia Cissus reniformis Australia Cissus verticillata South America PEOMPl Cissus campestris South America Eu Madagascar Cyphostemma laza As Cayratia japonica Asia Cayratia trifolia Asia NA Cayratia triternata Madagascar CS Cayratia maritima Australia Cayratia oligocarpa Asia PEOMPl Tetrastigma bioritsense Asia Eu 81 Tetrastigma planicaule Asia Tetrastigma obtectum Asia As Tetrastigma rumicispermum Asia NA Tetrastigma serrulatum Asia CS Acareosperma spireanum SE Asia Cayratia cardiophylla Australia PEOMPl 100 Cayratia geniculata SE Asia Eu Cyphostemma adenocaule Africa As Cyphostemma buchananii Africa Cyphostemma paucidentatum Africa NA Cyphostemma setosum Asia CS Cyphostemma hereroense Africa Cyphostemma lageniflorum Africa PEOMPl Africa Cyphostemma odontadenium Eu Cyphostemma microdiptera Madagascar Cyphostemma junceum Africa As Leea guineensis Asia NA Solomon Island Leea tetramera CS

223

CHAPTER 4 FOSSIL SEEDS OF THE GRAPE FAMILY AND THEIR PHYLOGENETIC POSITIONS

Introduction

Fossil vitaceous seeds are commonly found in many Tertiary beds in the Northern

Hemisphere. These fossil seeds usually have been identified to extant genera, indicating their

close resemblance to extant seeds. Fossil grape seeds hence have great potential to provide

correct past geographical distributions of the genera of Vitaceae. To better recognize the

variation in seed form within this family, a large scale seed survey has been performed (Chapter

1). Fossil vitaceous seeds from throughout the world were re-evaluated based on the results of

the seed survey (Chapter 3). The seed type classification revealed that most fossil vitaceous

seeds are externally indistinguishable from the extant seeds. However, some fossil seeds have

combinations of characters not seen in the extant species. The affinities of these fossils have

provoked great curiosity. In this study, the affinities of six of the better preserved fossil seeds

were tested by similarity comparison and cladistic methods.

Materials and Methods

Fossils from the Clarno Formation are housed at the Florida Museum of Natural History

and Smithsonian Institute. Fossils from the London Clays are housed at the British Museum.

Fossils from Messel, Germany were obtained via museum loan from the Forschungsinstitut und

Naturmuseum Senckenberg, Frankfurt, Germany.

The definition of "Austrocissus" can be found in Chapter 1. All seed characters

mentioned in the study are defined in Chapter 1, and fossil characters were measured the same

way as described there. Seeds were sectioned using a paper-thin diamond saw blade mounted on

a Microslice II annular saw (Malvern, England). Seed coat anatomy of the fossils were either

observed from the cross section under a high power stereo microscope (Palaeovitis paradoxa

224

and Ampelocissus wildei) or from previously prepared thin sections under a light microscope

(Ampelopsis rooseae, Vitis tiffneyi, and Parthenocissus clarnensis; Manchester, 1994). Images of fossils has been published previously (Reid and Chandler, 1933; Manchester, 1994; Chen and

Manchester, 2007), and additional unpublished images were kindly provided by Dr. Manchester.

Similarity comparison. Seeds grossly similar to the fossil were selected from the extant seed database (Chapter 1), and a principal component analysis (PCA) was performed with the fossil included. PCA was carried out by the computer software Minitab 15 (Minitab Inc., US).

The same characters defined in Chapter 1 were used in the PCAs. Since fossils have varying amounts of missing characters, each PCA was performed with only one fossil included so all fossil characters were used in the analyses. Extant seeds possessing one ventral infold

(Clematicissus angustissima), whorled rugae (Acareosperma spireanum), or a constricted rim on ventral side (some species of Cayratia) were excluded from the comparison because none of the six fossils have these characters. For Ampelocissus wildei, extant seeds with chalaza circularity

> 0.5, ventral infolds width < 0.2, seed rugosity > 0.2 were selected for inclusion in the PCA.

The other five fossils have oval chalaza, linear ventral infolds, and smooth surface, therefore extant seeds with chalaza circularity > 0.5, ventral infolds width < 0.2, seed rugosity < 0.2 were selected for inclusion in the PCAs.

Cladistic methods. The same characters used for constructing the morphological phylogeny (Chapter 2) were used for the analyses including fossils. Of the total 137 characters,

69 continuous characters were coded by either the gap-weighting (GW) method or discrete coding (Chapter 2). The available characters of fossils were coded by the same two methods.

The same 84 extant species of Vitaceae (Chapter 2) were included in the analyses with fossils.

Only a single fossil was included in each analysis, and in addition, a final analysis was conducted

225

including all 6 fossils. The heuristic search and the bootstrap analyses were performed as described in Chapter 2. The matrixes used for the analyses with GW coding methods are presented in Appendixes F to L. The matrix used for the analysis including the six fossil seeds with discrete coding is presented in Appendix M.

Another set of analyses was performed applying a backbone constraint. In the analyses in which the continuous characters were treated with discrete coding, the strict consensus tree of the most parsimonious trees (MPTs) from the analysis with discrete coding without fossils

(presented in Figure 2-1) was used as the backbone constraint tree. When GW coding was applied to the matrix, the MPT from the analysis with GW coding including only extant species

(presented in Figure 2-2) was used as the backbone constraint tree. Each analysis with backbone constraint included only one fossil. Heuristic searches were performed by computer package

PAUP* 4.0b (Swofford, 2002), with 1000 random-addition-sequence, holding 10 trees on each step, with the starting tree obtained by step-wise addition, applying backbone constraint, and excluding missing or ambiguous characters.

Results

The score plots of PCAs are shown in Figure 4-1. Although Figure 4-1 A-C, E, and F involved the same extant seeds, their relative position is not exactly the same in the score plots because characters used varied depending on available fossil characters. The shortest tree, or the strict consensus of the shortest trees from the parsimony analyses including fossils are shown in

Figure 4-2 to Figure 4-5. Numbers of available characters from fossils, numbers of MPTs, consistency index (CI), retention index (RI), and tree length from each analysis are presented in

Table 4-1. Fossil affinities indicated from the analyses are summarized in Table 4-2. Most branches do not have strong bootstrap support; in the analyses with discrete coding including one fossil, the grouping of the two Yua species, and the grouping of Cayratia cardiophylla and C.

226

genitulata have bootstrap support but the strict consensus trees do not retain these groupings

(Figure 4-5 A-E).

1) Ampelopsis rooseae Manchester 1994

— early Middle Eocene, Clarno Formation, US (UF 6536, UF 9575)

This fossil seed conforms closely to extant seeds of Ampelopsis in every aspect. The

PCA shows the similarity of A. rooseae to Ampelopsis (Figure 4-1 A). In the analyses with GW

coding, with or without constraint, A. rooseae is grouped with Ampelopsis glandulosa (Figure 4-

2 A, Figure 4-3 A, H, I). In the analysis with discrete coding and backbone constraint, A. rooseae is sister to Ampelopsis delavayana and Ampelopsis glandulosa (Figure 4-4 A). The analysis with discrete coding without constraint places A. rooseae within the clade that contains

Ampelocissus, Vitis, and Ampelopsis, and the strict consensus tree did not resolve the major groupings as in the analysis without fossils (Figure 4-5 A; compared to Figure 2-1). In the analysis with discrete coding including all six fossils, A. rooseae is grouped with Ampelopsis cordata (Figure 4-5 G).

2) Vitis tiffneyi Manchester 1994

— early Middle Eocene, Clarno Formation, US, UF 6533, UF 9573

The external characters of V. tiffneyi are similar to those of Vitis. The cross section of V. tiffneyi reveals its thin endotesta, which is thinner than all sampled Vitis (endotesta thickness

0.02 vs. 0.03-0.058). PCA shows the similarity of V. tiffneyi to extant Vitis (Figure 4-1 B). In

the analyses with GW coding, V. tiffneyi is in a position sister to all Vitis (Figure 4-2 B, Figure 4-

3 B, I) or within Vitis (Figure 4-3 H). In the analysis with discrete coding and backbone constraint, V. tiffneyi has three different positions (data not shown) within Vitis in the 16 MPTs

(Table 4-1), therefore Vitis forms a polytomy in the strict consensus tree (Figure 4-4 B). In the

227

analysis with discrete coding and no constraint, V. tiffneyi is sister to all Vitis (Figure 4-5 B). In the analysis including six fossils with discrete coding, V. tiffneyi is within the clade containing

Vitis and Ampelocissus (Figure 4-5 G).

3) Palaeovitis paradoxa Reid and Chandler, 1933

— Early Eocene, London Clays, England (v. 62712)

This fossil seed has a very thick endotesta, much thicker than all sampled extant seeds

(endotesta thickness 0.1 vs. 0.01-0.058). The external characters are similar to those of Vitis and

Ampelopsis. In the PCA it is closest to Vitis (Figure 4-1 C). The analyses with GW coding place it with Vitis aestivalis (Figure 4-2 C, Figure 4-3 C). In the analyses with GW coding including all six fossil seeds, P. paradoxa is grouped with Ampelocissus wildei, and both were grouped with Acareosperma spireanum (Figure 4-3 H) or Vitis aestivalis (Figure 4-3 I) (this result is discussed with Ampelocissus wildei, below). In the analyses with discrete coding with or without backbone constraint, this fossil seed is grouped with Vitis rotundifolia (Figure 4-4 C, Figure 4-5

C). In the analysis including six fossils with discrete coding, P. paradoxa is placed within the clade containing Vitis and Ampelocissus (Figure 4-5 G).

4) Ampelocissus wildei Chen & Manchester 2007

— Middle Eocene, Messel, Germany (Me 5729, Me 5730, Me 8786)

This rugose, large seed is similar to Ampelocissus externally; the cross section of the seed revealed its unusually thick endotesta (endotesta thickness 0.08 vs. 0.01-0.058). PCA does not group it to a particular genus (Figure 4-1 D). In the analyses with discrete coding with or without constraint, it is nested within Ampelocissus (Figure 4-4 D, Figure 4-5 D). In the analysis including six fossils with discrete coding, A. wildei is placed within the clade contained Vitis and

Ampelocissus (Figure 4-5 G). Unexpectedly, the analyses with GW coding all resulted in its

228

grouping with Acareosperma spireanum (Figure 4-2 D, Figure 4-3 D, H). Acareosperma

spireanum has long spine-like outgrowth of endotesta, which are arranged in two whorls along

the lateral edge of the seed (Chapter 1). This distinct feature is not observed in any other

vitaceous seeds. Comparing each character of A. wildei and A. spireanum did not reveal any obvious reason for this placement. It can only be explained that by coincidence, under most parsimonious calculation, A. wildei was grouped with A. spireanum. It may be speculated that the scaling between discrete and continuous characters in the GW method has some effect. All six fossil seeds have the same five available discrete seed characters, and they all have the same character states for these discrete characters. Only A. wildei has an additional two discrete

characters, fruit shape and number of seed per fruit. Therefore, the two fruit characters were

coded as unknown for A. wildei and the analyses were re-run. The results have A. wildei grouped

with Yua austro-orientalis (Figure 4-2 E, Figure 4-3 E). In the analysis including six fossils with

GW coding and excluding fruit characters of A. wildei, A. wildei is grouped with Palaeovitis paradoxa, and both were grouped with Vitis aestivalis (Figure 4-3 I).

5) Parthenocissus clarnensis Manchester 1994

— early Middle Eocene, Clarno Formation, US (UF 6539, UF 6540, UF 9583)

This fossil seed has long and divergent ventral infolds similar to those of Parthenocissus, however, it does not have a sharp apical notch like this genus. The PCA shows that P. clarnensis is closest to Cayratia sp. (Peng 6346) and Yua chinensis, and these seeds are not well differentiated from those of Cissus striata (labeled "Austrocissus"), Clematicissus opaca, and

Ampelopsis (Figure 4-1 E). The analyses including one fossil with GW coding with or without constraint place P. clarnensis sister to all Parthenocissus (Figure 4-2 F, Figure 4-3 F). In the analyses with GW coding including all six fossils, P. clarnensis is grouped with Vitis

229

magnisperma, and both are grouped with Vitis rotundifolia (Figure 4-3 H, I). In the analyses

with discrete coding with or without constraint, it is grouped with Vitis rotundifolia (Figure 4-4

E, Figure 4-5 E). The analysis including six fossils with discrete coding place P. clarnensis with

Vitis magnisperma, and they are sister to Parthenocissus and Yua (Figure 4-5 G).

6) Vitis magnisperma Chandler, 1961

— Early Eocene, London Clay Formation, England (v. 30257)

— early Middle Eocene, Clarno Formation, US (USNM 434985, UF 9879; cited in Manchester,

1994)

This fossil seed, like Parthenocissus clarnensis, is smooth, has long, divergent infolds

and a shallow apical notch. It is much larger (9.4 mm vs. 3.2 – 6.7 mm) than all other seeds with

a smooth surface, narrow infolds, and an oval chalazal. Its narrow infolds are closely spaced

(ventral infolds space at the middle ca. 0.1), a feature found only in Clematicissus opaca and

some species of Tetrastigma. Its chalaza appears large (chalaza width = 0.43), an uncommon

condition, but comparable to those of Parthenocissus dalzielii (0.44) and Ampelopsis cordata

(0.4). PCA does not clearly show the similarity of V. magnisperma to an extant genus (Figure 4-

1 F). All the analyses with GW coding place V. magnisperma with Vitis rotundifolia (Figure 4-2

G, Figure 4-3 G, H, I). The analysis including V. magnisperma with discrete coding and backbone constraint resulted 18 MPTs (Table 4-1). In six of the 18 MPTs, V. magnisperma is grouped with Ampelocissus, in the other 12 MPTs, it is grouped with Parthenocissus (Figure 4-4

F, G). This fossil changes the placement of Tetrastigma in the analyses with discrete coding without topology constraint (Figure 4-5 F, G). In the analysis included only V. magnisperma, it is sister to a clade that contains Parthenocissus, Yua, and Tetrastigma (Figure 4-5 F). In the analysis including six fossils, it is sister to Parthenocissus and Yua (Figure 4-5 G).

230

Discussion

Effects of Missing Data in the Phylogenetic Analyses

The effect of missing data has been studied previously (Wiens, 2003; Wiens, 2005;

Wiens, 2006). In the present study, missing data of fossils have very different effects on the analyses with the two coding methods. Adding fossils did not cause major differences in the topology of the MPTs when the GW coding method was applied; and the analyses with or without backbone constraint inferred the same placements for the fossils (Figure 4-2; Figure 4-3;

Table 4-2). The multiple segmentation of the continuous characters in GW coding has the nature of giving very few MPTs because there are many steps involved, and thus the condition of being most parsimonious is very fine tuned. Adding fossils usually did not disrupt the most parsimonious calculation. Nevertheless, GW coding sometimes gives suspect results, as shown in the case of Ampelocissus wildei. The weight-scaling between continuous and discrete characters obviously effects the placement of A. wildei, demonstrated by changing the ratio of continuous and discrete characters of the fossil in the matrix. The effect of weighting is also

shown in the two analyses including all six fossils using GW coding (Figure 4-3 H, I). In both analyses A. wildei is grouped with Palaeovitis paradoxa. These two fossil seeds have thick

endotesta far outside the range of that of the extant seeds. In GW coding the endotesta thickness of these two fossils are weighted heavily, therefore contributing greatly to their grouping under

parsimony criteria. When cladistic analyses with GW coding are used to assess fossil affinities,

the issue regarding to the weight-scaling has to be taken into consideration.

Unlike GW coding, including fossils to the analyses with discrete coding has various

effects, depending on the characters of the fossils. Including in the analysis with discrete coding a fossil with features not much different from some extant seeds, such as Ampelopsis rooseae

(Figure 4-1 A), resulted in more MPTs with different tree topologyies (Table 4-1; Figure 4-5 A).

231

Inclusion of Vitis tiffneyi, similar to Vitis but with a thin endotesta, also resulted more MPTs

(Table 4-1). In contrast to the analyses including Ampelopsis rooseae, the topological variation of the MPTs from the analysis with discrete coding including Vitis tiffneyi is mostly resulting from the variation within the Vitis-Ampelocissus clade (Figure 4-5 B). Including Palaeovitis paradoxa, Ampelocissus wildei, and Parthenocissus clarnensis does not have a great effect on the analyses with discrete coding. Including these fossils in the analyses even slightly reduce the number of MPTs (Table 4-1). These three fossil seeds did not show strong similarity to seeds of any particular extant genus (Figure 4-1 C, D, E). Vitis magnisperma reduces the number of

MPTs (Table 4-1) and changes the topology of the MPTs when included in the analyses with discrete coding (Figure 4-5 F, G). Vitis magnisperma is not similar to a particular genus (Figure

4-1 F); in addition, the fossil has characters similar to those of Parthenocissus (long divergent ventral infolds, oval chalaza) and those of Tetrastigma (closely spaced ventral infolds). From the results of the cladistic analyses with discrete coding, it was observed that the missing data of fossils causes an increase in the number of MPTs when the fossils are very similar to one of the extant groups, whereas the number of shortest trees is decreased when the fossils are not similar to a particular extant lineage.

Fossil Affinities

Comparing the results from all the methods applied (Table 4-2), the fossil seeds of

Ampelopsis rooseae is no doubt almost the same as extant seeds of Ampelopsis. Vitis tiffneyi and

Palaeovitis paradoxa have affinity to Vitis although one has much thinner endotesta and the other has much thicker one compared to the extant species of this genus. These two fossil seeds, interestingly, imply that the stem lineages of Vitis had a wider range of endotesta thickness compared to extant Vitis. Vitis tiffneyi occurred in only one locality. The better preserved P. paradoxa was found only in London Clay; the reported Paleovitis paradoxa from the Paris Basin

232

does not have the endotesta preserved (Blanc-Louvel, 1986) therefore its identity is difficult to

verify. The variation of the endotesta thickness among the fossil Vitis-like seeds is largely

unknown; further accumulation of fossil data may give a better understanding. Measured extant

Parthenocissus seeds mostly have a very thin endotesta, whereas seeds of Vitis have a much thicker endotesta (Figure 1-5 I). The association of endotesta thickness to seeds of specific extant genera is intriguing. It is of interest to know when and how this association occurred.

The functions of the endotesta thickness is unknown although it can be speculated to be related to seed storage and germination. Whether selection or random variation shaped the evolution of endotesta thickness is in need of further study.

Unlike the three fossils discussed above, Ampelocissus wildei was grouped with different extant genera in different analysis (Table 4-2). The affinity of A. wildei to Acareosperma

spireanum (Figure 4-2 D, Figure 4-3 D, H) was considered an artifact of weighting in GW

method. Nevertheless, the hypothesis that A. wildei is closely related to Palaeovitis paradoxa and both are related to the extant species Vitis aestivalis may be reasonable (Figure 4-3 I).

Ampelocissus wildei is also grouped with Ampelocissus (Figure 4-4 C, Figure 4-5 C). Seeds of

Ampelocissus and Vitis sometimes differ only in the degree of rugosity, and the two extant

genera are closely related. There is a possibility that the extremely thick endotesta was a synapomorphy of an extinct lineage, which contained A. wildei and V. paradoxa, and this lineage

shares a common ancestor with the extant species of Ampelocissus and Vitis.

Another likely affinity for A. wildei is Yua austro-orientalis (Figure 4-2 E, Figure 4-3 E).

Some seeds of Ampelocissus are similar to Y. austro-orientalis in many aspects (Chen and

Manchester, 2007). The results bring up the issue that convergence could have occurred in

extant species, therefore fossil organs cannot be linked to only one extant group. A hypothesis

233

that does not conflict with the various suggested positions for A. wildei (Table 4-2) is that the fossil belongs to the stem lineage of the clade containing Yua austro-orientalis and

Ampelocissus, which also includes Vitis and Ampelopsis. The indistinguishable seeds from these two extant genera cast uncertainty on the identification of fossils by seed characters. Although extant genera have evolved in a way that diagnostic seed characters are mostly associated with diagnostic characters from other plant organs; whether this still holds true for fossil taxa in the

Tertiary is unknown, because the fossil seeds have been found only in isolation, without other organs of the parent plants. It can be hypothesized that the stem lineages have all sorts of combinations between morphology of seeds and other plant organs, though evolution, only the species with the combinations seen from the extant taxa have survived till today.

Parthenocissus clarnensis represents a seed morphology that does not conform to a specific extant group. In the PCA it was close to Yua chinensis and Cayratia sp. (Peng 6346).

Seeds of Y. chinensis do not have a sharp apical notch like those of Parthenocissus, however, its ventral infolds are not as long as those of P. clarnensis, and the cross section configuration of Y. chinensis is more similar to that of Ampelopsis than to P. clarnensis. Cayratia sp. (Peng 6346) has cross section configuration similar to that of P. clarnensis; however, its ventral infolds are parallel, not divergent as P. clarnensis. Parthenocissus clarnensis was placed with

Parthenocissus or Vitis rotundifolia by cladistic analyses (Table 4-2). The seeds of V. rotundifolia can be distinguished from Parthenocissus by their parallel ventral infolds and lack of a sharp apical notch. This fossil has a mix of characters from Parthenocissus (long, divergent infolds) and V. rotundifolia (shallow apical notch). A great number of fossil seeds share the external features of P. clarnensis; they have been found in Tertiary beds from the Early Eocene to Pliocene in the North Hemisphere. Fossil seeds comparable to extant Parthenocissus are

234

relatively rare (Chapter 3). Suppose P. clarnensis represents the stem lineage sharing the same

common ancestor with the extant genus Parthenocissus. Could it be that the taxa with seeds similar to P. clarnensis all became extinct in the late Cenozoic, and only single lineage with

seeds similar to extant Parthenocissus survived untill today? Before answering this question, it

is necessary to confirm whether P. clarnensis truly represents an extinct seed form; this would

require sampling seeds of all extant species of Parthenocissus and Vitis. Seed types st-

Parthenocissus clarnensis, st-Vitis rotundifolia, and st-Parthenocissus usually co-occurred in

localities with abundant fossil seeds in southern England (Table 3-16, Chapter 3). Since the

characters used to distinguish these seed types are continuous, it is possible to imagine an extinct

species with a range of variation including all these seed types. Nevertheless, this speculation is

difficult to prove because no fossil vitaceous seed was attached to other plant organs.

Vitis magnisperma was also classified to the seed type st-Parthenocissus clarnensis

(Chapter 3). Vitis magnisperma and P. clarnensis were grouped together in analyses including

six fossils with either coding method (Figure 4-3 H, I; Figure 4-5 G), suggesting their close

relationship. This fossil seed has a distinct combination of characters not seen in the sampled

extant seeds; its affinity to extant species is difficult to confirm. Affinity to Vitis rotundifolia,

Parthenocissus, or Ampelocissus were inferred from various analyses (Table 4-2). The fossil

seed has the closely spaced ventral infolds present in most Tetrastigma, which explained its

effect on the placement of Tetrastigma in the analyses with discrete coding (Figure 4-5 F, G).

The missing data of V. magnisperma weaken the plausibility of its effect on the change of tree

topology. The monophyly of the Tetrastigma-Cayratia-Cyphostemma clade is well supported by

molecular data (Soejima and Wen, 2006; Wen et al., 2007), reinforcing the view that the change

in tree topology brought about by including V. magnisperma in the analyses is mainly due to the

235

lack of strong supports for the morphology-based phylogeny. Vitis magnisperma has been identified from two Eocene localities in western North America and England; it was not as prevalent as the smaller P. clarnensis-like seeds. This unique fossil seed may belong to an extinct lineage not directly related to any extant group. Alternatively, V. magnisperma may be viewed as an extinct species belonging to the clade containing Ampelocissus, Vitis, Ampelopsis,

Parthenocissus, and Yua.

Since the Paleocene vitaceous seeds with external characters resembling those of extant seeds of the family have existed (Chapter 3). Close examination of the six fossils from the

Eocene reveals that some display a set of preserved characters that are the same as those of extant species (Ampelopsis rooseae); other fossils resemble extant seeds externally, however certain internal characters exhibit variation outside the range of the corresponding extant taxa

(Vitis tiffneyi and Palaeovitis paradoxa); still others cannot be placed unequivocally with an extant group (Ampelocissus wildei, Parthenocissus clarnensis and Vitis magnisperma). It was demonstrated that the fossil vitaceous seeds from the Eocene are not all exactly the same as the examined extant vitaceous seeds.

Other fossil vitaceous seeds with features not exactly fitting with seeds of extant genera included the st-Ampelocissus-rugose seed type with a sharp apical notch, the st-Ampelopsis- smooth seed type with large chalaza, the st-Vitis seed type that is dorsiventrally compressed and with a sharp margin, the st-Parthenocissus seed type with a sunken chalaza, and the st-

Parthenocissus seed type with a rugose surface (Chapter 3). These fossil seeds made up a small portion of the fossil records from the Early Eocene to the Miocene in Europe, Siberia, and North

America (Tables 3-1 to 3-13, Chapter 3). Affinities of these fossils have not been fully assessed, so additional investigations are needed.

236 Table 4-1. Numbers from the phylogenetic analyses. The numbers in the four columns indicating analyses are number of MPTs, CI, RI, tree length.

Analyses with GW or discrete coding methods, topology constraint applied or not applied fossil total fossil GW characters characters GW, constraint GW discrete, constraint discrete

84 extant species 1, 0.166, 0.587, 24094 516, 0.142, 0.611, 1186

84 extant species & 50 45 1, 0.143, 0.476, 8737 1, 0.166, 0.588, 24140 2, 0.119, 0.572, 463 1514, 0.142, 0.612, 1189 A. rooseae

84 extant species & 52 47 1, 0.142, 0.477, 9129 1, 0.166, 0.587, 24142 16, 0.118, 0.584, 482 1417, 0.142, 0.612, 1189 V. tiffneyi

84 extant species & 53 48 1, 0.145, 0.473, 9145 1, 0.167, 0.588, 23998 4, 0.118, 0.580, 491 439, 0.142, 0.611, 1192 P. paradoxa

84 extant species & 52 45 1, 0.150, 0.498, 9002 1, 0.166, 0.588, 24046 2, 0.122, 0.592, 476 347, 0.142, 0.611, 1193 A. wildei

84 extant species & 50 45 1, 0.145, 0.466, 8597 3, 0.166, 0.587, 24041 A. wildei*

84 extant species & 53 48 1, 0.142, 0.471, 9336 1, 0.165, 0.587,24189 4, 0.118, 0.580, 492 354, 0.142, 0.611, 1193 P. clarnensis

84 extant species & 42 37 1, 0.145, 0.482, 7256 1, 0.166, 0.587, 24151 18, 0.117, 0.573, 392 78, 0.142, 0.611, 1192 V. magnisperma

84 extant species & 2, 0.165, 0.588, 24295 569, 0.139, 0.613, 1215 6 fossils

84 extant species & 1, 0.165, 0.588, 24270 6 fossils*

*two fruit characters of A. wildei were coded as missing.

237 Table 4-2. Fossil affinities to extant species inferred from the analyses presented in this study. Analyses Results Ampelopsis rooseae Vitis tiffneyi Palaeovitis paradoxa Ampelocissus wildei Parthenocissus clarnensis Vitis magnisperma presented in

PCA Fig. 4-1 a-f Ampelopsis Vitis near Vitis ambiguous ambiguous ambiguous

GW coding, Fig. 4-2 a-g with Ampelopsis glandulosa sister to Vitis with Vitis aestivalis with Acareosperma spireanum ; sister to Parthenocissus with Vitis rotundifolia constraint with Yua austro-orientalis* GW coding, Fig. 4-3 a-g with Ampelopsis glandulosa sister to Vitis with Vitis aestivalis with Acareosperma spireanum ; sister to Parthenocissus with Vitis rotundifolia 1 fossil with Yua austro-orientalis* GW coding, Fig. 4-3 h, i with Ampelopsis glandulosa ; within Vitis ; sister to with Acareosperma spireanum ; with Acareosperma spireanum ; with Vitis rotundifolia ; with Vitis rotundifolia ; 6 fossils with Ampelopsis glandulosa* Vitis* with Vitis aestivalis* with Vitis aestivalis* with Vitis rotundifolia* with Vitis rotundifolia* discrete coding, Fig. 4-4 a-f sister to Ampelopsis delavayana within/sister to Vitis with Vitis rotundifolia within Ampelocissus with Vitis rotundifolia Parthenocissus , constraint and Ampelopsis glandulosa Ampelocissus discrete coding, Fig. 4-5 a-f among Ampelopsis sister to Vitis with Vitis rotundifolia within Ampelocissus with Vitis rotundifolia sister to Parthenocissus- 1 fossil Tetrastigm discrete coding, Fig. 4-5 g Ampelopsis cordata Ampelocissus/Vitis Ampelocissus/Vitis Ampelocissus/Vitis sister to Parthenocissus- sister to Parthenocissus- 6 fossils Yua Yua *two fruit characters of A. wildei were coded as missing.

238 Total variance explained by PCI & II = 0.454 7.5 "Austrocissus" Cayratia Clematicissus Ampelopsis 5.0 Parthenocissus Ampelopsis rooseae Yua Vitis Fossil 2.5

0.0 Second Component -2.5 A

-5.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 First Component

Total variance explained by PCI & II = 0.434 5.0 "Austrocissus" Cayratia Clematicissus Ampelopsis 2.5 Parthenocissus Yua Vitis tiffneyi Vitis Fossil 0.0

-2.5 Second Component -5.0 B

-7.5 -7.5 -5.0 -2.5 0.0 2.5 5.0 First Component

Figure 4-1. The score plots of the first two principle components from the PCAs including extant and fossil vitaceous seeds. A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) P. clarnensis; F) V. magnisperma. See Materials and Methods for details.

239 Total variance explained by PCI & II = 0.420 "Austrocissus" 5.0 Cayratia Clematicissus Ampelopsis 2.5 Parthenocissus Yua Vitis Fossil 0.0

Palaeovitis paradoxa

-2.5 Second Component

-5.0 C

-7.5 -7.5 -5.0 -2.5 0.0 2.5 5.0 First Component

Total variance explained by PCI & II = 0.369 "Austrocissus" 5.0 Tetrastigma Cayratia Rhoicissus Ampelocissus wildei Ampelopsis Yua 2.5 Ampelocissus Nothocissus Fossil

0.0

Second Component -2.5 D

-5.0

-5.0 -2.5 0.0 2.5 5.0 First Component

Figure 4-1. Continued.

240 Total variance explained by PCI & II = 0.431 5.0 "Austrocissus" Cayratia Clematicissus Ampelopsis 2.5 Parthenocissus Yua Vitis Fossil 0.0 Parthenocissus clarnensis

-2.5 Second Component -5.0 E

-7.5 -7.5 -5.0 -2.5 0.0 2.5 5.0 First Component

Total variance explained by PCI & II = 0.427 "Austrocissus" Cayratia Vitis magnisperma Clematicissus 2.5 Ampelopsis Parthenocissus Yua Vitis 0.0 Fossil

-2.5 Second Component F -5.0

-5.0 -2.5 0.0 2.5 5.0 7.5 First Component

Figure 4-1. Continued.

241 A C

Vitis aestivalis Palaeovitis paradoxa Ampelopsis glandulosa 1 1 Ampelopsis rooseae Vitis rotundifolia Ampelopsis cordata

B D

3 Cayratia japonica Acareosperma spireanum Vitis rotundifolia Ampelocissus wildei 1 Vitis tiffineyi Cissus simsiana E

2 Yua austro-orientalis Ampelocissus wildei Cissus hypoglauca

F 1 Parthenocissus vitacea 2 Parthenocissus clarnensis Yua chinensis 2

G

3 Vitis rotundifolia Vitis magnisperma 1 Vitis aestivalis

Figure 4-2. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method, and backbone constraint applied. The structure of the constraint tree is shown (same as in Figure 2-2); the node 1 (circle), 2 (diamond), or 3 (square) is enlarged to show the positions of fossils: A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) A. wildei, excluding fruit characters; F) P. clarnensis; G) V. magnisperma. Fossils are highlighted by red branches, the names of the adjacent extant taxa are indicated.

242 100 Pterisanthes cissioides 80 Pterisanthes polita A Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 68 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii 54 Vitis flexuosa 51 Vitis tsoi Vitis piasezkii 95 Vitis betulifolia Vitis vinifera 50 Vitis aestivalis Vitis rotundifolia Cissus simsiana 50 Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Ampelopsis delavayana 50 Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea 52 Clematicissus angustissima Clematicissus opaca 82 99 Parthenocissus dalzielii 90 Parthenocissus laetevirens Parthenocissus quinquefolia 54 Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus trianae Cissus sterculiifolia Cissus penninervis Cissus granulosa Cissus striata ssp. argentina 57 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata 74 Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 67 Tetrastigma bioritsense Tetrastigma planicaule 70 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 89 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 62 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 4-3. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method. Strict consensus trees of MPTs are shown, numbers above the branches indicate bootstrap support values > 50%. Red branches indicate fossils, blue branches indicate position changed compared to the MPT in analysis without fossils (Figure 2-2). A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) A. wildei, fruit characters excluded; F) P. clarnensis; G) V. magnisperma; H) all 6 fossils included; I) all 6 fossils included, fruit characters excluded.

243 100 Pterisanthes cissioides 80 Pterisanthes polita B Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 68 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii 53 Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera 79 Vitis aestivalis Vitis rotundifolia Vitis tiffneyi Cissus simsiana 67 50 Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea 52 Clematicissus angustissima 82 Clematicissus opaca 99 Parthenocissus dalzielii 89 Parthenocissus laetevirens Parthenocissus quinquefolia 55 Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 57 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata 75 Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 67 Tetrastigma bioritsense Tetrastigma planicaule 69 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 88 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 62 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule 100 Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-3. Continued.

244 100 Pterisanthes cissioides C 80 Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 67 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Palaeovitis paradoxa Vitis rotundifolia Cissus simsiana 66 Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana 50 Ampelopsis cantoniensis Ampelopsis grossedentata 52 Ampelopsis arborea Clematicissus angustissima Clematicissus opaca 82 99 Parthenocissus dalzielii 90 Parthenocissus laetevirens Parthenocissus quinquefolia 53 Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 57 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata 75 Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 67 Tetrastigma bioritsense Tetrastigma planicaule 70 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 89 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 64 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule 100 Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 4-3. Continued.

245 100 Pterisanthes cissioides D 80 Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 69 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa 51 Vitis tsoi Vitis piasezkii 92 Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia 66 Cissus simsiana 53 Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana 51 Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea 52 Clematicissus angustissima 82 Clematicissus opaca 99 Parthenocissus dalzielii 90 Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus trianae Cissus sterculiifolia Cissus penninervis Cissus granulosa Cissus striata ssp. argentina 58 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus fuliginea Cissus cornifolia Cissus palmata Cissus mirabilis Cissus obovata 75 Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cissus alata 67 Tetrastigma bioritsense Tetrastigma planicaule 71 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 89 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 63 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Ampelocissus wildei Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 4-3. Continued.

246 100 Pterisanthes cissioides 80 Pterisanthes polita E Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 69 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa 51 Vitis tsoi Vitis piasezkii 89 Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana 65 51 Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana 50 Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea 51 Clematicissus angustissima 82 Clematicissus opaca 99 Parthenocissus dalzielii 90 Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Ampelocissus wildei Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 58 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica 74 Cissus quadrangularis Cissus reniformis Cissus alata Cissus campestris Cissus cornifolia Cissus fuliginea Cissus mirabilis Cissus obovata Cissus palmata 66 Cissus verticillata Tetrastigma bioritsense Tetrastigma planicaule 69 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 88 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 63 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 4-3. Continued.

247 100 Pterisanthes cissioides F 80 Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 69 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa 51 Vitis tsoi Vitis piasezkii 72 Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana 65 Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana 51 Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima 82 Clematicissus opaca 98 Parthenocissus dalzielii 89 Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Parthenocissus clarnensis Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 58 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis 74 Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 68 Tetrastigma bioritsense Tetrastigma planicaule 70 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 88 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 62 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-3. Continued.

248 99 Pterisanthes cissioides 72 Pterisanthes polita G Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 68 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa 51 Vitis tsoi Vitis piasezkii Vitis betulifolia 61 Vitis vinifera Vitis rotundifolia Vitis magnisperma Vitis aestivalis Cissus simsiana 65 Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea 50 Clematicissus angustissima Clematicissus opaca 81 96 Parthenocissus dalzielii 87 Parthenocissus laetevirens Parthenocissus quinquefolia 51 Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 58 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata 74 Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 67 Tetrastigma bioritsense Tetrastigma planicaule 71 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 88 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 63 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-3. Continued.

249 100 Pterisanthes cissioides H 76 Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 68 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera 52 Parthenocissus clarnensis Vitis magnisperma Vitis rotundifolia Vitis aestivalis Vitis tiffneyi Cissus simsiana 54 Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Ampelopsis delavayana 51 Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima 82 Clematicissus opaca 96 Parthenocissus dalzielii 88 Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 57 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata 74 Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 65 Tetrastigma bioritsense Tetrastigma planicaule 71 Tetrastigma rumicispermum Tetrastigma obtectum 89 Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 65 Cayratia triternata Cayratia trifolia Cayratia japonica Palaeovitis paradoxa Ampelocissus wildei Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 4-3. Continued.

250 100 Pterisanthes cissioides I 76 Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia 68 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Palaeovitis paradoxa Ampelocissus wildei Vitis aestivalis 51 Parthenocissus clarnensis Vitis magnisperma Vitis rotundifolia Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tiffneyi Cissus simsiana 55 Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Ampelopsis delavayana 51 Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima 83 Clematicissus opaca 96 Parthenocissus dalzielii 86 Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina 57 Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata 75 Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata 65 Tetrastigma bioritsense Tetrastigma planicaule 70 Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum 88 Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa 64 Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii 100 Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-3. Continued.

251 AB

Vitis piasezkii Vitis tiffneyi Vitis tsoi Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata

C

Vitis rotundifolia Palaeovitis paradoxa Vitis aestivalis

Figure 4-4. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method, and backbone constraint applied. The structure of the constraint tree is shown (same as in Figure 2-1); the node indicated by the arrow is enlarged to show the positions of fossils: A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) P. clarnensis; F-G) V. magnisperma. Fossils are highlighted by red branches, the names of the adjacent extant taxa are indicated. The topology represent the strict consensus trees of all MPTs, except for V. magnisperma: F shows the structure of the strict consensus tree of 6, out of the 18 total MPTs, G shows that of the rest 12 MPTs.

252 D Ampelocissus latifolia F Ampelocissus latifolia Ampelocissus wildei Vitis magnisperma Pterisanthes cissioides Pterisanthes cissioides

E G

Vitis rotundifolia Parthenocissus clarnensis Vitis aestivalis

Parthenocissus vitacea Vitis magnisperma Yua chinensis

Figure 4-4. Continued.

253 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa A Ampelocissus latifolia 100 Pterisanthes cissioides 63 Pterisanthes polita 92 Ampelocissus ochracea 64 Ampelocissus botryostachys Ampelocissus barbata 60 Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii 78 Vitis rotundifolia Vitis aestivalis Vitis flexuosa Vitis piasezkii 86 Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Ampelopsis rooseae 77 Parthenocissus dalzielii 94 Parthenocissus laetevirens 85 Parthenocissus quinquefolia 65 Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa 100 Tetrastigma bioritsense 81 Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-5. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method. Strict consensus trees of all MPTs are shown, numbers above the branches indicate bootstrap support values > 50%. Red branches indicate fossils, blue branches indicate position changed compared to the strict consensus trees of the MPTs from analysis without fossils (Figure 2-1). A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) P. clarnensis; F) V. magnisperma; G) all 6 fossils included.

254 Ampelocissus abyssinica Ampelocissus africana B Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia 100 Pterisanthes cissioides 62 Pterisanthes polita 92 Ampelocissus ochracea 66 Ampelocissus botryostachys Ampelocissus barbata 59 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis betulifolia 74 Vitis vinifera Vitis flexuosa Vitis piasezkii Vitis tsoi 63 Vitis aestivalis Vitis rotundifolia Vitis tiffneyi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea 78 Parthenocissus dalzielii 95 Parthenocissus laetevirens 84 Parthenocissus quinquefolia Parthenocissus vitacea 66 Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule 82 Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla 100 Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-5. Continued.

255 Ampelocissus abyssinica C Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia 100 Pterisanthes cissioides 62 Pterisanthes polita 92 Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata 59 Ampelocissus javalensis 54 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis rotundifolia 74 Palaeovitis paradoxa Vitis aestivalis Vitis flexuosa Vitis piasezkii 71 Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea 77 Parthenocissus dalzielii 95 Parthenocissus laetevirens 85 Parthenocissus quinquefolia Parthenocissus vitacea 66 Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule 82 Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla 100 Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-5. Continued.

256 Ampelocissus abyssinica D Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Ampelocissus wildei 100 Pterisanthes cissioides 62 Pterisanthes polita 91 Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis 59 Vitis rotundifolia Vitis flexuosa Vitis piasezkii 68 Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea 78 Parthenocissus dalzielii 94 Parthenocissus laetevirens 85 Parthenocissus quinquefolia Parthenocissus vitacea 66 Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule 78 Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla 100 Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-5. Continued.

257 Ampelocissus abyssinica E Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia 100 Pterisanthes cissioides 62 Pterisanthes polita 91 Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata 57 Ampelocissus javalensis 57 Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis rotundifolia Parthenocissus clarnensis Vitis aestivalis Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea 78 Parthenocissus dalzielii 92 Parthenocissus laetevirens 80 Parthenocissus quinquefolia Parthenocissus vitacea 56 Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense 73 Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla 100 Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-5. Continued.

258 F Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia 97 Pterisanthes cissioides 62 Pterisanthes polita 88 Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis betulifolia Vitis vinifera 85 Vitis flexuosa Vitis piasezkii Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensisaa Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina 79 Parthenocissus dalzielii 93 Parthenocissus laetevirens Parthenocissus quinquefolia 55 57 Yua austro-orientalis Yua chinensis Parthenocissus vitacea Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma serrulatum 75 Tetrastigma obtectum Tetrastigma rumicispermum Vitis magnisperma Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa 61 Cayratia cardiophylla Cayratia geniculata Acareosperma spireanum Cyphostemma adenocaule 100 Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera

Figure 4-5. Continued.

259 G Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa 98 Ampelocissus latifolia 62 Pterisanthes cissioides 90 Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Vitis betulifolia Vitis vinifera Vitis flexuosa Vitis piasezkii Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis tsoi Palaeovitis paradoxa Vitis tiffneyi Ampelocissus wildei Ampelopsis grossedentata Ampelopsis cantoniensis Cissus simsiana Ampelopsis delavayana Ampelopsis cordata Ampelopsis rooseae Ampelopsis glandulosa Ampelopsis arborea Clematicissus opaca Clematicissus angustissima ssp. 77 Cissus striata argentina 86 Parthenocissus dalzielii 68 Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea 55 Yua austro-orientalis Yua chinensis Parthenocissus clarnensis Vitis magnisperma Cissus granulosa Cissus penninervis Tetrastigma obtectum Tetrastigma rumicispermum 68 Tetrastigma serrulatum Tetrastigma planicaule Tetrastigma bioritsense Cissus hypoglauca Cissus sterculiifolia Cissus trianae Rhoicissus digitata Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus descoingsii Cissus fuliginea Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa 59 Cayratia cardiophylla Cayratia geniculata Acareosperma spireanum 100 Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 4-5. Continued.

260 APPENDIX A SPECIMENS INFORMATION OF THE VITACEOUS SEEDS SAMPLED IN THIS STUDY

Taxa are listed in alphabetic order. The information is listed as follows: taxon, collector and collector's number (herbarium deposited), locality. Abbreviations for herbaria follow Thiers (continuously updated). The seeds that are not sampled for the character measurement but with images shown in the article are marked with "*".

Acareosperma spireanum Gagnep., Spire 140 & 357 (P), Loas; Ampelocissus abyssinica Planch., A. J. M. Leeuwenberg 8070 (MO), ; Ampelocissus acapulcensis (Kunth) Planch., C. G. Pringle 8503 (A), Mexico; Ampelocissus acapulcensis (Kunth) Planch., Rafael Torres C. 5476 (GH), Mexico; Ampelocissus acetosa (F. Muell.) Planch., N. Duke s. n. (A), Australia; Ampelocissus africana (Lour.) Merr., C. J. Kayombo 2229 (MO), ; Ampelocissus arachnoidea Planch., M. Eug. Poilane 14309 (A), Cambodia; Ampelocissus barbata Planch., D. J. Middleton, S. Suddee & C. Hemrat 1325 (A), Thailand; Ampelocissus bombycina Planch., A. A. Euti 38455 (MO), Ghana; Ampelocissus borneensis Merr., M. Ramos & G. Edano 44369 (NY), Philippines; Ampelocissus botryostachys Planch., M. Ramos 48106 (NY), Philippines; Ampelocissus cavicaulis Planch., A. J. M. Leeuwenberg 5183 (MO), ; Ampelocissus divaricata Planch., M. Suzuki et al. 9193023 (A), Nepal; Ampelocissus elegans Gagnep., S. Riswan et al. B-14 (MO), Borneo; Ampelocissus elephantina Planch., D. K. Harder et al. 1743 (MO), Madagascar; Ampelocissus erdvendbergiana Planch., E. Matuda 3201 (A), Mexico; Ampelocissus gracilis Planch., R. S. Toroes 1479 (NY), Sumatra; Ampelocissus grantii (Baker) Planch., J.G. Adam 15369 (MO), Mali; Ampelocissus imperialis Planch., M. Ramos 1430 (A), Borneo; Ampelocissus javalensis (Seem.) W. D. Stevens & A. Pool, M. H. Grayum & G. Schatz 5282 (MO), Costa Rica; Ampelocissus latifolia (Roxb.) Planch., R. R. Stewart 11143 (NY), India; Ampelocissus leonensis Planch., A. Jacques-Georges 8757 (MO), Senegal; Ampelocissus macrocirrha Gilg & Brandt, J. G. Adam 25752 (MO), Liberia; Ampelocissus martini Planch., M. Ramos 1879 (MO), Philippines; Ampelocissus muelleriana Planch., R. Kaneheira & S. Hatusima 12055 (A), New ; Ampelocissus muelleriana Planch., Shomer & Katik 75140 (A), New Guinea; Ampelocissus multistriata Planch., E. M. C. Groenendijk et al. 1163 (MO), ; Ampelocissus obtusata (Welw. ex Baker) Planch., N. A. Mwangulango 607 (MO), Tanzania; Ampelocissus obtusata subsp. kirkiana (Planch.) Wild & R.B. Drumm., D. K. Harder & M. G. Bingham 2581 (MO), ; Ampelocissus ochracea Merr., J. H. Beaman 10316 (GH), Malaysia; Ampelocissus pauciflora Merr., R. B. Fox 474 (A), Philippines; Ampelocissus polystachya Planch., R. S. Toroes 1736 (NY), Sumatra; Ampelocissus racemifera Planch., W. Takeuchi, Z. Efendi, & D. Junaidi 18748 (A), Indonesia; Ampelocissus robinsonii Planch., J. G. Jack 5441 (A), Cuba; Ampelocissus rugosa Planch., M. Suzuki et al. 9470131 (A), Nepal; Ampelocissus tomentosa (Roth) Planch., C. J. Seldanha & P. Prakash 3664 (MO), India; Ampelopsis aconitifolia Bunge, Ki-Mon Liou 7997 (IBSC), China; Ampelopsis arborea (L.) Koehne, I. Chen 59 (FLAS), US; Ampelopsis cantoniensis (Hook. & Arn.) Planch., Wang Xue Wen & Zhang Gui Cai 8073 (IBSC), China; Ampelopsis cordata Michx., A. Gholson Jr. 6431 (FLAS), US; Ampelopsis delavayana Planch. ex Franch., Wang Wen Hua 3510 (CDBI), China; Ampelopsis denudata Planch., Silvia Salas M. et al. 2035 (NY), Mexico; Ampelopsis glandulosa (Wall.) Momiyama, I. Chen 48 (TAIF), Taiwan; Ampelopsis grossedentata (Hand.- Mazz.) W. T. Wang, Cao Ya Ling & He Yong Hua 87-18 (CDBI), China; Ampelopsis humulifolia Bunge, Fu Kun Jun 17754 (IBY), China; Ampelopsis japonica (Thunb.) Makino, Zhong Ji Xin 808247 (IBY), China; Ampelopsis megalophylla Diels & Gilg, s. n. 13316 (CDBI), China; Ampelopsis rubifolia (Wall.) Planch., Chun Z. C. 51757 (IBY), China; Cayratia acris (F. Muell.) Domin, B. R. Jackes s. n. (JCT), Australia; Cayratia cardiophylla Jackes, H. Hopkins s. n. (JCT), Papua New Guinea; Cayratia ciliifera (Merr.) Chun, S. K. Lau 4906 (IBSC), China; Cayratia ciliifera (Merr.) Chun, S.K. Lau 178 (US), China; Cayratia corniculata (Benth.) Gagnep., Liu Gin Kuoa s. n. (TAIF), Taiwan; Cayratia formosana Hsu & Kuoh, I. Chen 53 (TAIF), Taiwan; Cayratia geniculata Gagnep., M. Ramos 1115 (US), Philippines; Cayratia japonica (Thunb.) Gagnep., I. Chen 45 (TAIF), Taiwan; Cayratia maritima Jackes, I. Chen 531 (FLAS), Australia; Cayratia mollissima Gagnep., D. J. Middleton et al. 409 (IBSC), Thailand; Cayratia oligocarpa Gagnep., Zhou Hong Fu 26434 (IBSC), China; Cayratia pedata (Lam.) Juss. ex Gagnep., P.L. Comanor 1043 (US), Ceylon; Cayratia saponaria (Benth.) Domin, B. R. Jackes s. n. (JCT), Australia; Cayratia sp. , Peng Yu Lan 6346 (CDBI), China; Cayratia trifolia (L.) Domin, I. Chen 119 (FLAS), China; Cayratia triternata (Baker) Desc., H. Jacquemin H343J (P), Madagascar; Cayratia triternata (Baker) Desc., J. M. Hildebrandt 2962 (P), Madagascar; Roxb., C. R. Dunlop 4776 (JCT), Australia; Cissus alata

261 Jacq., S. Mori & J. Kallunki 1786 (US), Panama; Cissus antarctica Vent., B. R. Jackes s. n. (JCT), Australia; Cissus assamica (M.A. Lawson) Craib, Huang Zhi 40054 (IBY), China; Cissus assamica (M.A. Lawson) Craib, J. F. Rock 777 (US), Myanmar; Cissus biformifolia Standl., R. W. Lent 2326 (US), Costa Rica; Cissus cacuminis Standl., Antonio Molina R. 1350 (US), Honduras; Cissus campestris (Baker) Planch., F. C. A. Oliverira et al. 271 (US), ; Cissus cardiophylla (F.Muell.) Jackes, B. R. Jackes s. n. (JCT), Australia; Cissus caustica Tussac, E. C. Leonard 8435 (US), Haiti; Cissus cornifolia Planch., E. A. Mearns 3007 (US), Uganda; Cissus cucurbitina Standl., s. n. 1131 (US), Mexico; Cissus decidua Lombardi, A. Chase 7823 (US), Brazil; Cissus descoingsii Lombardi, W. Burger & G. Matta U. 4712 (US), Costa Rica; Cissus diffusiflora Planch., G. Zenker 507 (US), Cameroon; Cissus dinklagei Gilg & Brandt, A. Hladik 2040 (US), Gabon; Cissus duarteana Cambess., G. Eiten & L. T. Eiten 9700 (US), Brazil; Cissus elongata Roxb., Wang et al. 4107 (IBY), China; Cissus erosa Rich., H. Pittier 3995 (US), Panama; Cissus farinosa (Welwitsch ex Baker) Planch., R. Dummer 262 (US), Uganda; Cissus flavifolia Lombardi, D. S. Pennys & M. A. Blanco Coto 1671 (FLAS), Panama; Cissus fuliginea Kunth, P. H. Allen 5450 (US), Costa Rica; Cissus fusifolia Lombardi, Jose Schunke V. 2589 (US), Peru; Cissus gardneri Thwaites, S. H. Sohmer et al. 8557 (US), Ceylon; Cissus gongylodes (Burch. ex Baker) Planch., J. J. Strudwick & G. L. Sobel 3940 (US), Brazil; Cissus granulosa Ruiz & Pav., J. Francis Macbride 3726 (US), Peru; Cissus hastata Miq., B. R. Jackes s. n. (JCT), Australia; Cissus hexangularis Thorel ex Planch., Zhoung Ji Xin 808815 (IBY), China; Cissus heyneana Steud., G. Davidse & D. B. Sumithraarachchi 8864 (US), Ceylon; Cissus hypoglauca A. Gray, B. R. Jackes s. n. (JCT), Australia; Cissus intermedia A. Rich., s. n. s. n. (US), Cuba; DC., J. F. Rock 1016 (US), Thailand; Cissus lonchiphylla Thwaites, S. Waas 1904 (US), Ceylon; Cissus mexicana DC., H. S. Gentry 14279 (US), Mexico; Cissus microcarpa Vahl, P. C. Standley 52861 (US), Honduras; Cissus mirabilis (Urb. & Ekman) Lombardi, E.L. Ekman 4809 (US), Haiti; Cissus obovata Vahl, E. C. Leonard 4263 (US), Haiti; Cissus obovata Vahl, P. Acevedo-Rdgz 11708 (US), Puerto Rico; Cissus oliveri Gilg ex Engl., R. B. Faden et al. 800 (US), Kenya; Cissus palmata Poir., T. M. Pedersen 3721 (US), Argentina; Cissus paullinifolia Vell., R. Klein 1770 (US), Brazil; Cissus penninervis (F. Muell.) Planch., B. R. Jackes s. n. (JCT), Australia; Cissus picardae Urb., P. Acevedo-Rdgz et al. 8470 (US), Republica Dominicana; Cissus planchoniana Gilg, A. Hlandik 2051 (US), Africa; Cissus pteroclada Hayata, s. n. 84569 (IBY), China; Cissus quadrangularis L., Herb. Wight. propr. 423 (US), India; Cissus reniformis Domin, I. Chen 517 (TAIF), Australia; Lam., B. R. Jackes s. n. (JCT), Australia; Cissus rotundifolia (Forssk.) Vahl, P. Acevedo-Rdgz 11003 (US), Caribbean; Cissus rubiginosa Planch., Flamiqui 120 (US), Africa; Cissus simsiana Schult. & Schult. f., G. Hatschbach & J. M. Silva 49092 (US), Brazil; Cissus sp., A. Macedo 3197 (US), Brasil; Cissus sp., C. J. Saldanha 13311 (US), India; Cissus sp., G. E. Schatz 1606 (US), Madagascar; Cissus sp., P. H. & D. Allen 5249 (US), Costa Rica; Cissus sterculiifolia (Benth.) Planch., B. R. Jackes s. n. (JCT), Australia; Cissus stipulata Vell., P. R. Reiz 3060 (US), Brazil; Cissus striata Ruiz & Pav., O. Kuntze s. n. (US), ; Cissus striata subsp. argentina (Suess.) Lombardi, O. S. Ribas & V. Nicolack 303 (US), Brazil; Cissus subhastata Gagnep., J. F. Rock 222 (US), Thailand; Cissus tiliacea Kunth, R. M. King & T. R. Soderstrom 4987 (US), Mexico; Cissus trianae Planch., J. Cuatrecasas 8711 (US), Colombia; Cissus trigona Willd. ex Roem. & Schult., D. Bell & S. Wiser 88-146 (US), Peru; Cissus trilobata Lam., L. Bernardi 15759 (US), Ceylon; DC., J. N. Rose & R. Hay 5896a (US), Mexico; Cissus tweedieana (Baker) Planch., S. Venturi 142115 (US), Argentina; Cissus verticillata (L.) Nicolson & C. E. Jarvis, I. Chen 38 (TAIF), Taiwan; Cissus vinosa Jackes, B. R. Jackes s. n. (JCT), Australia; Cissus vitiginea L., G. Davidse 7341 (US), Ceylon; Clematicissus angustissima (F. Muell.) Planch., E. M. Jackes s. n. (BRI), Australia; Clematicissus opaca (F. Muell.) Jackes & Rossetto, B. R. Jackes s. n. (JCT), Australia; Cyphostemma adenocaule (Steud. ex A. Rich.) Desc. ex Wild & R. B. Drumm., I. Friis et al. 7987 (US), Ethiopia; Cyphostemma braunii (Gilg & Brandt) Desc., H. J. Beentje et al. 1081 (US), Kenya; Cyphostemma buchananii (Planch.) Desc. ex Wild & R. B. Drumm., R. B. Faden et al. 521 (US), Kenya; Cyphostemma cirrhosum (Thunb.) Desc. ex Wild & R. B. Drumm., G. Davidse 6804 (US), South Afirca; Cyphostemma cyphopetalum (Fresen.) Desc. ex Wild & R. B. Drumm., R.L. Piemeisel & L.W. Kephart 22 (US), Kenya; Cyphostemma hereroense (Schinz) Desc. ex Wild & R. B. Drumm., R. Seydel 4215a (US), Namibia; Cyphostemma hildebrandtii (Gilg) Desc. ex Wild & R. B. Drumm., Luke 2905 (US), Kenya; Cyphostemma hypoleuca (Harv.) Desc., J. Medly Wood 448 (US), South Africa; Cyphostemma jiguu Verdc., Luke 3855 (US), Kenya; Cyphostemma junceum (Webb) Desc. ex Wild & R. B. Drumm., A. Meurillon 861 (P), Cameroon; Cyphostemma lageniflorum (Gilg & Brandt) Desc., C. H. S. Kabuye et al. 635 (US), Kenya; Cyphostemma lanigerum (Harv.) Desc. ex Wild & R. B. Drumm., P. Herman 171 (US), South Africa; Cyphostemma laza Desc., P. B. Philipson 2476 (P), Madagascar; Cyphostemma marlothii (Dinter & Gilg) Desc., R. Seydel 3111 (US), southwestern Africa; Cyphostemma microdiptera (Baker) Desc., R. Decary 17158 (P), Madagascar; Cyphostemma odontadenium (Gilg) Desc., S. A. Rovertson 6710 (US), Kenya; Cyphostemma paucidentatum (Klotzsch) Desc. ex

262 Wild & R. B. Drumm., J. Frazier 1139 (US), Tanzania; Cyphostemma schimperi (Hochst. ex A. Rich.) Desc., Schimper 644 (US), Afirca; Cyphostemma serpens (Hochst. ex A. Rich.) Desc., Schimper 154 (US), Africa; Cyphostemma setosum (Roxb.) Alston, Bernardi 14299 (US), Ceylon; Cyphostemma simulans (C. A. Sm.) Wild & R. B. Drumm., J. Medly Wood 8249 (US), South Africa; Cyphostemma ukerewense (Gilg) Desc., P. K. Rwavurindore 1796 (US), Uganda; Leea aculeata Blume, H. P. Fuchs 21234 (A), Malayisa; Leea aequata L., Kessler et al. P. K. 1340 (A), Indonesia; Leea aequata L., M. Shah & Lee Wai Chin 2693 (US), Malaysia; Leea angulata Korth. ex Miq., W. N. & C. M. Bangham 656 (A), Indonisia; Leea asiatica (L.) Ridsdale, M. Suzuki et al. 9455064 (A), Nepal; Leea compactiflora Kurz, T. T. Yu 17683 (A), China; Leea congesta Elmer, R. B. Fox 5259-1 (A), Philippine; Leea coryphantha Lauterb., H. Streimann & A. Kairo 39230 (A), New Guinea; Leea guineensis G. Don, I. Chen 44 (TAIF), Taiwan; Leea heterodoxa K. Schum. & Lauterb., D. Foreman et al. 45917 (A), New Guinea; Leea macropus Lauterb. & K. Schum., W. Takeuchi 9048B (A), Papua New Guinea; Leea papuana Merr. & L. M. Perry, L. J. Brass 23959 (A), New Guinea; *Leea philippinensis Merr., C. Frake 56725 (A), Philippines; Leea quadrifida Merr., D. Mendoza & P. Convocar 253 (A), Phillippines; *Leea robusta Roxb., Father Anglade s. n. (A), India; Leea tetramera B. L. Burtt, T. C. Whitmore 6226 (A), Solomon Island; Nothocissus spicifera (Griff.) Latiff, H. O. Forbes 2831 (US), Sumatra; Parthenocissus dalzielii Gagnep., Nan Ling Dui 1572 (IBSC), China; Parthenocissus feddei (H. Lév.) C.L. Li, Cao Ya Ling et al. 13 (CDBI), China; (Hemsl.) Graebn. ex Diels & Gilg, Hu Zhi Xin 3575 (IBSC), China; Parthenocissus heptaphylla (Buckley) Britton ex Small, M. Hopkins s. n. (US), US; Parthenocissus laetevirens Rehder, Ma Xi Peng 53495 (IBSC), China; Parthenocissus quinquefolia (L.) Planch., I. Chen 204 (FLAS), US; Parthenocissus semicordata (Wall.) Planch., Li Xi Wen 157 (IBSC), China; Parthenocissus vitacea (Knerr) Hitchc., J. C. Blumer 1289 (US), US; Pterisanthes cissioides Blume, J. Agama 1117 (US), Borneo; Pterisanthes eriopoda Planch., W. de Wilde 21340 (SYS), Sumatra; Pterisanthes eriopoda Planch., W. J. J. O. de Wilde & B. E. E. de Wilde-Duyfjes 20589 (US), Sumatra; Pterisanthes polita (Miq.) M. A. Lawson, J. Sinclair 10380 (US), Sarawak; Pterisanthes quinquefoliolata Merr., S. Kokawa & M. Hotta 475 (L), Sabah; Rhoicissus digitata (L. f.) Gilg & Brandt, R.D.A. Bayliss 1615 (US), South Africa; Rhoicissus revoilii Planch., E. A. Mearns 1041 (US), Kenya; (E. Mey. ex Harv.) Planch., O.A Leistner et al. 3307 (US), South Africa; Rhoicissus schlechteri Gilg & Brandt, R. J. Rodin 4680 (US), South Africa; Rhoicissus tridentata (L.f.) Wild & R. B. Drumm., M. E. Mathias & D. Taylor A116 (US), Tanzania; Rhoicissus tridentata (L.f.) Wild & R. B. Drumm., M. E. Mathias & D. Taylor 142 (US), Tanzania; Tetrastigma bioritsense (Hayata) Hsu & Kuoh, A. Henry 104 (US), Taiwan; Tetrastigma brunneum Merr., M. Ramos 20542 (US), Philippines; Tetrastigma caudatum Merr. & Chun, Liu Xin Qi 26617 (IBSC), China; Tetrastigma cauliflorum Merr., H. Y. Liang 66618 (IBY), China; Tetrastigma crenatum Jackes, B. Gray 07372 (BRI), Australia; Tetrastigma cruciatum Craib & Gagnep., J. F. Rock 1118 (US), Thailand; Tetrastigma cruciatum Craib & Gagnep., Menglian survey 010060 (SYS), China; Tetrastigma delavayi Gagnep., Chang C. C. 10928 (IBY), China; Tetrastigma erubescens Planch., Hainan 00135 (IBY), China; Tetrastigma formosanum (Hemsl.) Gagnep., E. H. Wilson 10994 (US), Taiwan; Tetrastigma hainanense Chun & F. C. How, S. H. Chun 11723 (IBY), China; Tetrastigma harmandii Planch., J. & M. S. Clemens 3992 (US), Vietnam; Tetrastigma hemsleyanum Diels & Gilg, Peng 7 (CDBI), China; Tetrastigma henryi Gagnep., Mao Pin 455 (IBY), China; *Tetrastigma hypoglaucum Planch., B. Bartholomew et al. 507 (US), China; Tetrastigma kwangsiense C. L. Li, Nonggan Survey 10957 (IBY), China; Tetrastigma lanceolarium (Roxb.) Planch., H. B. Morse 681 (US), China; Tetrastigma loheri Gagnep., A. Loher 5843 (US), Philippines; Tetrastigma megalocarpum W. T. Wang, Zhu Hua 936 (SYS), China; Tetrastigma nilagiricum (Miq.) B. V. Shetty, G. Davidse & A. H. Jayasuriya 8390 (US), Ceylon; (F. Muell.) Planch., V. K. Moriarty 782 (BRI), Australia; Tetrastigma obtectum Planch. ex Franch., Sichuan survey 51995 (SYS), China; Tetrastigma pachyphyllum (Hemsl.) Chun, Tsang Wai-Tak 152 (SYS), China; Tetrastigma papillosum Planch., M. Ramos 30348 (US), Philippines; Tetrastigma pedunculare Planch., Meijer 134578 (US), Malaysia; Tetrastigma petraeum Jackes, B. R. Jackes s. n. (BRI), Australia; Tetrastigma pingpienense C. Y. Wu, C. C. Chang 12559 (IBY), China; Tetrastigma pisicarpum (Miq.) Planch., M. Ramos & S. Fdano 14751 (US), Philippines; Tetrastigma pisicarpum (Miq.) Planch., R. Schodde 2575 (BRI), New Guinea; Tetrastigma planicaule Gagnep., P. Tsang 120694 (SYS), China; Tetrastigma pubinerve Merr. & Chun, Huang Zhi 34529 (IBSC), China; Tetrastigma retinervium Planch., Nonggang survey 10964 (SYS), China; Tetrastigma rumicispermum (M. A. Lawson) Planch., H. T. Tsai 60421 (IBSC), China; Tetrastigma rumicispermum (M. A. Lawson) Planch., Liao Guo Sheng 1802 (SYS), China; Tetrastigma serrulatum Planch., D. H. Nicolson 2939 (US), Nepal; Tetrastigma serrulatum Planch., Xu Guo Hong 25804 (CDBI), China; Tetrastigma serrulatum Planch., Yue Qing Sheng & Mou Ke Hua 5734 (CDBI), China; Tetrastigma sulcatum Gamble, C. J. Saldanha 13351 (US), India; Tetrastigma thorsborneorum Jackes, R. J. Cumming 10178 (JCT), Australia; Tetrastigma triphyllum (Gagnep.) W. T. Wang, Gao Xin Fen et al.

263 3998 (IBSC), China; Tetrastigma umbellatum Nakai, E. H. Wilson 9694 (US), Taiwan; Tetrastigma vitiense (A. Gray) A. C. Sm., A. C. Smith 720 (US), Fiji; Tetrastigma xishuangbannaense C. L. Li, Li Yan Hui 004817 (IBY), China; Tetrastigma yunnanense Gagnep., A. Henry 11647 (US), China; Vitis aestivalis Michx., I. Chen 60 (FLAS), US; Rupr., Zhang Yu Liang et al. 1924 (SYS), China; Vitis balansana Planch., S. K. Lau 102 (SYS), China; Vitis betulifolia Diels & Gilg, Sichuan survey 51693 (SYS), China; Vitis chunganensis Hu, He Xian Yu 29370 (IBSC), China; Vitis flexuosa Thunb., An Ming Tai 5199 (TAIF), China; Vitis jacquemontii R. Parker, H. Takayama et al. 9239082 (A), Nepal; Vitis lanceolatifoliosa C. L. Li, Wang De Zhen 1662 (IBSC), China; Vitis piasezkii Maxim., s. n. 0929 (CDBI), China; Vitis rotundifolia Michx., I. Chen 577 (FLAS), US; Vitis sp. , S. R. Manchester s. n. (FLAS), US; Vitis tsoi Merr., Zhang Gui Cai 306 (IBSC), China; Vitis vinifera L., s. n. 84-1333 (IBSC), China; L., I. Chen 58 (FLAS), US; Vitis wilsoniae H. J. Veitch, Chen Ke & Li Han Zhang 3169 (IBY), China; Yua austro-orientalis (F. P. Metcalf) C. L. Li, S. P. Ko 50800 (IBSC), China; Yua chinensis C. L. Li, Peng Ding Yi 46098 (IBSC), China.

264 APPENDIX B SPECIMENS EXAMINED FOR THE MORPHOLOGICAL ANALYSES

Specimen information is arranged as: taxa, collector(s) collector's number (herbarium deposited), locality. Taxa are listed in alphabetical order, "—" indicates that the identification is the same as the preceding taxon. p = specimen examined for pollen morphology, s = specimen examined for seed morphology.

s Acareosperma spireanum Gagnep., Spire 140 & 357 (P), Loas; Ampelocissus abyssinica Planch., A. J. M. s p Leeuwenberg 8070 (MO), Ivory Coast; — , C. J. Kayombo et al. 1212 (MO), Tanzania; — , Fay, J. M. 5523 (MO), ; — , John M. Fay 7015 (MO), Central African Republic; — , R. E. Gereau et al. 5837 p (MO), Tanzania; Ampelocissus acapulcensis (Kunth) Planch., C. A. Purpus 9056 (GH), Mexico; — , C. G. Pringle 8503 (A), Mexico; — , Edward Palmer 364 (GH), Mexico; — , Paul C. Standley 21982 (NY), El Salvador; — , s Rafael Torres C. et al. 5476 (GH), Mexico; Ampelocissus acetosa (F. Muell.) Planch., L. J. Brass 900 (A), Papua p s New Guinea; — , L. J. Brass 8647 (A), Papua New Guinea; — , N. Duke s. n. (A), Australia; — , P. Martensz s AE732 (MO), Australia; Ampelocissus africana (Lour.) Merr., C. J. Kayombo 2229 (MO), Tanzania; — , I. H. Patel & J. L. Balaka 4338 (NY), ; — , I. H. Patel & K. Kaunda 4237 (NY), Malawi; — , M. Reekmans p s 2931 (MO), ; Ampelocissus barbata Planch., D. J. Middleton et al. 1325 (A), Thailand; — , R. W. Squires p s 912 (A, MO), Vietnam; Ampelocissus botryostachys Planch., M. Ramos 48106 (NY), Philippines; — , M. Ramos p & G. Edano 75175 (NY), Philippinnes; Ampelocissus erdvendbergiana Planch., C. A. Purpus 8418 (NY), Mexico; s — , E. Matuda 3201 (A, NY), Mexico; — , Edward Palmer 331 (MO), Mexico; — , O. Tellez 2362 (MO), Mexico; p — , W. E. Harmon 2292 (MO), Guatemala; Ampelocissus javalensis (Seem.) W. D. Stevens & A. Pool, G. ps Gallardo 207 (MO), Costa Rica; — , M. H. Grayum & G. Schatz 5282 (MO), Costa Rica; — , Michael Grayum et p al. 4377 (MO), Costa Rica; Ampelocissus latifolia (Roxb.) Planch., Allam s. n. (GH), s. n.; — , H. Kanai & G. s Murata 2970 (A), Eastern India; — , R. R. Stewart 11143 (NY), India; — , R. R. Stewart 15046 (NY), p Northwestern Himalaya; Ampelocissus ochracea Merr., Arsat 1061 (NY), Borneo; — , G. E. Edano 1686 (A), s Philippines; — , J. H. Beaman 10316 (GH, MO), Malaysia; Ampelocissus robinsonii Planch., Bro. Alain H. Liogier s 11457 (NY), Dominican Republic; — , J. G. Jack 5441 (A), Cuba; — , N. L. Britton & A. Hollick 2767 (NY), p Jamaica; — , R. A. & E. S. Howard 8159 (GH), Dominican Republic; — , R. A. & E. S. Howard 8430 (GH), Dominican Republic; — , T. Zanoni et al. 37775 (NY), Republica Dominicana; Ampelopsis arborea (L.) Koehne, I. p s Chen 7 (FLAS), US; — , I. Chen 9 (FLAS), US; — , I. Chen 19 (FLAS), US; — , I. Chen 59 (FLAS), US; p Ampelopsis cantoniensis (Hook. & Arn.) Planch., Chen Shao Qing 16697 (IBY), China; — , I. Chen 28 (TAIF), Taiwan; — , Shi Guo Liang 15365 (IBSC), China; — , T. Y. A. Yang et al. 15109 (HAST), Taiwan; — , Wang Xue s Wen & Zhang Gui Cai 8073 (IBSC), China; — , Wei Zhao Fen 127705 (IBSC), China; — , Wen-Pen Leu et al. s 1992 (HAST), Taiwan; Ampelopsis cordata Michx., A. Gholson Jr. 6431 (FLAS), US; — , I. Chen 11 (FLAS), US; p — , R. Dale Thomas 18870 (FLAS), US; Ampelopsis delavayana Planch. ex Franch., Jin 9048 (CDBI), China; — , p s Tang & Liu 9884 (CDBI), China; — , Tang & Lui 9886 (CDBI), China; — , Wang Wen Hua 3510 (CDBI), China; Ampelopsis glandulosa (Wall.) Momiyama, I. Chen 25 (TAIF), Taiwan; — , I. Chen 32 (TAIF), Taiwan; — , I. ps Chen 46 (TAIF), Taiwan; — , I. Chen 48 (TAIF), Taiwan; Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang, s Cao Ya Ling & He Yong Hua 87-18 (CDBI), China; — , Huang Wen Cai & Xie Chong Yuan 3729 (IBSC), p Guangxi; — , I. Chen 89 (TAIF), China; — , Li Chao Luan 003 (CDBI), China; — , Wang Gong Fan 1-0222 s (TAIF), China; Cayratia cardiophylla Jackes, B. Hyland 21109V (JCT), Australia; — , E. M. Jackes s. n. (JCT), Australia; — , H. Hopkins s. n. (JCT), Papua New Guinea; — , J. R. Clarkson 3951 (JCT), Australia; — , N. Duke s. p n. (JCT), Australia; Cayratia geniculata Gagnep., I. Chen 541 (SING), Singapore; — , I. Chen 551 (TAIF), s p Malaysia; — , M. Ramos 1115 (US), Philippines; — , M. Ramos & G. Edano 40597 (US), Philippines; Cayratia ps japonica (Thunb.) Gagnep., I. Chen 26 (TAIF), Taiwan; — , I. Chen 45 (TAIF), Taiwan; — , I. Chen 123 (TAIF), China; — , I. Chen 523 (TAIF), Australia; Cayratia maritima Jackes, B. R. Jackes s. n. (JCT), Australia; — , I. s p Chen 531 (TAIF), Australia; — , I. Chen 538 (TAIF), Singapore; Cayratia oligocarpa Gagnep., H. F. Chin 70534 p (IBY), China; — , S. S. Sin 21509 (IBSC), China; — , Wang De Zhen 789 (IBSC), China; — , Zhou Hong Fu s 26434 (IBSC), China; Cayratia trifolia (L.) Domin, B. R. Jackes s. n. (JCT), Australia; — , I. Chen 110 (TAIF), p s China; — , I. Chen 116 (TAIF), China; — , I. Chen 119 (TAIF), China; — , M. O. Rankin 1746 (JCT), Australia; p Cayratia triternata (Baker) Desc., H. Jacquemin H343J (P), Madagascar; — , J. Bosser 19036 (P), Madagascar; —

265 s , J. M. Hildebrandt 2962 (P), Madagascar; — , M. Boivin 2110 (P), Madagascar; — , Marion Nicoll 375 (P), s p Madagascar; Cissus alata Jacq., S. Mori & J. Kallunki 1786 (US), Panama; — , W. H. Lewis et al. 1544 (US), ps Panama; Cissus antarctica Vent., B. R. Jackes s. n. (JCT), Australia; — , F. McKenzie s. n. (JCT), Australia; — , I. Chen 533 (TAIF), Australia; — , J. B. Williams s. n. (JCT), Australia; Cissus assamica (M.A. Lawson) Craib, C. p s J. Saldanha 15415 (US), India; — , Huang Zhi 40054 (IBY), China; — , J. F. Rock 777 (US), Myanmar; — , T. Y. p A. Yang 08749 (TAIF), Taiwan; Cissus biformifolia Standl., Alexander F. Skutch 2812 (US), Costa Rica; — , Paul s C. Standley 55108 (US), Honduras; — , R. W. Lent 2326 (US), Costa Rica; Cissus campestris (Baker) Planch., F. s C. A. Oliverira et al. 271 (US), Brazil; — , G. T. Prance et al. 24775 (US), Brazil; — , T. S. Filgueiras & D. p p Alvarenga 1586 (US), Brazil; Cissus cornifolia Planch., Dr. Edgar A. Mearns 3068 (US), Africa; — , E. A. s Mearns 3007 (US), Uganda; — , H. J. Schlieben 7370 (US), South Africa; Cissus descoingsii Lombardi, S. Mori & p s J. Kallunki 5172 (US), Panama; — , W. Burger & Guillermo Matta U. 4712 (US), Costa Rica; Cissus fuliginea p s Kunth, Mr. & Mrs. J. N. Rose 21782 (US), Venezuela; — , Nee 7647 (US), Panama; — , P. H. Allen 5450 (US), s Costa Rica; Cissus granulosa Ruiz & Pav., J. Francis Macbride 3726 (US), Peru; — , Octavio Vedarde Nunez p s 3439 (US), Peru; — , Ruiz s. n. (US), Peru; Cissus hypoglauca A. Gray, B. R. Jackes s. n. (JCT), Australia; — , F. p M. Bailey s. n. (US), Australia; — , F. Mueller s. n. (US), Australia; — , G. Crowley s. n. (JCT), Australia; — , I. ps Chen 524 (TAIF), Australia; Cissus mirabilis (Urb. & Ekman) Lombardi, E. L. Ekman 4809 (US), Haiti; — , E. L. Ekman 14412 (US), Dominican Republic; Cissus obovata Vahl, A. H. Curtiss 193 (US), Bahamas; — , David s p Fairchild 2558 (US), Bahamas; — , E. C. Leonard 4263 (US), Haiti; — , E. L. Ekman 1035 (US), Haiti; — , P. Acevedo-Rdgz. 10861 (US), Puerto Rico; — , P. Acevedo-Rdgz. 11708 (US), Puerto Rico; — , P. Acevedo-Rdgz. p 13463 (US), Puerto Rico; Cissus palmata Poir., A. Charpin & U. Esleuche AC 20375 (US), Argentina; — , T. M. s p Pedersen 3721 (US), Argentina; Cissus paullinifolia Vell., G. Hatschbach 13384 (US), Brazil; — , G. Hatschbach s 28612 (US), Brazil; — , P. Dusen 12045 (US), Brazil; — , R. Klein 1770 (US), Brazil; Cissus penninervis (F. ps Muell.) Planch., B. Jackes 8613 (JCT), Australia; — , B. R. Jackes s. n. (JCT), Australia; — , I. Chen 526 (TAIF), p Australia; Cissus quadrangularis L., B. C. Kundu & N. Balakrishnan 367 (US), Ceylon; — , F. G. Meyer 7589 s (US), Ethiopia; — , Herb. Wight. propr. 423 (US), India; Cissus reniformis Domin, C. Dunlop & D. Jones s. n. s (JCT), Australia; — , C. R. Dunlop 4627 (JCT), Australia; — , I. Chen 517 (TAIF), Australia; — , M. O. Rankin p 1270 (JCT), Australia; Cissus simsiana Schult. & Schult. f., Doris Cochran s. n. (US), Brazil; — , G. Hatschbach s p & J. M. Silva 49092 (US), Brazil; — , R. M. Harley 16365 (US), Brazil; Cissus sterculiifolia (Benth.) Planch., B. ps R. Jackes s. n. (JCT), Australia; — , I. Chen 525 (TAIF), Australia; — , L. J. Brass 33746 (BRI), Australia; — , P. Grimshaw G330 (BRI), Australia; — , R. W. Lockyer s. n. (BRI), Australia; — , S. P. Phillips 781 (BRI), Australia; Cissus striata spp. argentina (Suess.) Lombardi, A. Kegler 493 (US), Brazil; — , G. Eatschbach 15491 (US), Brazil; p s — , M. Nee & I. Vargas C. 38275 (US), Bolivia; — , O. S. Ribas & V. Nicolack 303 (US), Brazil; — , R. Wasum & p N. Bastos 8029 (US), Brazil; — , S. Venturi s. n. (US), Brazil; Cissus trianae Planch., Alexander F. Skutch 3252 s (US), Costa Rica; — , J. Cuatrecasas 8711 (US), Colombia; — , M. E. Davidson 248 (US), Panama; — , Paul C. Standley 42791 (US), Costa Rica; — , Paul C. Standley & Juvenal Valerio 50170 (US), Costa Rica; — , Plantae mexicanae Liebmann 1231 (US), Mexico; Cissus verticillata (L.) Nicolson & C. E. Jarvis, I. Chen 18 (FLAS), US; ps ps — , I. Chen 38 (TAIF), Taiwan-not native; Clematicissus angustissima (F. Muell.) Planch., E. M. Jackes s. n. s (BRI), Australia; Clematicissus opaca (F. Muell.) Jackes & Rossetto, B. R. Jackes s. n. (JCT), Australia; — , E. M. Jackes s. n. (JCT), Australia; — , Fell, D. G. DF0856 (JCT), Australia; — , I. Chen 518 (TAIF), Australia; — , J. Wieneke s. n. (JCT), Australia; Cyphostemma adenocaule (Steud. ex A. Rich.) Desc. ex Wild & R. B. Drumm., I. ps Friis et al. 7987 (US), Ethiopia; Cyphostemma buchananii (Planch.) Desc. ex Wild & R. B. Drumm., R. B. Faden ps p et al. 521 (US), Kenya; Cyphostemma hereroense (Schinz) Desc. ex Wild & R. B. Drumm., R. Seydel 2623 (US), s Africa; — , R. Seydel 4215a (US), Namibia; Cyphostemma junceum (Webb) Desc. ex Wild & R. B. Drumm., A. s p Meurillon 861 (P), Cameroon; — , A. Raynal 13315 (P), Cameroon; — , Dr. G. Scweinfurth 1268 (P), ; — , H. Jacques-Felix 3986 (P), Cameroon; — , H. Jacques-Felix 4323 (P), Africa; Cyphostemma lageniflorum (Gilg & s p Brandt) Desc., C. H. S. Kabuye et al. 635 (US), Kenya; — , F. J. Breteler 7041 (US), Africa; Cyphostemma laza Desc., B. Descoings 2225 (P), Madagascar; — , J. Bosser 10463 (P), Madagascar; — , J. Leandri & Ratoto Jean De p s Dieu 3771 (P), Madagascar; — , P. B. Philipson 2476 (P), Madagascar; Cyphostemma microdiptera (Baker) Desc., p Don de M. Baillon s. n. (P), Madagascar; — , P. J. Rakotomalaza et al. 1186 (P), Madagascar; — , R. Decary s ps 17158 (P), Madagascar; Cyphostemma odontadenium (Gilg) Desc., S. A. Rovertson 6710 (US), Kenya; Cyphostemma paucidentatum (Klotzsch) Desc. ex Wild & R. B. Drumm., J. Frazier 942 (US), Africa; — , J. s p Frazier 1139 (US), Tanzania; — , Jack Frazier 1025 (US), Africa; Cyphostemma setosum (Roxb.) Alston, s p Bernardi 14299 (US), Ceylon; — , M. Jayasuriya et al. 608 (US), Ceylon; — , R. G. Cooray 70032517R (US), ps Ceylon; Leea guineensis G. Don, I. Chen 44 (TAIF), Taiwan; Leea tetramera B. L. Burtt, R. Schodde and L.

266 p s Craven 4114 (A), Papua New Guinea; — , T. C. Whitmore 6226 (A), Solomon Island; Nothocissus spicifera p (Griff.) Latiff, Communicat. Ex Herbario Lugduno-Batavo s. n. (NY), s. n.; — , H. N. Ridley s. n. (SING), s Singapore; — , H. O. Forbes 2831 (US), Sumatra; — , I. Chen 544 (SING), Singapore; — , I. Chen 554 (TAIF), Malaysia; — , J. F. Maxwell 81-162 (SING), Singapore; — , M. Shah et al. MS4128 (SING), Singapore; — , Mohd Kasim 1108 (UKMB), Malaysia; Parthenocissus dalzielii Gagnep., Ching-I Peng 11002 (HAST), Taiwan; — , I. p s Chen 33 (TAIF), Taiwan; — , I. Chen 47 (TAIF), Taiwan; — , I. Chen 99 (TAIF), China; — , Nan Ling Dui 1572 (IBSC), China; Parthenocissus laetevirens Rehder, I. Chen 82 (TAIF), China; — , I. Chen 100 (TAIF), China; — , s p Ma Xi Peng 53495 (IBSC), China; — , Z. Y. Yang 308 (IBSC), China; Parthenocissus quinquefolia (L.) Planch., I. p Chen 1 (FLAS), US; — , I. Chen 8 (FLAS), US; — , I. Chen 16 (FLAS), US; — , I. Chen 20 (FLAS), US; — , I. s Chen 204 (FLAS), US; Parthenocissus vitacea (Knerr) Hitchc., H. Walton Clark 1898 (US), US; — , J. C. Blumer s p 1289 (US), US; — , Robert F. Thorne 17406 (US), US; — , Virginius H. Chase 9672 (US), US; Pterisanthes ps cissioides Blume, J. Agama 1117 (US), Borneo; Pterisanthes polita (Miq.) M. A. Lawson, A..R 3001 (SING), p s Malaysia; — , I. Chen 552 (TAIF), Malaysia; — , J. F. Maxwell 82-283 (IBSC), Singapore; — , J. Sinclair 10380 p (US), Sarawak; Rhoicissus digitata (L. f.) Gilg & Brandt, H. Rudatis 1498 (US), South Africa; — , H. S. Gentry & s A. S. Barclay 19134 (US), South Africa; — , R.D.A. Bayliss 1615 (US), South Africa; Rhoicissus tridentata (L.f.) s Wild & R. B. Drumm., H. J. Schlieben 7804 (US), South Africa; — , M. E. Mathias & D. Taylor 142 (US), Tanzania; — , M. E. Mathias & D. Taylor A116 (US), Tanzania; — , R. L. Piemeisel, L. W. Kephart 26 (US), p s Kenya; — , William Burger 3117 (US), Ethiopia; Tetrastigma bioritsense (Hayata) Hsu & Kuoh, A. Henry 104 p (US), Taiwan; — , Ching-I Peng 5379 (HAST), Taiwan; — , I. Chen 22 (TAIF), Taiwan; — , I. Chen 40 (TAIF), Taiwan; — , Pi-Fong Lu 6011 (TAIF), Taiwan; Tetrastigma obtectum Planch. ex Franch., Gao 4616 (CDBI), p China; — , Liao Guo Sheng C0460 (SYS), China; — , S. W. Teng 90378 (HAST), China; — , Sichuan survey s 51995 (SYS), China; Tetrastigma planicaule Gagnep., Chen Huan Yong 6465 (IBSC), China; — , I. Chen 103 s (TAIF), China; — , I. Chen 105 (TAIF), China; — , Li Qi Yi 0202 (SYS), China; — , P. Tsang 120694 (SYS), p China; — , S. H. Chun 12089 (IBSC), China; — , Zuo 26070 (IBY), China; Tetrastigma rumicispermum (M. A. s Lawson) Planch., H. T. Tsai 60421 (IBSC), China; — , Liao Guo Sheng 1802 (SYS), China; — , Mao Pin Yi 02442 p (IBSC), China; — , Mao Pin Yi 4161 (IBSC), China; — , Wang Xin Nian 745 (IBY), China; — , Zhang Hong Da 1622 (IBSC), China; Tetrastigma serrulatum Planch., D. H. Nicolson 2387 (US), Nepal; — , D. H. Nicolson 2939 p (US), Nepal; — , F. Ducloux 165 (IBSC), China; — , Gao et al. 4287 (CDBI), China; — , J. F. Rock 16618 (US), s China; — , Xu Guo Hong 25804 (CDBI), China; — , Yue Qing Sheng & Mou Ke Hua 5734 (CDBI), China; — , p Zhao & Liu 7802 (CDBI), China; Vitis aestivalis Michx., I. Chen 10 (FLAS), US; — , I. Chen 12 (FLAS), US; — , s I. Chen 21 (FLAS), US; — , I. Chen 60 (FLAS), US; — , S. R. Manchester s. n. (FLAS), US; Vitis betulifolia Diels s & Gilg, Qiu Bing Yun 51665 (IBSC), China; — , s. n. 002634 (CDBI), China; — , Sichuan survey 51693 (SYS), p China; — , Wu Ling 21 (IBSC), China; — , Zhang Ze Rong 25246 (IBSC), China; Vitis flexuosa Thunb., An Ming s p Tai 5199 (TAIF), China; — , Chun-Chi Wu et al. 673 (HAST), Taiwan; — , Tsai Guo Dong 91 (IBSC), China; p s Vitis piasezkii Maxim., Kuang Li Hui 28 (IBSC), China; — , Li & Kuang 896 (TAIF), China; — , s. n. 0929 p (CDBI), China; — , Z. Y. Yang 514 (IBSC), China; Vitis rotundifolia Michx., I. Chen 2 (FLAS), US; — , I. Chen 3 s (FLAS), US; — , I. Chen 56 (FLAS), US; — , I. Chen 61 (FLAS), US; — , I. Chen 577 (FLAS), US; Vitis tsoi p s Merr., Dunn 2499 (IBSC), China; — , Yue Qi Si 4598 (IBSC), China; — , Zhang Gui Cai 306 (IBSC), China; — , Zuo Jing Lie 20347 (IBSC), China; Vitis vinifera L., Park Bo-youn s. n. (HAST), Korea; — , s. n. 156 (IBSC), s p China; — , s. n. 84-1333 (IBSC), China; — , Yang Xiang Xue 11272 (IBSC), China; Yua austro-orientalis (F. P. p Metcalf) C. L. Li, C. Wang 31203 (IBSC), China; — , Lu Qing Hua 3236 (IBSC), China; — , S. K. Lau 2487 s p (SYS), China; — , S. P. Ko 50800 (IBSC), China; Yua chinensis C. L. Li, Chen 2424 (CDBI), China; — , Hsiung s et al. 31564 (IBSC), China; — , Peng Ding Yi 46098 (IBSC), China; — , Qu Qui Ling 2686 (IBSC), China.

267

APPENDIX C MORPHOLOGICAL CHARACTERS AND CHARACTER STATES USED IN THE CLADISTIC ANALYSES OF VITACEAE

All absence/presence characters were scored as present if observed, regardless of frequency. †Consulted from specimens labels or literature when characters poorly preserved on herbarial sheets. ©Continuous characters. #Meristic character. ♦Size characters, natural logarithm transformed in GW method.

General growth (Characters 1-4)

1. Growth habit†: (0) lianas or vines (1) erect herbs or shrubs or caudiform trees. Taxa with rigorous seasonal growth produce many unlignified branches and old branches were not always observed. Therefore, for character coding, vines are not distinguished from lianas.

2. Old branches flattened: (0) absent; (1) present.

3. Stem shape in transverse section tetra-, penta-, or hexagonal: (0) absent; (1) present. When angular stems present in succulent species, the shape persists when the stem becomes woody, and the character is uniform in the same species. Angular stems can occur in non-succulent species, and this feature was used for species identification within Ampelopsis and

Parthenocissus (Li, 1998). When angular stems occur in Ampelopsis or Parthenocissus, the shape does not persist in enlarged woody stems, and variation within individuals exists.

4. Stem succulent†: (0) absent; (1) present.

Phyllotaxy (Character 5)

5. Phyllotaxy: (0) tendril interrupted in three-node modularity; (1) tendril not interrupted; (2) no tendril; (3) tendril interrupted in two-node modularity.

Tendril morphology (Characters 6-9)

268

6. Tendril organization: (0) monochasium; (1) umbel; (2) simple. An unbranched tendril with a

bract-like structure in the middle is considered as having a monochasial organization. See

Discussion of Chapter 2 (p.103).

7. Tendril maximum arm number©#: (0) one, two, or three; (1) four or more. Tendril arm

number sometimes varies in the same individual. Tendril arm number was observed from all available specimens of the same terminal taxon and the most common number was scored. State

(1) is common in Parthenocissus.

8. Young tendril tip swollen or discoid: (0) absent; (1) present.

9. Mature tendril tip with suction pad: (0) absent; (1) present.

Stipule morphology (Characters 10-13)

Characters regarding stipule shape and size (character 11-13) were scored from the fully exposed stipules in the developing shoot apices, which are usually at least 3-5 nodes below the shoot apcies.

10. Stipule deciduousness: (0) caducous; (1) persisting until flowering; (2) persisting until fruiting. The character was scored as state (1)/(2) if stipules are present in the nodes producing inflorescences with open flowers/infructescences with mature fruits.

11. Stipule apex shape: (0) rounded; (1) triangular or pointed. Observed from stipules at the shoot apex.

12. Stipule base shape: (0) not cordate or lobate; (1) cordate or lobate. Observed from stipules at the shoot apex. Cordate or lobate stipules were observed in some species of Cissus.

13. Stipule length©♦: (0) < 2.2 mm; (1) ≥ 2.2 mm. Scored from the average of three stipules from the same or different shoot. Most Vitis and Ampelopsis have state (0).

Leaf morphology (Characters 14-26)

269

14. Leaf form: (0) simple; (1) palmately compound; (2) pedately compound; (3) pinnately

compound. Most common condition of mature leaves was scored.

15. Petiole to blade length ratio: (0) less than 1; (1) equal or more than 1; (2) leaf sessile. Most

species of Parthenocissus have long petioles. Sessile leaves occur in some Cyphostemma.

16. Secondary vein number©#: (0) 6 pairs or less; (1) 7 pairs or more. Usually less than 6

regardless leaf type.

17. Secondary veins to the teeth: (0) straight or bent, ending in the teeth; (1) looped, branched

and joining other secondary veins, not ending in the teeth.

18. Tertiary vein type: (0) opposite or mixed opposite/alternate percurrent; (1) alternate

percurrent; (2) random or regular polygonal reticulate. Tertiary veins are more closely spaced in state (0) than in state (1).

19. Teeth density©#: (0) absent or rarely 1 or 2 teeth present in the whole leaf (raw value < 2);

(1) 0-2 tooth between two secondary veins (raw value 2-8); (2) 2 or more between two secondary veins (raw value ≥ 8). A typical grape leaf has every secondary vein ending in a tooth. When scoring raw data for GW coding, the teeth number was counted between two secondary veins, including the two teeth in which the two secondary veins end. A leaf without teeth was counted as zero. Two sets of such counting were made from the same leaf, and the two numbers were sumed as the raw data. Counting was made from three leaves and averaged. In palmate or pedate leaves I counted from the outer margin of the lateral leaflets. State (1) is prevalent in sampled taxa. Leaves with entire margins are very rare. The simple leaf of Ampelocissus tends to have a densely serrate margin, i.e., state (2).

20. Tooth shape: (0) convex or concave; (1) straight.

21. Tooth sinus shape: (0) angular; (1) round. Typical condition is angular.

270

22. Tooth length©♦: (0) < 1 mm; (1) ≥ 1 mm. The distance from tooth apex to the sinus on the apical side was measured. Teeth from five randonly chosen mature leaves were averaged.

Leaves of Cissus mostly have state (0).

23. Tooth sinus angle©: (0) < 65°; (1) ≥ 65°. If leaf teeth sinus is round I measured the angle formed between the 2 tooth apices and the lowest point of sinus; teeth from five randomly chosen leaves were averaged. Most Cissus have state (0).

24. Leaf glaucous: (0) absent; (1) present. Only leaves with obvious whitish surface preserved on dry specimens were scored as present.

25. Pocket-shaped domatia on leaf abaxial surface: (0) absent; (1) present. In Ampelopsis, the pocket-shaped domatia are not as prominent as those of Australian Cissus, and the condition varies among individuals.

26. Tuft of dense uniseriate hair on the joints of major veins on leaf abaxial surface: (0) absent;

(1) present.

Hair (Characters 27-30)

Hair characters were scored from any part of the whole plant; as long as observed, scored as present.

27. Uniseriate hair: (0) absent; (1) present.

28. Arachnoid hair: (0) absent; (1) present. If present then always also present in shoot apex, can be lost or denser when organs are old.

29. 2-armed hair: (0) absent; (1) present.

30. Multiseriate hair: (0) absent; (1) present.

Sexuality (Character 31)

31. Plant dioecious: (0) absent; (1) present.

271

Inflorescence-branch morphology (Characters 32-41)

Characters 32-41 were scored from branches that bore open flowers. For Vitis and

Tetrastigma, characters were scored from staminate inflorescences.

32. Tendril in inflorescence-branch: (0) absent; (1) present. Species of Ampelocissus and

Ampelopsis sometimes have the upper part of the inflorescence aborted but the inflorescence-

tendril is well developed and resembles a tendril; or the inflorescence-axes are reduced and

resemble an intermediate form of inflorescence and tendril. These conditions were not

considered as state (1).

33. Developing shoot apex remained on inflorescence-branch at anthesis: (0) absent; (1) present.

In Cayratia and Cyphostemma, some species have both states on the same specimens or in the

same species. They were coded as present.

34. Number of nodes produced in one inflorescence-branch: (0) more than three; (1) two or

three. When more than three nodes, node number varies greatly; however, state (0) and state (1)

can be distinguished easily.

35. Inflorescence-branch internode length at anthesis: (0) not shorter; (1) shorter; compared to the vegetative-branch.

36. Inflorescence-branch first internode usually shorter than other internodes in the same branch:

(0) absent; (1) present. More commonly observed in Vitis and Parthenocissus. Species with

large leaves or inflorescence like Ampelocissus frequently do not have this character available on

the herbarial sheet.

37. Compressed inflorescence-branch second internode: (0) absent; (1) present. When present

the first node appears to have a pair of opposite leaves, stipules, or stipule scars. In observed C.

272

laza the inflorescences are either at the first or the second node. The preserved condition did not show the character clearly hence coded "?".

38. Leaves in inflorescence-branch: (0) frequently missing; (1) present.

39. The lowest node with an inflorescence in an inflorescence-branch: (0) any unspecific basal node; (1) strictly from second node; (2) higher than 5th node.

40. Number of inflorescences produced in one branch: (0) more than 4; (1) 1; (2) 2 to 4.

41. Inflorescence-branch terminal node with two inflorescences and one leaf: (0) absent; (1) present.

Inflorescence morphology (Characters 42-53)

Inflorescence morphology was measured from the mature inflorescences at anthesis stage.

42. Inflorescence length©♦: (0) ≤ 10 cm; (1) > 10 cm. Length of the whole inflorescence was measured starting from the node, excluding free end inflorescence-tendril arm. Two to three inflorescences were averaged for each terminal taxa. Most species of Ampelocissus have large inflorescences.

43. Inflorescence-tendril organization: (0) different from tendril organization; (1) monochasial with two to three arms; (2) monochasial with four or more arms; (3) umbellate. See terminology in Chapter 2 (p. 81) for the explanation of this character.

44. Inflorescence-tendrils with a free end(s): (0) absent; (1) present. When present in

Ampelocissus, this character is not variable among/within individuals. When observed in other taxa, the condition is variable and the common condition is absent.

45. Inflorescence-tendrils twining: (0) absent; (1) present.

273

46. Inflorescence-first-axis branching organization: (0) umbel; (1) di-, tri-, or tetra-chasium; (2)

racemose; (3) bifurcate or multi-chasium. State (3) refers to the uncertain condition of C. junceum (see Discussion of Chapter 2, p. 117).

47. Inflorescence-first-axis length: (0) very short (0-2 mm); (1) not short ( > 4mm).

48. Inflorescence-second-axis branching organization: (0) umbel; (1) di- or tri-chasium; (2) racemose. Acareosperma was scored as an umbel for character 48 and 50 because the central flower was not present but both an umbel and di- or tri-chasium could be the true condition.

49. Inflorescence-terminal-axis branching pattern: (0) umbel; (1) dichasium; (2) double cincinus;

(3) spiral.

50. Inflorescence-axis branching order number©#: (0) one or not branched; (1) two to three; (2) four or more. Cayratia and Cyphostemma have state (2).

51. Inflorescence-axis cymoid branching order number: (0) absent; (1) one; (2) equal to inflorescence-axis branching order number.

52. Inflorescence-axis shape: (0) terete; (1) laminar.

53. Floral pedicel length©♦: (0) sessile ( = 0); (1) ≤ 2 mm; (2) > 2 mm. Measured from herbarial

sheet. Average of 5 pedicels for each terminal taxa. Ampelocissus mostly has state (1). The

floral pedicels of Acareosperma were not preserved, however, the fruit pedicels are 1 cm long. It

was assumed that the floral pedicels are more than 2mm long and coded state (2) in discrete

coding, and coded "?" in GW method.

Floral morphology (Characters 54-70)

Continuous floral characters were measured from 2-3 boiled open and intact flowers,

scoring the average of three organs. Staminate/carpellate floral characters were measured from

staminate/pistillate flowers if the plant is dioecious. Filaments are usually shorter and sometimes

274

bent in bud, and longer when flower opened. Styles usually become longer after the flowers

have lost petals and stamens.

54. Floral merosity: (0) mostly four; (1) mostly five, six or seven. V. rotundifolia frequently

have 6- or 7-merous flowers.

55. Petal adnate to disc: (0) absent; (1) present.

56. Flower bud apex lobed: (0) absent; (1) present.

57. Petal red color†: (0) absent; (1) present. State (0) is equal to petal greenish or yellowish white. Bright pink, fuchsia, crimson, maroon were considered as red. Red color in a petal varies from the entire petal to only red at apex or margin; as long as the red color is present at any part

of petal, it was coded as state (1).

58. Hair on petal outer surface: (0) absent; (1) present.

59. Petals united to calyptra: (0) absent; (1) present.

60. Filament to petal length ratio©: (0) < 0.9; (1) ≥ 0.9. Filaments of male Vitis flower are

usually longer than petal at anthesis ( > 0.9).

61. Anther to petal length ratio©: (0) < 0.4; (1) ≥ 0.4. Parthenocissus have large anthers ( > 0.4).

62. Disk margin: (0) grooved at filament; (1) dissected deeply to ovary at filament; (2) with one

extra groove between filaments. State (0) is typical in vitaceous flowers. State (1) was mostly

observed in Cyphostemma; the dissected disk resembles four separate glands. State (2) is

common in Ampelocissus.

63. Disk rim: (0) unseparable from the ovary; (1) angular or pressed tightly against the ovary; (2)

disc rim higher than the inner part of disc (> 0.1 mm) and not touching the ovary. State (0) is

common in Parthenocissus. Most sampled taxa have state (1).

275

64. Ovary hair: (0) absent; (1) present. Uniseriate hairs are the only hair type observed on the outer surface of the ovary. Common in Cyphostemma.

65. Stigma shape: (0) truncate or capitate; (1) lobed.

66. Disk to carpel high ratio©: (0) < 0.25; (1) 0.25-0.4; (2) > 0.4. State (0) occurs in most Vitis and Tetrastigma. State (2) is common in Ampelocissus. Very large value in Leea tetramera.

67. disc height to diameter ratio©: (0) < 0.5; (1) ≥ 0.5. State (1) occurs in Yua and most

Parthenocissus. The value is very large in Leea tetramera.

68. Style width to length ratio©: (0) < 0.8; (1) ≥ 0.8. Ampelocissus, Nothocissus, Pterisanthes and some species of Tetrastigma have state (1).

69. Style to carpel length ratio©: (0) < 0.43; (1) ≥ 0.43. Ampelocissus and most species of

Tetrastigma have state (0).

70. Style base width to disk diameter ratio©: (0) < 0.3; (1) ≥ 0.3. Ampelocissus and Vitis have state (0).

Pollen morphology (Characters 71-73)

Pollen characters were measured from the average of 10 random pollen grains of two to three boiled open flowers.

71. Pollen size©♦: (0) < 30 µm; (1) ≥ 30 µm. Pollen size is measured as either the equatorial diameter or the polar axis, whichever is larger. Vitis, Ampelocissus, Pterisanthes and

Tetrastigma have state (0). Other genera mostly have state (1).

72. Pollen E/P ratio©: (0) < 1; (1) ≥ 1. Equatorial diameter to polar axis ratio. Ampelopsis and most Cissus have state (0). Ampelocissus mostly have state (1).

73. Maximum lumen diameter©♦: (0) < 0.7 µm; (1) ≥ 0.7 µm. Measure the diameter of largest lumen of pit or reticulum on the pollen surface. Rhoicissus, Tetrastigma, Vitis, Pterisanthes, and

276

most species of Ampelocissus have state (0). Parthenocissus have state (1). Leea tetramera has very large lumen (5.05 µm).

Fruit morphology (Characters 74-80)

74. Lenticels on fruit pedicel: (0) absent; (1) present.

75. Seed number per fruit†: (0) 1; (1) 1 or 2; (2) 1 to 4; (3) 6 to 9. The character was observed from 1-3 boiled fruits, the dry fruits on the herbarium sheets, and also consulted literatures.

Cissus sterculiifolia was reported to have 1-2(-3)-seeded fruits (Jackes, 1988b). In this study only 1-2-seeded fruits were observed so C. sterculiifolia was scored state (1).

76. Fruit shape: (0) globose or compressed globose; (1) ellipsoid or fusiform. Observed from 1-3 boiled fruits. The fruit shape does not change a lot when dry.

77. Fruit skin color†: (0) dark purple; (1) yellow, orange, red, or green; (2) iridescent blue. State

(2) was only observed in some Ampelopsis species.

78. Lenticel density on fruit surface©#: (0) not dense (< 25); (1) dense (≥ 25). Number of lenticels was counted from half surface of one berry; value was counted from 1-3 boiled fruits and averaged. All species of Ampelopsis have state (1).

79. Hair on fruit surface: (0)absent; (1) present.

80. Stomata on fruit surface: (0) absent; (1) present. Present in some Cayratia, Cyphostemma and Tetrastigma.

Seed morphology (Characters 81-137)

Definition and the delimitation of all seed characters were described in Chapter 1.

81. Seed max length©♦: (0) < 7 mm; (1) ≥ 7 mm.

82. Seed width/length ratio©: (0) < 0.6; (1) ≥ 0.6.

83. Seed apex to widest part©: (0) < 0.5; (1) ≥ 0.5.

277

84. Apical notch depth©: (0) < 0.05; (1) ≥ 0.05.

85. Apical notch angle©: (0) < 60°; (1) ≥ 60°.

86. Beak length©: (0) < 0.1; (1) ≥ 0.1.

87. Beak angle©: (0) < 80°; (1) ≥ 80°.

88. vi circularity©: (0) < 0.4; (1) ≥ 0.4.

89. vi length©: (0) < 0.6; (1) ≥ 0.6.

90. vi apex to widest part©: (0) < 0.4; (1) ≥ 0.4.

91. vi space at the apex©: (0) < 0.5; (1) ≥ 0.5.

92. vi space at the middle©: (0) < 0.35; (1) ≥ 0.35.

93. vi space at the base©: (0) < 0.15; (1) ≥ 0.15.

94. vi space base to middle ratio©: (0) < 1; (1) ≥1.

95. vi divergence angle©: (0) < 25°; (1) ≥ 25°.

96. vi curve angle©: (0) < 180°; (1) ≥ 180°.

97. vi base to beak distance©: (0) < 0.2; (1) ≥ 0.2.

98. Chalaza circularity©: (0) < 0.5; (1) ≥ 0.5.

99. Chalaza width©: (0) < 0.25; (1) ≥ 0.25.

100. Chalaza apex to widest part©: (0) < 0.6; (1) ≥ 0.6.

101. Chalaza length©: (0) < 1.4; (1) ≥ 1.4.

102. Chalaza to notch distance©: (0) < 0.1; (1) ≥ 0.1.

103. Chalaza to beak distance©: (0) < 0.1; (1) 0.1-0.4; (2) ≥ 0.4.

104. External rugosity©: (0) < 0.2; (1) ≥ 0.2.

105. Raphe curve angle©: (0) < 180°; (1) ≥ 180°.

106. Ruga sinus angle©: (0) < 50°; (1) ≥ 50°.

278

107. Ruga ridge angle©: (0) < 85°; (1) 85°-155°; (2) ≥ 155°.

108. Apical groove angle©: (0) < 150°; (1) ≥ 150°.

109. Base groove angle©: (0) < 150°; (1) ≥ 150°.

110. cs high/width ratio©: (0) < 0.9; (1) ≥ 0.9.

111. vi rugosity©: (0) < 0.26; (1) ≥ 0.26.

112. vi thin part ratio©: (0) < 0.85; (1) ≥ 0.85.

113. vi thin part circularity©: (0) < 0.72; (1) ≥ 0.72.

114. vi depth©: (0) < 0.5; (1) ≥ 0.5.

115. vi width©: (0) < 0.2; (1) ≥ 0.2.

116. Chalaza surface angle©: (0) < 150°; (1) ≥ 150°.

117. Chalaza sunken angle©: (0) < 30°; (1) 30°-150°; (2) ≥ 150°.

118. Chalaza thickness©: (0) < 0.15; (1) ≥ 0.15.

119. Ruga depth/width ratio©: (0) < 1; (1) ≥ 1.

120. Endotesta thickness©: (0) < 0.03; (1) ≥ 0.03.

121. Endotesta max thickness©: (0) < 0.15; (1) ≥ 0.15.

122. Endotesta thickness at vi©: (0) < 0.015; (1) 0.015-0.03; (2) ≥ 0.03.

123. Endotesta thickness at chalaza©: (0) < 2.5; (1) ≥ 2.5.

124. Endotesta thickness at ruga sinus©: (0) < 0.45; (1) 0.45-1; (2) > 1.

125. Endotesta thickness at ruga apex©: (0) < 2; (1) ≥ 2.

126. Endotesta sclereid width/length ratio©: (0) < 0.4; (1) ≥ 0.4.

127. Endotesta sclereid wall thickness©♦: (0) < 6 µm; (1) ≥ 6 µm.

128. Number of endotesta sclereid layers©#: (0) < 4; (1) ≥ 4.

129. Endotesta sclereid crystals: (0) absent; (1) present.

279

130. Stomata on sarcotesta: (0) absent; (1) present.

131. Tracheidal cell diameter©♦: (0) < 10 µm; (1) ≥ 10 µm.

132. Number of tracheidal cell layers: (0) tracheidal exotegmen 1 cell thick; (1) 2 cells thick, the

2 layer of cells have different diameter, the difference is more than twice.

133. vi covered by endotesta: (0) absent; (1) present.

134. Ruga whorled: (0) absent; (1) present.

135. One vi: (0) absent; (1) present.

136. vi cavity V-shaped: (0) absent; (1) present.

137. Constricted rim on ventral side: (0) absent; (1) present.

280 APPENDIX D DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING

281 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000000000???20001100000001000???1001111?0000010?2202????????????????????0010010110110000100000101000111100110100001100010011101101101010 Ampelocissus abyssinica 0000?000001010000120100000110000100?01000111121202101100100102100211010111111000110010011100000101000111001000010010100000011010100000000 Ampelocissus acapulcensis 00000010001010000120010000110000100001000121121202101100100102100201010101200100110111111110000101000111111000011010100000010010100000000 Ampelocissus acetosa 00001000000002000210110100110000100001000111121202101100100002100211010100210100010010101100100101000111001000010001100000010000100000000 Ampelocissus africana 00000000000000000120000000010000100001000011121202101100100002100201010101110100110010101100000101000111111000010000100000010010100000000 Ampelocissus barbata 00000000000000000120000000110100100?01000121121202101100100002100211010001211100111010111100000101000121111110010011100001010010000000000 Ampelocissus botryostachys 0000000000???1000110010000110000?00?01000111121231001000100012100211010101211100110110111000000101000020112110010011200000010010100000000 Ampelocissus erdvendbergiana 00000010000010000120000000110000100001000121121202101100100102110201011101200100010111011100000011100121111000011011200101010010100000000 Ampelocissus javalensis 00000010000000000120010000110000100001000121121202101100100002100211011111201000110111011100000101000121011000010011100101010010000000000 Ampelocissus latifolia 00001010010000000120000000110000100101000121121202101100100002100211010101210100010010101100000101100011101000011001100100010000000000000 Ampelocissus ochracea 00000000021010000020100000110000100101000111121231000000000012100201010100211000110111011100000101000120112110010011200000010000000000000 Ampelocissus robinsonii 00000000000000000120000000110000100001000011121001101100000002100201010011200100010111010000100111100021111000011011100000010010100000000 Ampelopsis arborea 00000000000003000210000010100000100001000010101121202100000000100100101011200100010011100100100111110020112100001001200100010010100000000 Ampelopsis cantoniensis 00000000000003000110000010100000100001000010001121202100000000100100101000200100010011110000100111100021011100001001200100010010100000000 Ampelopsis cordata 00000000000000000110000010100000100001000010101121202100000000200100101010202100010011100100101111110020112100101101200100010010000000000 Ampelopsis delavayana 00000000000001000110000010101000100001000010101121202100000000200100101000200100010011110010101111110020112100001001200000010010100000000 Ampelopsis glandulosa 00000000000000000110000010101000100001000010101121202100000000200100101010202100010011100000101111110020112110001001200000010010100000000 Ampelopsis grossedentata 00100000000003000211000000100000100001000010001121202100000000100100101001201100010011110100110111110021111100011011200000010010000000000 Cayratia cardiophylla 00001000011001000010000000100000011010110010011112202001000000200100101010201001010010010100010110000011011000010011100000010100100000001 Cayratia geniculata 00000000011001010110000000100000011010110010011112202001000000200100101110201000111010101100100110000111012110010001200010010111111100001 Cayratia japonica 00000000001002000110000000100001100011110000011112202001000000200100100100200000010111110000100111000021110010010101100101010111110000000 Cayratia maritima 00000000001002000210000000100001100011110000011112202001000000200100101010200000010111010000000110000021110000010011100000010111111100000 Cayratia oligocarpa 00000000001012010110000000100001100011110000011112202001000000200100101010201001110111011100010100000021010010010011100000011110111100000 Cayratia trifolia 00000011101011110110000000100001100011110000011112202001000000200100100100200001010011010100100111000021011110010001200100010111111100000 Cayratia triternata 00000000001013000110000000100001100011110000011112201001010000200201101000200001010111010100100011000121011000010011100101010111110100000 Cissus alata 00001000020011000121010000100100000001000000001121202000000000100000101000000000100010100100100110001010010111000101200000110111100000000 Cissus antarctica 00000000001010010111011010001000100001000010100121202000010000100100100101200100110010101100000100000011101000110000100002120111100000000 Cissus assamica 00000000010010000011011000001000100001000000001121202000010000100100101000010000000010000111101110001011011111110101200000010101100000000 Cissus biformifolia 00001000000010000011011000001000000001000000001121202000110001200000101011010100110010100000000100001011110111100001200000111111100000000 Cissus campestris 00001000000000200121011000100000000001000000001121202000000010200100101000000000010010100100100100001010112111000101200100010111101000000 Cissus cornifolia 10002????10010000211011000001000100001020000001022202000000000200100101000010000100010100100100100001011011111100101200000010111101000000 Cissus descoingsii 00001000000010000111010000101000000001000000001122201000110000100100101000011000111011000100000100001011011111110101201000010101101000000 Cissus fuliginea 00001200010000000111010000101000101001000000001122202000000000200100101000000000010011010100000100001021010110100111200000010101100000000 Cissus granulosa 00001000020011011210011000100000000001021010001002202000000000100110101000200000010010100101000101110021102110100001101000100010000000000 Cissus hypoglauca 00000000001011011201010100001000101000020010001002201000000000200100011011200100100010101111100100000011102100101001100000010010000000000 Cissus mirabilis 00010000010001000211010000001000101101000000001121202000100000200200101010010000110011000000100110001011010101110001200000110010100000000 Cissus obovata 00011001110001000210011000001000100001000000001121202000100000200200101000000000010011000101100110001010112111000101200000010110100000000 Cissus palmata 00000001020011000211011000101001100101020000001121202000100010100000101000210000100010100100100110001010011111000101200000010111101000000 Cissus paullinifolia 00001000000013000110011000001000000001000000001122202000100000100000101001010100100010100100100100001011011111000001200000010111000000000 Cissus penninervis 0000100000000101120????000100000000001021010001022202000000000100110101011200000100010101110001000000011102110100101200000000010100000000 Cissus quadrangularis 00111000000000000111011000000001100001020000001121202000100000200100101000000000011010000100110100001010012111100101200000010110100000000 Cissus reniformis 00010000000110000111011000000000001001000000001121202000100000200100101010000000011010010100000100001010012111110101200000010010100000000 Cissus simsiana 00000000000001010110000010100000100001020011101122202000010010100100101000200100010011010000101111110021111000011011100000010010101000000 Cissus sterculiifolia 00001000001011011201010010101000001000001010001022201000000000100100100101110100101010101100000100000011101011010001001000000010100000000 Cissus striata ssp. argentina 00001000010001011210010000100000000101001010001121202000100002100100100010200100010010000100001101110020112100101001200000010010100000000 Cissus trianae 00001000000011001210010000001000101001000011001121202000000002000210001000201100010010101111101110110011002110100001100000100110000000000 Cissus verticillata 00010000000110000111011000100000100001000000001121202000000000200000101000000000011010100100100100001010111111000101200000010111101000000 Clematicissus angustissima 0000000001000100120????000000000100001000011111121202100000000100100101010210100000010101000000101110020112110100101200000010010101100100 Clematicissus opaca 00000000000001000210010000100000100001000010111121202100100000200100101000200100010011001000000101100020112110011101200000010010100000000 Cyphostemma adenocaule 00000000021012010110000000100101100011110000011122202001110001210000101110010010010010100101100100001010111111000101200000010101111010000 Cyphostemma buchananii 00000000021011010110000000100001100011110000011112202001110001200110100100011010110010100100100110001011111111000101200000010101101010000 Cyphostemma hereroense 00012????2101121121010000010010001001111010000112220200111000121011010110001?011110010100101100100001011102111100101200100010111111010000 Cyphostemma junceum 10002????11011211110000000100000000101221100031112202001100001200210101010010001110010100100100100001011110111000101200100010111111010000 Cyphostemma lageniflorum 00010000021011000110000000100100010011110000011112202001110001210110101100011010010010100100100100001011111011110101200000010111101110000 Cyphostemma laza 100100000010130002100110001000011000?1110000011122202001100001200100101010010011111010100100100000001011112111000101100100010111111010000 Cyphostemma microdiptera 00000000021013000210000000100100010011110000011112202001100000200100101010010001000010100101100100001011112111100101200000010111011010000 Cyphostemma odontadenium 00010000021011000110000000100100010011110000011112202001?1000121000010101001?011011010100100000100001010111111110101200100010111111010000 Cyphostemma paucidentatum 0000000002111100111000000010010110001111000001111220200111000120000010100001?011010010100100100110001011111111010101200100010101111010000 Cyphostemma setosum 00010000021011200110000000000101100010110000011112202001100001200100101010011010110010100100100100001011110111110101200000011111111110000 Leea guineensis 10002????00013010010000001100000000001221100001022202110100000200210101111301000010010100100110000001000102111010001011000100100101010000 Leea tetramera 10002????00013010010100000100000000001221100001012202010010000200210101111301000100010100100010100001000002111110101011000000111101010000 Nothocissus spicifera 00003000000000000011010000110000000001221110020001102000?00002100211010101111000100010101101100101100111102000010000101000010010000000000 Parthenocissus dalzielii 00000011101011110210000000100000001101000020000?00201100000000100210111011200000010100101111001101100020112000110101200000010010100000000 Parthenocissus laetevirens 00000011101011110110000000100000001101000020001021202100000010000210111011200100010100101111101101100020112010110101200000010010100000000

282 Parthenocissus quinquefolia 00000010101011100210000000100000001101000020000001202100100010000210111011200100010100101110101001100020112000100001200000010010100000000 Parthenocissus vitacea 00000000001011110210000000100000000101020110001022202100000010000100011010200000010100101110001001100020112000100101200000010010100000000 Pterisanthes cissioides 00000000010001010211010000010000100101000111120?30010000100010000001100100101000110010111000010101000020112110011011200000010010000000000 Pterisanthes polita 00000000000000000111010000010000100101000111120?30010000100010000001100000101000110110111100010101100020012010010011200001010010100000000 Rhoicissus digitata 0000100000100100120????010001000101001020010000121201100010000100000101001200100010010101111001100000011102000100001100100010010101100000 Rhoicissus tridentata 00001000001011000110100010001000100001000011100121202100100000200000101101200100010011100101101110000011002110100001110100010011000000000 Tetrastigma bioritsense 01011201011011000210000000100010011000120000001101202001000000201001010101201000110010001100011001010011102110110101100000000010110000000 Tetrastigma obtectum 000011101210011102100000001000100110001100300?0?00202001100000101001010000000000010010101110001001000121112110010001200000000100011100000 Tetrastigma planicaule 01001000011011010210010000100010011000110000001002202001000000101001000001201001100010001100100100000011102110100101200000010010011100000 Tetrastigma rumicispermum 00000000011012110210001000100010011000110000001002201001000000101000000001201000010110100110001011000021111000100001100100010000001100010 Tetrastigma serrulatum 00000000021012010210001000100011101001110000001001202001000000101001010000200000010010000111101110000011110110000101200000010010011100000 Vitis aestivalis 00000000000000000110000000110011100101020111121201102100001100100000110101200000010010100100100111100120112100010001100101010010100000000 Vitis betulifolia 00000000000000000110100000110011100101020010021201102100001100100000000001200000010111010100110111100120112000010101200101010010100000000 Vitis flexuosa 00000000000000000110100001110011100101020000021201101100001100100000110101200000010111010100100111100120012000011001100100010010100000000 Vitis piasezkii 00000000000001000110100000110011100101020100021202101100001100100100110101200000010011000100000111000120012000010001200101010010100000000 Vitis rotundifolia 00000000000000000110000001110011100101020011121201101100001110100000110101200000010010101100100011100110112000100001100100010010000000000 Vitis tsoi 00000000000000000110000000110011100101020000020201101100001110100000110001200000010011110100100111000121111000010011100101010010000000000 Vitis vinifera 00000000010000000110000000010001100101020011021201102100001110100000100001200000010011000100100111000120112010010100200101010001000000000 Yua austro-orientalis 0000000000???1001211010100000000?00101020010001001202100?00010100110111011200100110011100111100111100121111100100101100100010010100000000 Yua chinensis 00000000001011001210000100100000100101020010001001202100000010000110111001200100010011000110101011100020112110100101200100010010100000000

283 APPENDIX E DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH GW CODING

284 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

285 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

286 APPENDIX F DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOPSIS ROOSEAE, CONTINUOUS CHARACTERS TREATED WITH GW CODING

287 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

288 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000 Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????3hb0r8aab3egg5ekdmmf40h1lrrrk82fne4rra0k453a0???????00000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

289 APPENDIX G DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS TIFFNEYI, CONTINUOUS CHARACTERS TREATED WITH GW CODING

290 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata spp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

291 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000 Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????3fh2m8ad8e9ac77cfqg42pj0lrreg70rhh8rk50617?a02j0????00000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

292 APPENDIX H DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PALAEOVITIS PARADOXA, CONTINUOUS CHARACTERS TREATED WITH GW CODING

293 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj232l05ar45g10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk232362621m2104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7adkdfaa5ac6kc53fd5lca8h71rk8acg815474a01p2104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3g8me9bb56c5fc44f8ck2ghh52rhc5ql533246611b2101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1h2kfbe936f7e743lbaldh0012rk540a131110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4fekg47864c6e6a2le4lffmp12ra4lnl302292911h2002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0ggp843585c1ka527j1mrrnl51rf7rrm202263a04r2105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmb062e6a02e2101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl4055e1a11j2002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj516582a0192003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn301255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crk903162a03h2104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qea7df9ge57mdhkq54j1lrrmh826qb5rm606215a01g2102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1nadr0a8ae8acrjda37l8hgfmd71dn86rm81a722700g2104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7h76ebdd6fdfjpk80g1lrpqk77akf3rp406213a01h2003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8eb95fgf5fcbkeg60n0lrrre72drc4rn504322a04g2104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rr804515a03l2105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrr815662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl321142a1805105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1d0gf5fc45fdb5449b3crrrr71r300rn302r63a07h711f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rl82b7f4818fb116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh614552a16jb11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b89kee44784ca41450e4j73kl21rh7grk200643a58g511f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm538562a15pb11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk6162f3a09gb116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1h73e9dl84ce234m082cr9rrr2h6g2rr90541aa05jg107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0l9hf66878c740460bfl2d5554rg17fb8335rfr04gb105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr42431561637107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rr94220c724gb104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3h45d6cf74ja544l080lrrrrc2c7h2rr506524a08mb107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr403417a07j710d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7957dab638c3214k07r39arrjar3f6rr6b22145175b108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr502316715b7106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rh9n211f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0e1gehjb3ac355460d9l2rr994dm83rl524224701g2002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra49796ef66mc864h0a3fp7r7f9r3c6rp70232ca04p5105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq305223a07m2106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr405413a18pb10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rra24303914jg003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2h1nfg985d719a4707gl1rrr568hf2rq432113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq605324a05p2106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr302223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gc9da6dab6eceher35e4lpgd860rn5alj613214812g2108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2b0mfda848c001450cll0jjrd1rda3n01q0013203j2106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr705213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1d1fflnh4bcdadp60d9l4prr77aj71rdb5210r005p2005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rr805417915eb109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4d3f300004c7emp38k1lfrrra4lfd8rr302234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r997k686667c3ml443k1lrrrr60rpe8rr802737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6k18e9jg57r9524r061lrerrd3k1j0rr503416a0797119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr41531480a5b109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0q09fbjf47m4774p08dl5rrrf4f5f0rq80a415404jg11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rp80851571cml11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4f09f68c84ca654l0c5lrahrc3r6e0rr204213a1cgb10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5k0eee9b7894654r0a9nerrre3f5h0rl70841571cpl11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4e1deahe46g69b4n058pgrrrdak6k0rr301116a0rgb019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0n1ce7ca56j5634q0a1lplrrder3k0rr609323a08db11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0n36f8af84cc744n086lmhnre3r5e0rr306322a199b119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bbl95rrchr3f0rr705416a26jg11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2jg432e01585108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5g17f47a84c4595n00190rrrm9r0e0r1cr3106005gb10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1543c0024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rra02125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22l4legjd4cc4qh720k0lrrcr38r9g3rr201024a03g0104000000

294 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr302115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916b4gelba5m78lja40j1lrrdh66hdj5rm403127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm502687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1nmge44684c2mm660r1grrlp72rk8hrq4022a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rc835536a03g510n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rff4a526a04p7002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r580led479j55d9g54ael0rrr5mr2j1rk521017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1k1ldjdb4d22la83hfal6rrr50rf82rr060011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm260116413p201q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk2466115117200k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p694demlj5fcj96360cale6rr63jdg2rr323123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgb0a3a4a01g2102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm406292a01j5102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rka07273a02k2104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb7a8ea9a68cdnb41lm1hrrek71rec6hm306290a01g2103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5e4eebcg868bpg42mb2ler8e76fbc3rl706221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee6ljg5f72rfaalk5162b3800j2001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm3094a3a0367003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj628312900m2102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr406322a00g2102000000 Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????alm0r1rg8ebee58fank55ea0lrrfda2clb7rer0rad3a02gr????00000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

295 APPENDIX I DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOCISSUS WILDEI, CONTINUOUS CHARACTERS TREATED WITH GW CODING

296 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj332l05ar44g10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk233362621h2104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb17474a01k2104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql63424661192101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a232110a03h0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl403292911e2002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm302263a04m2105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf082e6a02c2101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl5075e1a11f2002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj718582a0182003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0180001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd04162a03e2104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm809215a01d2102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1e722700d2104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp608213a01e2003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn706322a04d2104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb05515a03g2105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra17662a01d0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl422142a1805105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn403r63a07e711f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2f7f4818cb116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh815552a16fb11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk300643a58d511f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73b562a15kb11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk9192f3a09db116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0741aa05fg107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc335rfr04db105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62631561627107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4320c724db104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr708524a08hb107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr604417a07f710d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b22145174b108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr70331671597106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn311f101d0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl725224701d2002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90332ca04k5105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq507223a07h2106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr506413a18kb10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd25303914fg003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq533113102h0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq807324a05k2106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr503223a03h0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj814214812d2108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203f2106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr907213a01f0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5310r005k2005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb07417915cb109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr402234502d010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra03737a02h0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr804416a0787119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51731480a4b109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0e415404fg11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0b51571chl11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr305213a1cdb10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90a41571ckl11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr301116a0rdb019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80c323a08bb11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr408322a198b119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr906416a26fg11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg632e01575108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr5106005db10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501d0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd03125a03c0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03d0104000000

297 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr503115a01d0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm604127a01f0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm703687a03f0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6032a7a01f0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb37536a03d510n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4e526a04k7002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk721017104h0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr0610113079001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413k201q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk3486115116200k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr524123901f001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0d3a4a01d2102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm608292a01f5102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0a273a02g2104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm409290a01d2103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl908221a00f0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk7182b3800f2001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50d4a3a0357003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92a312900h2102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr508322a00d2102000000 Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????k992p2k2befef6a8bd733jb5lhkkj12??a6rfe2r8?1a02rr????00000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

298 APPENDIX J DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PARTHENOCISSUS CLARNENSIS, CONTINUOUS CHARACTERS TREATED WITH GW CODING

299 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflora 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

300 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000 Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????4db2l5h5jeb775d95lnm4bf0lrrjjc5r5g4rhb0j452a01j3????00000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

301 APPENDIX K DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS MAGNISPERMA, CONTINUOUS CHARACTERS TREATED WITH GW CODING

302 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q460n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j541rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc43fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc34f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e733lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e682le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka427j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh42ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k871fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe528h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkl54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjd837l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpf80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbked60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejll70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphb30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch733707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6550gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81340f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga340gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk662cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce233m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740360bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb204j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha213j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja543l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa323h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6413g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpj60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355360d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc863h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe334g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9364k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a3707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4203q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1223q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6ecehem35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamld43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadk60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emk38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3ml343k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9523r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb784m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4773p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6553n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca653l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894653r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b3n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5633q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc743n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3774m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484453q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4594n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np53kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr430j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh620k0lrrcr38r9g3rr301024a03g0104000000

303 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97nj933l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lj840j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc380l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm560r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6a70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9d54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la63hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4674905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj31ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd31ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg42ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb31lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg32mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna42ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc32ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj847g1lrrmr877jf4rr50d322a00g3102000000 Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????edh5g1l6gf9567a72qrr3lb0lrrch6????5rm?08???a0???????00000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

304 APPENDIX L DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH GW CODING

305 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q460n6al20rr0ra651mj232l05ar44g10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j541rdak5jcg23ra6jgk232362621h2104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7adkdfaa5ac6kc43fd5lca8h71rk8acg815474a01k2104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3g8me9bb56c5fc34f8ck2ghh52rhc5ql53324661192101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1h2kfbe936f7e733lbaldh0012rk540a131110a03h0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4fekg47864c6e682le4lffmp12ra4lnl302292911e2002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0ggp843585c1ka427j1mrrnl51rf7rrm202263a04m2105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh42ce5lhbjf60rm7crmb062e6a02c2101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl4055e1a11f2002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj516582a0182003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k871fh1lrrnr10rb4krn301255a0180001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe528h6ldkhk61rn8crk903162a03e2104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qea7df9ge57mdhkl54j1lrrmh826qb5rm606215a01d2102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1nadr0a8ae8acrjd837l8hgfmd71dn86rm81a722700d2104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7h76ebdd6fdfjpf80g1lrpqk77akf3rp406213a01e2003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8eb95fgf5fcbked60n0lrrre72drc4rn504322a04d2104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejll70h1lrrrr91glc4rr804515a03g2105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphb30l6lnfmc61rpadrr815662a01d0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch733707b6ffge32rd3ekl321142a1805105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1d0gf5fc45fdb5449b3crrrr71r300rn302r63a07e711f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6550gdle5fq42rff7rl82b7f4818cb116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81340f9ld5eh62rh6emh614552a16fb11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b89kee44784ca41450e4j73kl21rh7grk200643a58d511f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga340gbkgcmn62rgc9rm538562a15kb11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk662cj3lggfg62rd3jrk6162f3a09db116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1h73e9dl84ce233m082cr9rrr2h6g2rr90541aa05fg107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0l9hf66878c740360bfl2d5554rg17fb8335rfr04db105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb204j0775karrlem2h3rr42431561627107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha213j09qle5rrcgh1b6rr94220c724db104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3h45d6cf74ja543l080lrrrrc2c7h2rr506524a08hb107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa323h064grgrrg7l2l2rr403417a07f710d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7957dab638c3214k07r39arrjar3f6rr6b22145174b108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6413g0j58q8rr9825kerr50231671597106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpj60kbl3rrr6f0ja1rh9n211f101d0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0e1gehjb3ac355360d9l2rr994dm83rl524224701d2002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra49796ef66mc863h0a3fp7r7f9r3c6rp70232ca04k5105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq305223a07h2106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe334g091hrlrre3e2l3rr405413a18kb10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9364k07e9fcrrh375b5rra24303914fg003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2h1nfg985d719a3707gl1rrr568hf2rq432113102h0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4203q090frrrrj5j2n2rq605324a05k2106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1223q0c10rrrrjbn1r3rr302223a03h0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gc9da6dab6ecehem35e4lpgd860rn5alj613214812d2108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2b0mfda848c001450cll0jjrd1rda3n01q0013203f2106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamld43n1lrrpe648mb4rr705213a01f0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1d1fflnh4bcdadk60d9l4prr77aj71rdb5210r005k2005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rr805417915cb109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4d3f300004c7emk38k1lfrrra4lfd8rr302234502d010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r997k686667c3ml343k1lrrrr60rpe8rr802737a02h0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6k18e9jg57r9523r061lrerrd3k1j0rr503416a0787119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb784m066ljgrrc1k6l0rr41531480a4b109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0q09fbjf47m4773p08dl5rrrf4f5f0rq80a415404fg11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6553n077le8rrf2e5e0rp80851571chl11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4f09f68c84ca653l0c5lrahrc3r6e0rr204213a1cdb10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5k0eee9b7894653r0a9nerrre3f5h0rl70841571ckl11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4e1deahe46g69b3n058pgrrrdak6k0rr301116a0rdb019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0n1ce7ca56j5633q0a1lplrrder3k0rr609323a08bb11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0n36f8af84cc743n086lmhnre3r5e0rr306322a198b119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3774m0bbl95rrchr3f0rr705416a26fg11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484453q030l1rrre2r8c0r2jg432e01575108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5g17f47a84c4594n00190rrrm9r0e0r1cr3106005db10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np53kbpl2qa773r5a1543c0024501d0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr430j1lrrej76mfg4rra02125a03c0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22l4legjd4cc4qh620k0lrrcr38r9g3rr201024a03d0104000000

306 Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97nj933l1lrrah95gcd4rr302115a01d0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916b4gelba5m78lj840j1lrrdh66hdj5rm403127a01f0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc380l0lrrrr72rkbkrm502687a03f0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1nmge44684c2mm560r1grrlp72rk8hrq4022a7a01f0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6a70adl1rfh6hbbb2rc835536a03d510n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rff4a526a04k7002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r580led479j55d9d54ael0rrr5mr2j1rk521017104h0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1k1ldjdb4d22la63hfal6rrr50rf82rr0600113079001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4674905al0rrp5cd9h2rm260116413k201q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk2466115116200k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p694demlj5fcj96360cale6rr63jdg2rr323123901f001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj31ph0rrrnh82ra96rgb0a3a4a01d2102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd31ch1lrr9k72rgd8pm406292a01f5102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg42ee1krr9h71rl88rka07273a02g2104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb7a8ea9a68cdnb31lm1hrrek71rec6hm306290a01d2103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5e4eebcg868bpg32mb2ler8e76fbc3rl706221a00f0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna42ee6ljg5f72rfaalk5162b3800f2001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm3094a3a0357003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc32ff8ldcnj4edce1rj628312900h2102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj847g1lrrmr877jf4rr406322a00d2102000000 Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????4db2l5h5jeb775d95lnh4bf1lrrjjc5r5g4rh808452a01f2????00000 Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????edh5g1l6gf9567a72qrr3lb0lrrch6????5rm?04???a0???????00000 Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????alm0r1rg8ebee58fank45ea0lrrfda2clb7rer0rad3a02dr????00000 Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????3hb0r8aab3egg5ekdmmd40h1lrrrk82fne4rr708453a0???????00000 Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????3fh2m8ad8e9ac77cfqg32pj0lrreg70rhh8rk40317?a02f0????00000 Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????k992p2j2befef6a8bd733jb5lhkkj12??a6rfa2j8?1a02rr????00000

Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

307 APPENDIX M DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING

308 10 20 30 40 50 60 70 80 90 100 110 120 130 ......

Acareosperma spireanum 0000000000???20001100000001000???1001111?0000010?2202????????????????????0010010110110000100000101000111100110100001100010011101101101010 Ampelocissus abyssinica 0000?000001010000120100000110000100?01000111121202101100100102100211010111111000110010011100000101000111001000010010100000011010100000000 Ampelocissus acapulcensis 00000010001010000120010000110000100001000121121202101100100102100201010101200100110111111110000101000111111000011010100000010010100000000 Ampelocissus acetosa 00001000000002000210110100110000100001000111121202101100100002100211010100210100010010101100100101000111001000010001100000010000100000000 Ampelocissus africana 00000000000000000120000000010000100001000011121202101100100002100201010101110100110010101100000101000111111000010000100000010010100000000 Ampelocissus barbata 00000000000000000120000000110100100?01000121121202101100100002100211010001211100111010111100000101000121111110010011100001010010000000000 Ampelocissus botryostachys 0000000000???1000110010000110000?00?01000111121231001000100012100211010101211100110110111000000101000020112110010011200000010010100000000 Ampelocissus erdvendbergiana 00000010000010000120000000110000100001000121121202101100100102110201011101200100010111011100000011100121111000011011200101010010100000000 Ampelocissus javalensis 00000010000000000120010000110000100001000121121202101100100002100211011111201000110111011100000101000121011000010011100101010010000000000 Ampelocissus latifolia 00001010010000000120000000110000100101000121121202101100100002100211010101210100010010101100000101100011101000011001100100010000000000000 Ampelocissus ochracea 00000000021010000020100000110000100101000111121231000000000012100201010100211000110111011100000101000120112110010011200000010000000000000 Ampelocissus robinsonii 00000000000000000120000000110000100001000011121001101100000002100201010011200100010111010000100111100021111000011011100000010010100000000 Ampelopsis arborea 00000000000003000210000010100000100001000010101121202100000000100100101011200100010011100100100111110020112100001001200100010010100000000 Ampelopsis cantoniensis 00000000000003000110000010100000100001000010001121202100000000100100101000200100010011110000100111100021011100001001200100010010100000000 Ampelopsis cordata 00000000000000000110000010100000100001000010101121202100000000200100101010202100010011100100101111110020112100101101200100010010000000000 Ampelopsis delavayana 00000000000001000110000010101000100001000010101121202100000000200100101000200100010011110010101111110020112100001001200000010010100000000 Ampelopsis glandulosa 00000000000000000110000010101000100001000010101121202100000000200100101010202100010011100000101111110020112110001001200000010010100000000 Ampelopsis grossedentata 00100000000003000211000000100000100001000010001121202100000000100100101001201100010011110100110111110021111100011011200000010010000000000 Cayratia cardiophylla 00001000011001000010000000100000011010110010011112202001000000200100101010201001010010010100010110000011011000010011100000010100100000001 Cayratia geniculata 00000000011001010110000000100000011010110010011112202001000000200100101110201000111010101100100110000111012110010001200010010111111100001 Cayratia japonica 00000000001002000110000000100001100011110000011112202001000000200100100100200000010111110000100111000021110010010101100101010111110000000 Cayratia maritima 00000000001002000210000000100001100011110000011112202001000000200100101010200000010111010000000110000021110000010011100000010111111100000 Cayratia oligocarpa 00000000001012010110000000100001100011110000011112202001000000200100101010201001110111011100010100000021010010010011100000011110111100000 Cayratia trifolia 00000011101011110110000000100001100011110000011112202001000000200100100100200001010011010100100111000021011110010001200100010111111100000 Cayratia triternata 00000000001013000110000000100001100011110000011112201001010000200201101000200001010111010100100011000121011000010011100101010111110100000 Cissus alata 00001000020011000121010000100100000001000000001121202000000000100000101000000000100010100100100110001010010111000101200000110111100000000 Cissus antarctica 00000000001010010111011010001000100001000010100121202000010000100100100101200100110010101100000100000011101000110000100002120111100000000 Cissus assamica 00000000010010000011011000001000100001000000001121202000010000100100101000010000000010000111101110001011011111110101200000010101100000000 Cissus biformifolia 00001000000010000011011000001000000001000000001121202000110001200000101011010100110010100000000100001011110111100001200000111111100000000 Cissus campestris 00001000000000200121011000100000000001000000001121202000000010200100101000000000010010100100100100001010112111000101200100010111101000000 Cissus cornifolia 10002????10010000211011000001000100001020000001022202000000000200100101000010000100010100100100100001011011111100101200000010111101000000 Cissus descoingsii 00001000000010000111010000101000000001000000001122201000110000100100101000011000111011000100000100001011011111110101201000010101101000000 Cissus fuliginea 00001200010000000111010000101000101001000000001122202000000000200100101000000000010011010100000100001021010110100111200000010101100000000 Cissus granulosa 00001000020011011210011000100000000001021010001002202000000000100110101000200000010010100101000101110021102110100001101000100010000000000 Cissus hypoglauca 00000000001011011201010100001000101000020010001002201000000000200100011011200100100010101111100100000011102100101001100000010010000000000 Cissus mirabilis 00010000010001000211010000001000101101000000001121202000100000200200101010010000110011000000100110001011010101110001200000110010100000000 Cissus obovata 00011001110001000210011000001000100001000000001121202000100000200200101000000000010011000101100110001010112111000101200000010110100000000 Cissus palmata 00000001020011000211011000101001100101020000001121202000100010100000101000210000100010100100100110001010011111000101200000010111101000000 Cissus paullinifolia 00001000000013000110011000001000000001000000001122202000100000100000101001010100100010100100100100001011011111000001200000010111000000000 Cissus penninervis 0000100000000101120????000100000000001021010001022202000000000100110101011200000100010101110001000000011102110100101200000000010100000000 Cissus quadrangularis 00111000000000000111011000000001100001020000001121202000100000200100101000000000011010000100110100001010012111100101200000010110100000000 Cissus reniformis 00010000000110000111011000000000001001000000001121202000100000200100101010000000011010010100000100001010012111110101200000010010100000000 Cissus simsiana 00000000000001010110000010100000100001020011101122202000010010100100101000200100010011010000101111110021111000011011100000010010101000000 Cissus sterculiifolia 00001000001011011201010010101000001000001010001022201000000000100100100101110100101010101100000100000011101011010001001000000010100000000 Cissus striata ssp. argentina 00001000010001011210010000100000000101001010001121202000100002100100100010200100010010000100001101110020112100101001200000010010100000000 Cissus trianae 00001000000011001210010000001000101001000011001121202000000002000210001000201100010010101111101110110011002110100001100000100110000000000 Cissus verticillata 00010000000110000111011000100000100001000000001121202000000000200000101000000000011010100100100100001010111111000101200000010111101000000 Clematicissus angustissima 0000000001000100120????000000000100001000011111121202100000000100100101010210100000010101000000101110020112110100101200000010010101100100 Clematicissus opaca 00000000000001000210010000100000100001000010111121202100100000200100101000200100010011001000000101100020112110011101200000010010100000000 Cyphostemma adenocaule 00000000021012010110000000100101100011110000011122202001110001210000101110010010010010100101100100001010111111000101200000010101111010000 Cyphostemma buchananii 00000000021011010110000000100001100011110000011112202001110001200110100100011010110010100100100110001011111111000101200000010101101010000 Cyphostemma hereroense 00012????2101121121010000010010001001111010000112220200111000121011010110001?011110010100101100100001011102111100101200100010111111010000 Cyphostemma junceum 10002????11011211110000000100000000101221100031112202001100001200210101010010001110010100100100100001011110111000101200100010111111010000 Cyphostemma lageniflorum 00010000021011000110000000100100010011110000011112202001110001210110101100011010010010100100100100001011111011110101200000010111101110000 Cyphostemma laza 100100000010130002100110001000011000?1110000011122202001100001200100101010010011111010100100100000001011112111000101100100010111111010000 Cyphostemma microdiptera 00000000021013000210000000100100010011110000011112202001100000200100101010010001000010100101100100001011112111100101200000010111011010000 Cyphostemma odontadenium 00010000021011000110000000100100010011110000011112202001?1000121000010101001?011011010100100000100001010111111110101200100010111111010000 Cyphostemma paucidentatum 0000000002111100111000000010010110001111000001111220200111000120000010100001?011010010100100100110001011111111010101200100010101111010000 Cyphostemma setosum 00010000021011200110000000000101100010110000011112202001100001200100101010011010110010100100100100001011110111110101200000011111111110000 Leea guineensis 10002????00013010010000001100000000001221100001022202110100000200210101111301000010010100100110000001000102111010001011000100100101010000 Leea tetramera 10002????00013010010100000100000000001221100001012202010010000200210101111301000100010100100010100001000002111110101011000000111101010000 Nothocissus spicifera 00003000000000000011010000110000000001221110020001102000?00002100211010101111000100010101101100101100111102000010000101000010010000000000 Parthenocissus dalzielii 00000011101011110210000000100000001101000020000?00201100000000100210111011200000010100101111001101100020112000110101200000010010100000000 Parthenocissus laetevirens 00000011101011110110000000100000001101000020001021202100000010000210111011200100010100101111101101100020112010110101200000010010100000000

309 Parthenocissus quinquefolia 00000010101011100210000000100000001101000020000001202100100010000210111011200100010100101110101001100020112000100001200000010010100000000 Parthenocissus vitacea 00000000001011110210000000100000000101020110001022202100000010000100011010200000010100101110001001100020112000100101200000010010100000000 Pterisanthes cissioides 00000000010001010211010000010000100101000111120?30010000100010000001100100101000110010111000010101000020112110011011200000010010000000000 Pterisanthes polita 00000000000000000111010000010000100101000111120?30010000100010000001100000101000110110111100010101100020012010010011200001010010100000000 Rhoicissus digitata 0000100000100100120????010001000101001020010000121201100010000100000101001200100010010101111001100000011102000100001100100010010101100000 Rhoicissus tridentata 00001000001011000110100010001000100001000011100121202100100000200000101101200100010011100101101110000011002110100001110100010011000000000 Tetrastigma bioritsense 01011201011011000210000000100010011000120000001101202001000000201001010101201000110010001100011001010011102110110101100000000010110000000 Tetrastigma obtectum 000011101210011102100000001000100110001100300?0?00202001100000101001010000000000010010101110001001000121112110010001200000000100011100000 Tetrastigma planicaule 01001000011011010210010000100010011000110000001002202001000000101001000001201001100010001100100100000011102110100101200000010010011100000 Tetrastigma rumicispermum 00000000011012110210001000100010011000110000001002201001000000101000000001201000010110100110001011000021111000100001100100010000001100010 Tetrastigma serrulatum 00000000021012010210001000100011101001110000001001202001000000101001010000200000010010000111101110000011110110000101200000010010011100000 Vitis aestivalis 00000000000000000110000000110011100101020111121201102100001100100000110101200000010010100100100111100120112100010001100101010010100000000 Vitis betulifolia 00000000000000000110100000110011100101020010021201102100001100100000000001200000010111010100110111100120112000010101200101010010100000000 Vitis flexuosa 00000000000000000110100001110011100101020000021201101100001100100000110101200000010111010100100111100120012000011001100100010010100000000 Vitis piasezkii 00000000000001000110100000110011100101020100021202101100001100100100110101200000010011000100000111000120012000010001200101010010100000000 Vitis rotundifolia 00000000000000000110000001110011100101020011121201101100001110100000110101200000010010101100100011100110112000100001100100010010000000000 Vitis tsoi 00000000000000000110000000110011100101020000020201101100001110100000110001200000010011110100100111000121111000010011100101010010000000000 Vitis vinifera 00000000010000000110000000010001100101020011021201102100001110100000100001200000010011000100100111000120112010010100200101010001000000000 Yua austro-orientalis 0000000000???1001211010100000000?00101020010001001202100?00010100110111011200100110011100111100111100121111100100101100100010010100000000 Yua chinensis 00000000001011001210000100100000100101020010001001202100000010000110111001200100010011000110101011100020112110100101200100010010100000000 Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????010010101100001001110120112001110111100100010010????00000 Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????110110101100001001110110112000????112?00???10???????00000 Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????010010110100100101100110112000001011110101010011????00000 Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????010011000000101111110020112100001111200100010???????00000 Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????010011110100100111100120112000010111100000?10010????00000 Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????1100101001001000110001111110000??01110010?010011????00000

310

LIST OF REFERENCES

ALMEIDA, M. T., AND F. A. BISBY. 1984. A Simple method for establishing taxonomic characters from measurement data. Taxon 33: 405-409.

ANGIOSPERM PHYLOGENY GROUP (APG III). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105-121.

ARCHIE, J. W. 1985. Methods for coding variable morphological features for numerical taxonomic analysis. Systematic Zoology 34: 326-345.

BACKER, C. A., AND R. C. BAKHUIZEN VAN DEN BRINK. 1965. Vitaceae, Flora of Java ( only), Volume II, Angiospermae, Families111-160. 641 pp., 3 Volumes; 1963-1968. P. Noordhoff, Groningen.

BAUM, B. R. 1988. A Simple procedure for establishing discrete characters from measurement data, applicable to cladistics. Taxon 37: 63-70.

BERRY, E. W. 1927. Petrified fruits and seeds from the Oligocene of Peru. Pan-American Geology 47: 121-132.

______. 1929. Early Tertiary fruits and seeds from Belen, Peru. Johns Hopkins University Studies in Geology 10: 137-180.

BLANC-LOUVEL, C. 1986. Paleoflore du gisement Eocene de Premontre dans l'Aisne; Vitaceae. Paleoflora from the Eocene deposit in Premontre in Aisne; Vitaceae. 111e Congres national des societes savantes, Poitiers, France, 1986, France (FRA), sciences, fasc. II: 37-48.

BOSS, P. K., AND M. R. THOMAS. 2002. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416: 847-850.

BOSS, P. K., E. J. BUCKERIDGE, A. POOLE, AND M. R. THOMAS. 2003. New insights into grapevine flowering. Functional plant biology 30: 593-606.

BRANTIES, N. B. M. 1978. Pollinator attraction of Vitis vinifera subsp. silvestris. Vitis 17: 229- 233.

BRIZICKY, G. K. 1965. The genera of Vitaceae in the southeastern United States. Journal of the Arnold Arboretum 46: 48-67.

BROWN, R. W. 1934. U. S. Geological Survey Professional Paper 185-C. The recognizable species of the Green River flora, U. S. Geological Survey Professional Paper 185-C, pages 45-77. United States Goverment Printing Office, Washington, D. C.

311

BŮŽEK, Č., F. HOLY, AND Z. KVACEK. 1976. Tertiary flora from the Volcanogenic Series at Markvartice and Veseličko near Ceska Kamenice (Ceske stredohori Mts.). Palaeontology 18: 69-132.

CALONJE, M., P. CUBAS, J. M. MARTINEZ-ZAPATER, AND M. J. CARMONA. 2004. Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiology 135: 1491-1501.

CARLQUIST, S. 1991. Anatomy of and liana stems: a review and synthesis. In F. E. Putz and H. A. Mooney [eds.], The Biology of Vines., pp. 53-71. Cambridge University Press, Cambridge.

CARMONA, M. J., P. CUBAS, M. CALONJE, AND J. M. MARTINEZ-ZAPATER. 2007. Flowering transition in grapevine (Vitis vinifera L.). Canadian Journal of Botany 85: 701-711.

CARMONA, M. J., J. CHIEB, J. M. MARTINEZ-ZAPATER, AND M. R. THOMAS. 2008. A molecular genetic perspective of reproductive development in grapevine. Journal of experimental botany 59: 2579-2596.

CARPENTER, R. J., R. S. HILL, D. R. GREENWOOD, A. D. PARTRIDGE, AND M. A. BANKS. 2004. No snow in the mountains: Early Eocene plant fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685-718.

CEVALLOS-FERRIZ, S. R. S., AND R. A. STOCKEY. 1990. Permineralized fruits and seeds from The Princeton Chert (Middle Eocene) of British Columbia - Vitaceae. Canadian Journal of Botany 68: 288-295.

CHANDLER, M. E. J. 1925-1926. The Upper Eocene flora of Hordle, Hants, 52 pp. Printed for the Paleontographical Society, London.

______. 1957. The Oligocene flora of the Bovey Tracey Lake Basin, Devonshire. Bulletin of the British Museum (Natural History) 3: 103-106.

______. 1961a. Flora of the Lower Headon Beds of Hampshire and the Isle of Wight. Bulletin of the British Museum (Natural History) 5: 133-135.

______. 1961b. The lower Tertiary floras of southern England. I Paleocene Floras. London Clay flora (Supplement). Text and atlas., 354 pp., 334 pl. The British Museum (Natural History), London.

______. 1962. The Lower Tertiary floras of southern England. II Flora of the Pipe-clay series of Dorset (Lower Bagshot), 176 pp. The British Museum (Natural History), London.

______. 1963. The Lower Tertiary flora of southern England. III Flora of the Bournemouth Beds; the Boscombe, and the Highcliff Sands., 169 pp. The British Museum (Natural History), London.

312

______. 1964. The Lower Tertiary floras of southern England. IV A summary and survey of findings in the light of recent botanical observations., p.102, London.

______. 1978. Supplement to the Lower Tertiary floras of southern England, Part 5, 47 pp. The Tertiary Research Group, London.

CHAPPILL, J. A. 1989. Quantitative characters in phylogenetic analysis. Cladistics 5: 217-234.

CHEN, I., AND S. R. MANCHESTER. 2007. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. American Journal of Botany 94: 1534- 1553.

COLLESS, D. H. 1980. Congruence between morphometric and allozyme data for Menidia species - a reappraisal. Systematic Zoology 29: 289-299.

COLLINSON, M. E., AND C. J. CLEAL. 2001a. Late Middle Eocene-early Oligocene (Bartonian- Rupelian) and Miocene paleaeobotany of Great Britain. In C. J. Cleal, B. A. Thomas, D. J. Batten, and M. E. Collinson [eds.], Mesozoic and Tertiary Palaeobotany of Great Britain, Geological Conservation Review Series, No. 22., 335 pp. Joint Nature Conservation Committee, Peterborough, UK.

______. 2001b. Early and early Middle Eocene (Ypresian-Lutetian) paleaeobotany of Great Britain. In C. J. Cleal, B. A. Thomas, D. J. Batten, and M. E. Collinson [eds.], Mesozoic and Tertiary Palaeobotany of Great Britain, Geological Conservation Review Series, No. 22., 335 pp. Joint Nature Conservation Committee, Peterborough, UK.

CONDIT, C. 1944. The Remington Hill flora [Calif.], Chapter 2 of Chaney, R. W., ed., Pliocene floras of California and Oregon. Carnegie Institution of Washington Publications 553: 21-55.

CORNER, E. J. H. 1976. The seeds of , 2 volumes, 311 pp. and 552 pp. Cambridge University Press, Cambridge, UK.

CURRIE, D. J., G. G. MITTELBACH, H. V. CORNELL, R. FIELD, J. F. GUEGAN, B. A. HAWKINS, D. M. KAUFMAN, J. T. KERR, T. OBERDORFF, E. O'BRIEN, AND J. R. G. TURNER. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121-1134.

CZAJA, A. 2003. Paleocarpological investigations of the taphocoenoses of the Lower- and Middle Miocene from the opencast mine Berzdorf/Upper Lusatica (Saxony). Palaeontographica Abteilung B 265: 1-148.

CZECZOTT, H., AND A. SKIRGIEŁŁO. 1959. Flora Kopalna Turowa Kolo Bogatyni II (1), Docotyledones, Hamamelidaceae, Nymphaeaceae, Sabiaceae, Vitaceae, Nyssaceae, Prace Museum Ziemi-Zeszyt No. 3, Odbitka Autorska, p.93-121. Wydawnictwa Geologicze, Warsaw, Poland.

313

DALBO, M. A., G. N. YE, N. F. WEEDEN, H. STEINKELLNER, K. M. SEFC, AND B. I. REISCH. 2000. A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43: 333-340.

DAVIS, P. H. 1967. Flora of Turkey. University press, Edinburgh.

DE FRANCESCHI, D., C. LE GALL, G. ESCARGUEL, M. HUGUENEY, S. LEGENDRE, R. SIMON- COINCON, T. PELISSIE, AND B. SIGE. 2006. Une Paleoflore des phosphatieres Karstiques du Quercy (sud-quest France): premiere decouverte, resultats et perspectives. Strata 13: 97-101.

DE PINNA, M., C. C. 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics 7: 367-394.

DE SANTO, A. V., A. ALFANI, G. RUSSO, AND A. FIORETTO. 1983. Relationship between CAM and succulence in some species of Vitaceae and Piperaceae. Botanical Gazette 144: 342- 346.

DENISOV, N. I. 2007. The taxonomical analysis of ligneous lianas in the Russian Far East. Bulletin of the Botanical Garden-Institute of the Russian Academy of Sciences 1: 44-50.

DESCOINGS, B. 1961. Le genre Cayratia Juss. (Vitacées) à Madagascar. Bulletin du Jardin botanique de l'État a Bruxelles 31: 419-428.

______. 1967. Vitacées. In H. Humbert and J. F. Leroy [eds.], Flore de Madagascar et des Comores: plantes vasculaires / publiée sous les auspices du gouvernement général de Madagascar et sous la direction de H. Humbert., 1-156. Tananarive: Impr. officielle, 1936-.

______. 1972. Vitacées, Flore du Cameroun, 3-132. Museum national d'histoire natur, Paris.

______. 2004. Les grandes Vitacees pachycaules. Succulentes Special 2004: 32-49.

DEWIT, J., AND L. WILLEMS. 1960. Vitaceae, Flore du Congo belge et du Ruanda-Urundi. Spermatophytes. Vo. 9., 453-597. Institut national pour l'étude agronomique du Congo belge, 1948-1960., Brussel.

DODD, A. N., A. M. BORLAND, R. P. HASLAM, H. GRIFFITHS, AND K. MAXWELL. 2002. Crassulacean acid metabolism: plastic, fantastic. Journal of Experimental Botany 53: 569-580.

DONOGHUE, M. J., AND S. A. SMITH. 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359: 1633-1644.

DONOGHUE, M. J., C. D. BELL, AND J. H. LI. 2001. Phylogenetic patterns in Northern Hemisphere plant geography. International Journal of Plant Sciences 162: S41-S52.

314

DOROFEEV, P. I. 1963. Tertiary floras of western Siberia. Komarov Botanical Institute, Academy of Sciences of the U.S.S.R., Moscow.

______. 1988. Miocene Floras of the Tambov Region (in Russian). Academy of Sciences of the USSR, Komorov Botanical Institute, Leningrad.

ENGLISH-LOEB, G., A. P. NORTON, AND M. A. WALKER. 2002. Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding. Entomologia Experimentalis et Applicata 104: 307-319.

FAIRON-DEMARET, M., AND T. SMITH. 2002. Fruits and seeds from the Tienen Formation at Dormaal, Palaeocene-Eocene transition in eastern Belgium. Review of Palaeobotany and Palynology 122: 47-62.

FRANCIS, A. P., AND D. J. CURRIE. 2003. A globally consistent richness-climate relationship for angiosperms. American Naturalist 161: 523-536.

GAGNEPAIN, F. 1911a. Classification des Cissus et Cayratia. Notulae Systematicae 1: 339-343.

______. 1911b. Revision des Ampelidacees asiatiques et Malaises. Societe d'Histoire Naturelle d'Autun, Bulletin. 24: 1-41.

______. 1919. Acareosperma, un genre nouveau d’Ampélidacées. Bulletin du Muséum d’Histoire Naturelle 25: 131-132.

GALET, P. 1967. Recherches sur les méthodes d'identification et de classification des Vitacées des zones tempérées. Doctoral thesis. 526 pp., Université de Montpellier, Montpellier, France.

GARCIA-CRUZ, J., AND V. SOSA. 2006. Coding quantitative character data for phylogenetic analysis: a comparison of five methods. Systematic Botany 31: 302-309.

GERRATH, J. M., AND U. POSLUSZNY. 1986. Formation of serial accessory buds in Ampelopsis brevipedunculata (Maxim) Koehne (Vitaceae). American Journal of Botany 73: 627-628.

______. 1988a. Morphological and anatomical development in the Vitaceae. 2. Floral development in . Canadian Journal of Botany 66: 1334-1351.

______. 1988b. Morphological and anatomical development in the Vitaceae. 1. Vegetative development in Vitis riparia. Canadian Journal of Botany 66: 209-224.

______. 1989a. Morphological and anatomical development in the Vitaceae. 5. Vegetative and floral development in Ampelopsis brevipedunculata. Canadian Journal of Botany 67: 2371-2386.

______. 1989b. Morphological and anatomical development in the Vitaceae. 4. Floral development in . Canadian Journal of Botany 67: 1356-1365.

315

______. 1989c. Morphological and anatomical development in the Vitaceae. 3. Vegetative development in Parthenocissus inserta. Canadian Journal of Botany 67: 803-816.

______. 1994. Morphological and anatomical development in the Vitaceae.6. Cissus antarctica. Canadian Journal of Botany 72: 635-643.

GERRATH, J. M., AND C. R. LACROIX. 1997. Heteroblastic sequence and leaf development in Leea guineensis. International Journal of Plant Sciences 158: 747-756.

GERRATH, J. M., AND U. POSLUSZNY. 2007. Shoot architecture in the Vitaceae. Canadian Journal of Botany 85: 691-700.

GERRATH, J. M., C. R. LACROIX, AND U. POSLUSZNY. 1990. The developmental morphology of Leea guineensis.2. Floral development. Botanical Gazette 151: 210-220.

______. 1998. Phyllotaxis in the Vitaceae. In R. V. Jean and D. Barabé [eds.], Symmetry in plants, page 89-107. World Scientific Publishing, Singapore.

GERRATH, J. M., U. POSLUSZNY, AND N. G. DENGLER. 2001. Primary vascular patterns in the Vitaceae. International Journal of Plant Sciences 162: 729-745.

GERRATH, J. M., T. WILSON, AND U. POSLUSZNY. 2004. Morphological and anatomical development in the Vitaceae. VII. Floral development in Rhoicissus digitata with respect to other genera in the family. Canadian Journal of Botany 82: 198-206.

GILG, E. 1896. Vitaceae. In A. Engler and K. Prantl [eds.], Die Naturlichen Pflanzenfamilien, 427-456. Engelmann, Leipzig.

GILG, E., AND M. BRANDT. 1911. Vitaceae Africanae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 46: 415-557.

GONG, F., I. KARSAI, AND Y. LIU. 2009. Grape seeds (Vitis) from the late Neogene Gray Fossil Site, northeast Tennessee. Boatny 2009, Snowbird.

GREGOR, H. J. 1977. Subtropische Elemente im europäischen Tertiär II (Fruktifikationen) Die Gattungen Quercus (Fagaceae), Myristicacarpum (Myristicaceae), Brueckelholzia und Cyclea (Menispermaceae), Disanthus und Fortunearia (Hamamelidaceae), Frangula (), Palaeocayratia (Vitaceae) und Acantbopanax (Araliaceae). Paläontologische Zeitschrift 51: 199-226.

______. 1980. The Miocene fruit and seed floras of the Oberpfälzer brown coal II. Findings in the coal and clayed inter beds. Palaeontographica Abteilung B Palaeophytologie 174: 7- 94.

GUERRERO, J. A., E. DE LUNA, AND C. SANCHEZ-HERNANDEZ. 2003. Morphometrics in the quantification of character state identity for the assessment of primary homology: an analysis of character variation of the genus Artibeus (Chiroptera: Phyllostomidae). Biological Journal of the Linnean Society 80: 45-55.

316

HARDY, D., AND E. RETIEF. 1981. The Caudiciform Cyphostemma species from southern Africa. Cactus and Succulent Journal (U.S.) 53: 163-166.

HAWKINS, J. A., C. E. HUGHES, AND R. W. SCOTLAND. 1997. Primary homology assessment, characters and character states. Cladistics 13: 275-283.

HILU, K. W., T. BORSCH, K. MULLER, D. E. SOLTIS, P. S. SOLTIS, V. SAVOLAINEN, M. W. CHASE, M. P. POWELL, L. A. ALICE, R. EVANS, H. SAUQUET, C. NEINHUIS, T. A. B. SLOTTA, J. G. ROHWER, C. S. CAMPBELL, AND L. W. CHATROU. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90: 1758-1776.

INGROUILLE, M. J., M. W. CHASE, M. F. FAY, D. BOWMAN, M. VAN DER BANK, AND A. D. E. BRUIJN. 2002. Systematics of Vitaceae from the viewpoint of plastid rbcL DNA sequence data. Botanical Journal of the Linnean Society 138: 421-432.

JACKES, B. R. 1984. Revision of the Australian Vitaceae: 1. Ampelocissus Planchon. Austrobaileya 2: 81-86.

______. 1987a. A Study of the trichomes of several frequently confused species of Cissus L. (Vitaceae). Blumea 32: 143-147.

______. 1987b. Revision of the Australian Vitaceae: 2. Cayratia Juss. Austrobaileya 2: 365-379.

______. 1988a. A key to the genera of Australian Vitaceae. In R. Kitching [ed.], The ecology of Australia's wet tropics. Surrey Beatty and Sons, Chipping Norton, N.S.W.

______. 1988b. Revision of the Australian Vitaceae: 3. Cissus L. Austrobaileya 2: 481-505.

______. 1989a. Revision of the Australian Vitaceae, 5. Tetrastigma (Miq.) Planchon. Austrobaileya 3: 149-158.

______. 1989b. Revision of the Australian Vitaceae, 4. Clematicissus Planchon. Austrobaileya 3: 101-102.

JACKES, B. R., AND M. ROSSETTO. 2006. A new combination in Clematicissus Planch. (Vitaceae). Telopea 11: 390-391.

JAILLON, O., J. M. AURY, B. NOEL, A. POLICRITI, C. CLEPET, A. CASAGRANDE, N. CHOISNE, S. AUBOURG, N. VITULO, C. JUBIN, A. VEZZI, F. LEGEAI, P. HUGUENEY, C. DASILVA, D. HORNER, E. MICA, D. JUBLOT, J. POULAIN, C. BRUYERE, A. BILLAULT, B. SEGURENS, M. GOUYVENOUX, E. UGARTE, F. CATTONARO, V. ANTHOUARD, V. VICO, C. DEL FABBRO, M. ALAUX, G. DI GASPERO, V. DUMAS, N. FELICE, S. PAILLARD, I. JUMAN, M. MOROLDO, S. SCALABRIN, A. CANAGUIER, I. LE CLAINCHE, G. MALACRIDA, E. DURAND, G. PESOLE, V. LAUCOU, P. CHATELET, D. MERDINOGLU, M. DELLEDONNE, M. PEZZOTTI, A. LECHARNY, C. SCARPELLI, F. ARTIGUENAVE, M. E. PE, G. VALLE, M. MORGANTE, M. CABOCHE, A. F. ADAM-BLONDON, J. WEISSENBACH, F. QUETIER, AND P. WINCKER. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-U465.

317

JANSEN, R. K., C. KAITTANIS, C. SASKI, S.-B. LEE, J. TOMKINS, A. J. ALVERSON, AND H. DANIELL. 2006. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evolutionary Biology 6: 32-46.

KEVAN, P. G., R. W. LONGAIR, AND R. M. GADAWSKI. 1985. Dioecy and pollen dimorphism in Vitis riparia (Vitaceae). Canadian Journal of Botany 63: 2263-2267.

KIRCHHEIMER, F. 1938. Beiträge zur näheren Kenntnis von Vitaceen-Samenformen tertiären Alters. Planta 28: 582-598.

KOZHEVNIKOV, A. E., AND V. A. NEDOLUZHKO. 2006. Vitaceae, Flora of Russian Far East: Additions and changes to the publication "Vascular Plants of the Soviet Far East, Vol 1-8 (1985-1996)", 200-201. Dalnauka, Vladivostok.

KRAMER, K. 1974. Die Tertiären Hölzer Südost-Asiens (unter Ausschluß der Dipterocarpaceae) 2. Teil. [The tertiary woods of Southeast-Asia (Dipterocarpaceae excluded) Part 2]. Palaeontographica.Abteilung B: Palaeophytologie 145, Part 1-4: 150.

KUBITZKI, K. 2007. Introduction to Vitales. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer.

LACROIX, C. R., AND U. POSLUSZNY. 1989a. Phyllotactic patterns in some members of the Vitaceae. Botanical Gazette 150: 303-313.

______. 1989b. Stipules in some members of the Vitaceae - relating processes of development to the mature structure. American Journal of Botany 76: 1203-1215.

LACROIX, C. R., J. M. GERRATH, AND U. POSLUSZNY. 1990. The developmental morphology of Leea guineensis.1. Vegetative Development. Botanical Gazette 151: 204-209.

LATIFF, A. 1981. Studies in Malesian Vitaceae: 5. The genus Cayratia in the Malay Peninsula. Sains Malaysiana 10: 129-139.

______. 1982a. Studies in Malesian Vitaceae: 2. Nothocissus: a new Malesian genus. Federation Museums Journal 27: 70-75.

______. 1982b. Studies in Malesian Vitaceae: 1. A revision of Pterisanthes Bl. Federation Museums Journal 27: 42-69.

______. 1982c. Studies in Malesian Vitaceae: 3. Ampelocissus complanata, a new species from Borneo. Federation Museums Journal 27: 75-77.

______. 1982d. Studies in Malesian Vitaceae: 4. The genera Ampelocissus, Ampelopsis and Parthenocissus in the Malay Peninsula. Federation Museums Journal 27: 78-93.

______. 1982e. Studies in Malesian Vitaceae: 6. The Malay Peninsula species of Cissus L. Malayan Nature Journal 35: 197-207.

318

______. 1983. Numerical analysis and classification of Malesian Vitaceae. Malays 12: 7-13.

______. 1984. Studies in Malesian Vitaceae: 7. The genus Tetrastigma in the Malay Peninsula. The Gardens' Bulletin Singapore 36: 213-228.

______. 1991. Towards an improved infrageneric classification of Ampelocissus. 2nd International Flora Malesiana Symposium, Jogjakarta, Indonesia (mimeo).

______. 1994. On the seeds of fossil and modern taxa of Vitaceae. Malaysian Applied Biology 22: 87-99.

______. 2001a. Studies in Malesian Vitaceae: 12. Taxonomic notes on Cissus, Ampelocissus, Nothocissus and Tetrastigma and other genera. Folia Malaysiana 2: 179-189.

______. 2001b. Diversity of the Vitaceae in the Malay Archipelago. Malayan Nature Journal 55: 29-42.

LATIFF, A., AND K. MAT SALLEH. 1999. Studies in Malesian Vitaceae: 11. Pterisanthes in Borneo, with additional notes on P. grandis and P. hirtiflora. Sandakania 13: 67-78.

LEAF ARCHITECTURE WORKING GROUP. 1999. Manual of Leaf Architecture - morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. private, Washington, D. C.

LI, C. 1998. Vitaceae, Flora Reipublicae Popularis Sinica, volume 48, 208 pp. Science Press, Beijing.

LOMBARDI, J. A. 1997. Types of names in Ampelocissus and Cissus (Vitaceae) referring to taxa in the Caribbean, Central and North America. Taxon 46: 423-432.

______. 2000. Vitaceae - Gêneros Ampelocissus, Ampelopsis e Cissus., Flora Neotropica Monograph, pp. 251. The New York Botanical Garden, Bronx, New York.

MABBERLEY, D. J. 1995. Vitaceae. In M. D. Dassanayake [ed.], A revised handbook to the Flora of Ceylon, 446-482. Smithsonian Institution, Washington, D. C.

MADDISON, W. P., AND D. R. MADDISON. 2001. MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, USA.

______. 2009. Mesquite: a modular system for evolutionary analysis. Version 2.6 http://mesquiteproject.org.

MAI, D. H. 1987. Neue Früchte und Samen aus paläozänen Ablagerungen Mitteleuropas. Feddes Repertorium 98: 197-229.

______. 2000. The Lower Miocene floras of the Spremberger sequence and the second brown coal horizon in the Lusatica region. Part III: Dialypetalae and Sympetalae. Palaeontographica Abteilung B 253: 1-106.

319

______. 2001. The Middle and Upper Miocene floras of the Meuro and Rauno sequences in the Lusatica region. Part II: Dicotyledones. Palaeontographica Abteilung B 257: 35-174.

______. 2006. Neue Pflanzenfunde aus den Tertiar der Rhon; Die miozane Flora vom Lettengraben. Beitrage zur Naturkunde in Osthessen 42: 3-46.

MAI, D. H., AND H.-J. GREGOR. 1982. Neue und interessante Arten aus dem Miozan von Salzhausen im Vogelsberg. Feddes Repertorium 93: 405-435.

MANCHESTER, S. R. 1994. Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Americana 58: 1-114.

MARGUERIT, E., C. BOURY, A. MANICKI, M. DONNART, G. BUTTERLIN, A. NEMORIN, S. WIEDEMANN-MERDINOGLU, D. MERDINOGLU, N. OLLAT, AND S. DECROOCQ. 2009. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theoretical and Applied Genetics 118: 1261-1278.

MELLER, B. 1998. Systematic-taxonomic and palaeoecological investigations of the Carpo- Taphocoenoses from the Köflach-Voitsberg lignite mining area (Styria, Austria; Early Miocene). Jahrbuch der Geologischen Bundesanstalt 140: 497-655.

MICKEVICH, M. F., AND M. S. JOHNSON. 1976. Congruence between morphological and allozyme data in evolutionary inference and character evolution. Systematic Zoology 25: 260-270.

MIKI, S. 1956. Seed remains of Vitaceae in Japan. Journal of the Institute of Polytechnics, Osaka City University 7: 247-271.

MOLINA, J., E. GREEN, AND L. STRUWE. 2006. Phenology and pollination of the ancestral grape relative Leea (Leeaceae/Vitaceae). Boatny 2006, Chico.

MOORE, M. O. 1990. A systematic study of eastern North American Vitis (Vitaceae) north of Mexico, University of , Athens, United States.

MORAN, C., C. P. CATTERALL, AND J. KANOWSKI. 2009. Reduced dispersal of native plant species as a consequence of the reduced abundance of frugivore species in fragmented rainforest. Biological Conservation 142: 541.

NANDI, O. I., M. W. CHASE, AND P. K. ENDRESS. 1998. A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. Annals of the Botanical Garden 85: 137-212.

NAZIMUDDIN, S., AND M. QAISER. 1982. Vitaceae. In S. I. Ali and M. Qaiser [eds.], Flora of Pakistan. University of Karachi & Missouri Botanical Garden, St. Louis.

NEGI, S. S., AND H. P. OLMO. 1971. Conversion and determination of sex in Vitis vinifera L. (sylvestris). Vitis 9: 265-279.

320

______. 1972. Certain embryological and biochemical aspects of Cytokinin Sd-8339 in converting sex of a male Vitis vinifera (Sylvestris). American Journal of Botany 59: 851- 857.

NIKITIN, V. P. 2006. Paleocarpology and stratigraphy of the and Neogene strata in Asian Russia. Academic Publishing House, Novosibirsk.

PATIL, S. G. 1998. Inter-generic variations in pollen grains of the family Vitaceae and their taxonomic significance. Journal of Indian Botanical Society 77: 99-102.

______. 2006. Inter-generic variations in the leaf characters of family Vitaceae and their taxonomic significance. Journal of Economic and Taxonomic Botany 30: 699-704.

PERIASAMY, K. 1962. Studies on seeds with ruminate endosperm: 2. Development of rumination in the Vitaceae. Proceedings of India Academy of Sciences B 56: 13-26.

PLANCHON, J. E. 1887. Monographie des Ampélidées vraies. In A. L. P. P. de Candolle and C. de Candolle [eds.], Monographiae Phanerogamarum, Volume V, p. 306-654. Sumptibus G. Mason, Paris.

POOLE, I., AND H. P. WILKINSON. 2000. Two early Eocene vines from south-east England. Botanical Journal of the Linnean Society 133: 1-26.

POSLUSZNY, U., AND J. M. GERRATH. 1986. The vegetative and floral development of the cultivar Ventura. Canadian Journal of Botany 64: 1620-1631.

PRAKASH, U., AND R. DAYAL. 1964. Fossil wood resembling Elaeocarpus and Leea from Deccan Intertrappean Beds of Mahurzari near Nagpur. Palaeobotanist 12: 121-127.

RASBAND, W. S. 1997-2006. Image J. U. S. National Institutes of Health, http://rsb.info.nih.gov/ij/, Bethesda, , USA.

REID, E. M., AND M. E. J. CHANDLER. 1933. The London Clay Flora, 561 pp. The British Museum (Natural History), London.

REILLE, M. 1967. Contribution a letude palynologique de la famille des Vitacees. Pollen et Spores 9: 279-303.

REN, H., K.-Y. PAN, Z.-D. CHEN, AND R.-Q. WANG. 2003. Structural characters of leaf epidermis and their systematic significance in Vitaceae. Acta Phytotaxonomica Sinica 41: 531-544.

RIAZ, S., A. F. KRIVANEK, K. XU, AND M. A. WALKER. 2006. Refined mapping of the Pierce's disease resistance locus, PdR1, and Sex on an extended genetic map of x V. arizonica. Theoretical and Applied Genetics 113: 1317-1329.

RIDSDALE, C. E. 1974. A revision of the family Leeaceae. Blumea 22: 57-100.

321

______. 1976. Leeaceae. In C. G. C. J. v. Steenis [ed.], Flora Malesiana, 755-782.

ROBINSON, L., AND J. G. HONEY. 1987. Geologic setting of a new Paleocene mammal locality in the northern Powder River Basin, Montana. Palaios 2: 87-90.

ROSSETTO, M. 2007. An updated estimate of intergeneric phylogenetic relationships in the Australian Vitaceae. Canadian Journal of Botany 85: 722-730.

ROSSETTO, M., B. R. JACKES, K. D. SCOTT, AND R. J. HENRY. 2002. Is the genus Cissus (Vitaceae) monophyletic? Evidence from plastid and nuclear ribosomal DNA. Systematic Botany 27: 522-533.

ROZEFELDS, A. C. 1988. A Mid Tertiary rainforest flora from Capella, Central Queensland. Proceedings of the 3rd IOP Conference, Melbourne: 123-136.

SCOTLAND, R. W., R. G. OLMSTEAD, AND J. R. BENNETT. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology 52: 539-548.

SHETTY, B. V., AND P. SINGH. 2000. Vitaceae. In N. P. Singh, J. N. Vohra, P. K. Hajra, and D. K. Singh [eds.], Flora of India, volume 5, Olacaceae - Connaraceae, 246-342. Botanical survey of India, Calcutta.

SOEJIMA, A., AND J. WEN. 2006. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. American Journal of Botany 93: 278-287.

SOLTIS, D. E., A. E. SENTERS, M. J. ZANIS, S. KIM, J. D. THOMPSON, P. S. SOLTIS, L. P. RONSE DE CRAENE, P. K. ENDRESS, AND J. S. FARRIS. 2003. are sister to other core : implications for the evolution of pentamery. American Journal of Botany 90: 461-470.

SOLTIS, D. E., P. S. SOLTIS, M. W. CHASE, M. E. MORT, D. C. ALBACH, M. ZANIS, V. SAVOLAINEN, W. H. HAHN, S. B. HOOT, M. F. FAY, M. AXTELL, S. M. SWENSEN, L. M. PRINCE, W. J. KRESS, K. C. NIXON, AND J. S. FARRIS. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381-461.

SRINIVASAN, C., AND M. G. MULLINS. 1978. Control of flowering in grapevine (Vitis-Vinifera L) - Formation of inflorescences in vitro by isolated tendrils. Plant Physiology 61: 127- 130.

______. 1979. Flowering in Vitis - Conversion of tendrils into inflorescences and bunches of grapes. Planta 145: 187-192.

______. 1980. Effects of temperature and growth-regulators on formation of anlagen, tendrils and inflorescences in Vitis vinifera L. Annals of botany 45: 439-446.

STEVENS, P. F. 1991. Character states, morphological variation, and phylogenetic analysis: a review. Systematic Biology 16: 553-583.

322

______. 2001 onwards. Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since].

SÜSSENGUTH, K. 1953. Vitaceae. In A. Engler and K. Prantl [eds.], Die Natürlichen Pflanzenfamlien 20. d., p. 174-333. Duncker & Humblot, Berlin.

SWOFFORD, D. L. 2002. PAUP: Phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates., Inc., Sunderland, MA.

TARNAVSCHI, I. T., AND E. PETRIA. 1968. Contribution to the knowledge of the microsporal structure in the family Leeaceae. Pollen et Spores 10: 221-249.

TCHEREPOVA, M., AND K. B. PIGG. 2005. Vitaceae: fossil seeds and wood from the Middle Miocene of Yakima Canyon, Washington, USA. Botany 2005, Austin, Texas.

TEODORIDIS, V. 2003. Early Miocene carpological material from the Czech part of the Zittau Basin. Acta Palaeobotanica 43: 9-49.

THIELE, K. 1993. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9: 275-304.

THIERS, B. continuously updated. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/.

THORPE, R. S. 1984. Coding Morphometric Characters For Constructing Distance Wagner Networks. Evolution 38: 244-255.

TIFFNEY, B. H. 1977. Fossil Angiosperm fruits and seeds. Journal of Seed Technology 2: 54-71.

______. 1994. Reevaluation of the age of the Brandon Lignite (Vermont, USA) based on plant megafossils. Review of Palaeobotany and Palynology 82: 299-315.

______. 1999. Part 8. Fossil fruit and seed flora from the Early Eocene Fisher/Sullivan site. In R. E. Weems and G. J. Grimsley [eds.], Early Eocene vertebrates and plants from the Fisher/Sullivan site (Nanjemoy Formation) Stafford county, Virginia, 139-159. Virginia division of mineral resources, Charlottesville, Virginia.

TIFFNEY, B. H., AND E. S. BARGHOORN. 1976. Fruits and seeds of Brandon lignite.1. Vitaceae. Review of Palaeobotany and Palynology 22: 169-191.

TIFFNEY, B. H., AND S. R. MANCHESTER. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere tertiary. International Journal of Plant Sciences 162: S3-S17.

TIMMONS, S. A., U. POSLUSZNY, AND J. M. GERRATH. 2007a. Morphological and anatomical development in the Vitaceae. IX. Comparative ontogeny and phylogenetic implications of Vitis rotundifolia Michx. Canadian Journal of Botany 85: 850-859.

323

______. 2007b. Morphological and anatomical development in the Vitaceae. X. Comparative ontogeny and phylogenetic implications of Cissus quadrangularis L. Canadian Journal of Botany 85: 860-872.

VASSILCZENKO, I. T. 1970. Vitaceae. In K. H. Rechinger [ed.], Flora Iranica, 1-5, 4pl. Akacemische Druck-U. Verlagsanstalt, Austria.

VERDCOURT, B. 1993. Flora of tropical East Africa: Vitaceae. A.A. Balkema, Rotterdam.

WANG, H. C., M. J. MOORE, P. S. SOLTIS, C. D. BELL, S. F. BROCKINGTON, R. ALEXANDRE, C. C. DAVIS, M. LATVIS, S. R. MANCHESTER, AND D. E. SOLTIS. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences of the United States of America 106: 3853-3858.

WANG, W. T. 1979. Vitacearum novitates. Acta Phytotaxonomica Sinica 17: 73-96; plate V, VI.

WATARI, S. 1951. Studies on the fossil woods from the Tertiary of Japan. (VII): Leea (Vitaceae) from the Miocene of Simane. The Botanical Magazine, Tokyo 64: 1-7.

WEBB, D. A. 1968. Vitaceae. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, and D. A. Webb [eds.], Flora Europaea, 2, Rosaceae to Umbelliferae, 246-247. Cambridge University Press, Cambridge.

WEBERLING, F. 1989. Morphology of flowers and inflorescences. Cambridge University Press, Cambridge.

WEN, J. 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics 30: 421-455.

______. 2001. Evolution of eastern Asian-Eastern North American biogeographic disjunctions: A few additional issues. International Journal of Plant Sciences 162: S117-S122.

______. 2007a. Leeaceae. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer.

______. 2007b. Vitaceae. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer.

WEN, J., Z.-L. NIE, A. SOEJIMA, AND Y. MENG. 2007. Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Canadian Journal of Botany 85: 731-745.

WHEELER, E. A., AND C. A. LAPASHA. 1994. Woods of the Vitaceae - fossil and modern. Review of Palaeobotany and Palynology 80: 175-207.

WIENS, J. J. 2001. Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology 50: 689-699.

324

______. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52: 528-538.

______. 2005. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Systematic Biology 54: 731-742.

______. 2006. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39: 34-42.

WIENS, J. J., AND R. E. ETHERIDGE. 2003. Phylogenetic relationships of Hoplocerid lizards: coding and combining meristic, morphometric, and polymorphic data using step matrices. Herpetologica 59: 375-398.

WILD, H., AND R. B. DRUMMOND. 1966. Vitaceae. In A. W. Exell, A. Fernandes, and H. Wild [eds.], Flora Zambesiaca, 439-492.

WILSON, T., AND U. POSLUSZNY. 2003a. Novel variation in the floral development of two species of Parthenocissus. Canadian Journal of Botany 81: 738-748.

______. 2003b. Complex tendril branching in two species of Parthenocissus: implications for the vitaceous shoot architecture. Canadian Journal of Botany 81: 587-597.

WILSON, T. C., J. M. GERRATH, AND U. POSLUSZNY. 2006. Morphological and anatomical development in the Vitaceae. VIII. Comparative development of three Cyphostemma (Vitaceae) species reveals important vegetative and reproductive differences among the species. Canadian Journal of Botany 84: 702-716.

XIANG, Q. Y. J., AND D. E. SOLTIS. 2001. Dispersal-vicariance analyses of intercontinental disjuncts: Historical biogeographical implications for angiosperms in the Northern Hemisphere. International Journal of Plant Sciences 162: S29-S39.

ZACHOS, J., M. PAGANI, L. SLOAN, E. THOMAS, AND K. BILLUPS. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686-693.

ZUBKOVA, I. G. 1966. Epiderma lista Vitaceae i ee systematicheskkoe znachenie. Botanicheskiy Zhurnal 51: 278-283.

______. 1975. Comparative morphological/anatomical study of petiole and epidermis of leaves in the representatives of family Vitaceae Juss., to the history of the study of family Vitaceae in connection with its systematics [translated from Russia]. In L. Budantsev [ed.], Voprosy sravnitel'noj morfologii semennyh rastenij. Izdatelbstvo Nauka, Leningradskoe otdelenie, Leningrad.

325

BIOGRAPHICAL SKETCH

Iju Chen was born in Taiwan. She received a bachelor's degree from National Taiwan

University, with a major in plant pathology. For her master's degree she studied plant bacteriology at the University of California at Berkeley. She worked in Dr. Na-Sheng Lin's lab in Academia Sinica, Taipei, doing research related to Bamboo Mosaic Virus. Before entering the doctoral program, she worked for Dr. Roger Beachy in Donald Danforth Plant Science

Center, assisting the research of Tobacco Mosaic Virus.

During the early years of the doctoral program, Iju Chen collected plant fossils in northeastern China with Dr. Steven Manchester. She worked on the pollen flora of Huadian,

Jilin, described seeds of Nuphar (Nympheaceae) from Wutu, Shangdong province, and prepared electronic microscopic photographs of fossil Tetracentron (Trochodendraceae). For her dissertation research, the morphology-based phylogeny of Vitaceae, she visited Australia,

Malaysia, Singapore, and China to collect plant materials and work in the herbaria. She worked as a teaching assistant for the courses such as plant anatomy, plant diversity, and biology at the

University of Florida. She received her Ph. D. from the University of Florida in the fall of 2009.

326