The Logic of Conditionals1

Total Page:16

File Type:pdf, Size:1020Kb

The Logic of Conditionals1 THE LOGIC OF CONDITIONALS1 by Ernest Adams University of California, Berkeley The standard use of the propositional calculus ('P.C.') in analyzing the validity of inferences involving conditionals leads to fallacies, and the problem is to determine where P.C. may be 'safely' used. An alternative analysis of criteria of reasonableness of inferences in terms of conditions of justification r a t h e r than truth of statements is pro- posed. It is argued, under certain restrictions, that P. C. may be safely used, except in inferences whose conclusions are conditionals whose antecedents are incompatible with the premises in the sense that if the antecedent became known, some of the previously asserted premises would have to be withdrawn. 1. The following nine 'inferences' are all ones which, when symbol- ized in the ordinary way in the propositional calculus and analyzed truth functionally, are valid in the sense that no combination of truth values of the components makes the premises true but the conclusion false. Fl. John will arrive on the 10 o'clock plane. Therefore, if J o h n does not arrive on the 10 o'clock plane, he will arrive on the 11 o'clock plane. F2. John will arrive on the 10 o'clock plane. Therefore, if John misses his plane in New York,' he will arrive on the 10 o'clock plane. F3. If Brown wins the election, Smith will retire to private life. Therefore, if Smith dies before the election and Brown wins it, Smith will retire to private life. F4. If Brown wins the election, Smith will retire to private life. If Smith dies before the election, Brown will win it. Therefore, if Smith dies before the election, then he will retire to private life. F5. If Brown wins, Smith will retire. If Brown wins, Smith will not retire. Therefore, Brown will not win. 166 F6. Either Dr. A or Dr. B will attend the patient. Dr. B will not attend the patient. Therefore, if Dr. A does not attend the patient, Dr. B will. F7. It is not the case that if John passes history, he will graduate. Therefore, John will pass history. F8. If you throw both switch S and switch T, the motor will start. Therefore, either if you throw switch S the motor will start, or if you throw switch T the motor will start. F9. If John will graduate only if he passes history, then he won't graduate. Therefore, if John passes history he won't graduate. We trust that the reader's immediate reaction to these examples agrees with ours in rejecting or at least doubting the validity of these inferences — one would not ordinarily 'draw' the inferences if one were 'given' the premises. If this is so, it poses a problem for the application of formal logic: either applied formal logic is wrong (and it is only as an applied theory that formal logic can be said to be right or wrong at all) or, if it is right and these inferences are valid after all, then we have to explain why they 'appear' fallacious. This is the problem which this paper is concerned with. More exactly, we shall be concerned with criteria of validity for inferences involving ordinary conditionals, and with determining to what extent formal logical theory may safely be applied to analyzing and formalizing arguments involving conditionals. As will be seen, this objective is only partially achieved, if at all, and this partial 'solution' itself raises what are probably more profound difficulties. 2. Before passing to a detailed discussion, it may be useful to con- sider briefly the significance of these examples. If these inferences are truly fallacious, then clearly they call into question some of the prin- ciples of formal logic and its application. The use of formal logic in the analysis of the logic of conditionals rests on two principles, one general, the other specific to conditionals. These are: Principle 1 (general) An inference is deductively valid if and only if it is logically impossible for the premises to be true and the conclusion false. Principle 2 At least for purposes of formal analysis, 'if then' statements can be treated as truth functional — t r u e if either their antecedents are false or their consequents true, false only if their antecedents are true and the consequents false. 167 Thus baldly stated, of course, Principle 2 appears very dubious, and one might immediately be led to expect that fallacies would arise in applications of the formal theory which tacitly make the assumption. Examples F1-F9 might be regarded simply as confirmation of this expectation. Fl and F2 are in fact counterparts of the paradoxes of material implication. It should be noted, however, that the principles of material impli- cation (i.e. the truth conditions for material conditionals) are not themselves arbitrary, but can be 'deduced' from still more funda- mental principles which must in turn be questioned if Principle 2 is questioned. For instance, the 'law' that a conditional is true if its con- sequent is true follows from Principle 1 together with the principle of conditionalization. The argument goes thus, / and q logically imply p (Principle 1). If p and q imply/, then/ implies 'if q then/' (prin- ciple of conditionalization), hence / implies 'if q then /'. If / implies 'if q t h e n / ' , and/ is true, then 'if q t h e n / ' is true (Principle 1), hence, if / is true, so is 'if q then /'. Therefore, if we reject Principle 2, we must reject either the principle of conditionalization or Principle 1, or both, as well. Similarly, the truth conditions for the material conditional follow from the apparent logical equivalence of 'not / or q' and 'if / then q' plus Principle 1. Therefore, rejection of Principle 2 requires either that Principle 1 be rejected or that the supposition that 'not / or q' is equivalent to 'if / then q' be re-examined. A closely related suppo- sition is in fact at the heart of example F6. Looked at in another way, example F6 seems to bring into question a principle which follows from Principle 1 alone: namely, that if a conclusion follows logically from a single premise, then it also follows logically from two premises one of which is the same as the original premise. One might be willing to grant that 'If Dr. A does not attend the patient, Dr. B will' follows logically from 'Either Dr. A or Dr. B will attend the patient', but if one rejected the inference in F6, this would be a counterinstance to the above consequence of Principle 1. Finally, examples F3 and F4 call into question laws of conditionals not specifically associated with material implication. F4, if it is falla- cious, is a counterinstance to the hypothetical syllogism (if 'if q then r' and 'if / then q' then 'if / then r'). A closely related principle is taken as a postulate in G. I. Lewis' [4, p. 125] theory of strict implication. It is unlikely, therefore, that fallacies of the kind given 168 here can be entirely avoided by going over to formal analysis in terms of strict implication or related systems. 3. Are the inferences in examples F1-F9 fallacious? We may concentrate for the present on Fl and ask whether C If John does not arrive on the 10 o'clock plane, then he will arrive on the 11 o'clock plane. is a logical consequence of P John will arrive on the 10 o'clock plane. To avoid irrelevant misunderstandings, let us specify that both state- ments are about the same person, and that both P and the antecedent of G are about the same event — J o h n ' s arrival on the 10 o'clock plane. If we attempt to answer this question by applying the criterion of validity of formal logic, formulated in Principle 1, we must ask: Is it logically possible for P to be true, but G false? To attempt to answer this question is to see that it has no clear answer. The reason is that the term 'true' has no clear ordinary sense as applied to conditionals, particularly to those whose antece- dents prove to be false, as the antecedent of G must if P is true. This is not to say that conditional statements with false antecedents are not sometimes called 'true' and sometimes 'false', but that there are no clear criteria for the applications of those terms in such cases. This is, of course, an assertion about the ordinary usage of the terms 'true' and 'false', and it can be verified, if at all, only by examining that usage. We shall not conduct such an examination here, but leave it to the reader to verify by observation of how people dispute about the correctness of conditional statements whose antecedents prove false, that precise criteria are lacking. Formal logicians might perhaps be inclined to dismiss the vagueness of the ordinary usage of 'true', and provide a new and more precise definition which is appropriate to their needs. This is in fact what Tarski has done with very fruitful results in the Wahrheitsbegriff. One might even regard the truth conditions of material conditionals not as defining a new sentential connective, but rather as defining the term 'true' precisely as applied to ordinary conditionals. The danger in this approach lies in the likelihood of begging the question raised at the beginning of this section. If the application of 'true' is defined 169 arbitrarily for those cases in which it has no clear ordinary sense, then this arbitrariness will extend to the determination as to whether state- ment G is a logical consequence of P or not.
Recommended publications
  • Gibbardian Collapse and Trivalent Conditionals
    Gibbardian Collapse and Trivalent Conditionals Paul Égré* Lorenzo Rossi† Jan Sprenger‡ Abstract This paper discusses the scope and significance of the so-called triviality result stated by Allan Gibbard for indicative conditionals, showing that if a conditional operator satisfies the Law of Import-Export, is supraclassical, and is stronger than the material conditional, then it must collapse to the material conditional. Gib- bard’s result is taken to pose a dilemma for a truth-functional account of indicative conditionals: give up Import-Export, or embrace the two-valued analysis. We show that this dilemma can be averted in trivalent logics of the conditional based on Reichenbach and de Finetti’s idea that a conditional with a false antecedent is undefined. Import-Export and truth-functionality hold without triviality in such logics. We unravel some implicit assumptions in Gibbard’s proof, and discuss a recent generalization of Gibbard’s result due to Branden Fitelson. Keywords: indicative conditional; material conditional; logics of conditionals; triva- lent logic; Gibbardian collapse; Import-Export 1 Introduction The Law of Import-Export denotes the principle that a right-nested conditional of the form A → (B → C) is logically equivalent to the simple conditional (A ∧ B) → C where both antecedentsare united by conjunction. The Law holds in classical logic for material implication, and if there is a logic for the indicative conditional of ordinary language, it appears Import-Export ought to be a part of it. For instance, to use an example from (Cooper 1968, 300), the sentences “If Smith attends and Jones attends then a quorum *Institut Jean-Nicod (CNRS/ENS/EHESS), Département de philosophie & Département d’études cog- arXiv:2006.08746v1 [math.LO] 15 Jun 2020 nitives, Ecole normale supérieure, PSL University, 29 rue d’Ulm, 75005, Paris, France.
    [Show full text]
  • Glossary for Logic: the Language of Truth
    Glossary for Logic: The Language of Truth This glossary contains explanations of key terms used in the course. (These terms appear in bold in the main text at the point at which they are first used.) To make this glossary more easily searchable, the entry headings has ‘::’ (two colons) before it. So, for example, if you want to find the entry for ‘truth-value’ you should search for ‘:: truth-value’. :: Ambiguous, Ambiguity : An expression or sentence is ambiguous if and only if it can express two or more different meanings. In logic, we are interested in ambiguity relating to truth-conditions. Some sentences in natural languages express more than one claim. Read one way, they express a claim which has one set of truth-conditions. Read another way, they express a different claim with different truth-conditions. :: Antecedent : The first clause in a conditional is its antecedent. In ‘(P ➝ Q)’, ‘P’ is the antecedent. In ‘If it is raining, then we’ll get wet’, ‘It is raining’ is the antecedent. (See ‘Conditional’ and ‘Consequent’.) :: Argument : An argument is a set of claims (equivalently, statements or propositions) made up from premises and conclusion. An argument can have any number of premises (from 0 to indefinitely many) but has only one conclusion. (Note: This is a somewhat artificially restrictive definition of ‘argument’, but it will help to keep our discussions sharp and clear.) We can consider any set of claims (with one claim picked out as conclusion) as an argument: arguments will include sets of claims that no-one has actually advanced or put forward.
    [Show full text]
  • Three Ways of Being Non-Material
    Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent.
    [Show full text]
  • False Dilemma Wikipedia Contents
    False dilemma Wikipedia Contents 1 False dilemma 1 1.1 Examples ............................................... 1 1.1.1 Morton's fork ......................................... 1 1.1.2 False choice .......................................... 2 1.1.3 Black-and-white thinking ................................... 2 1.2 See also ................................................ 2 1.3 References ............................................... 3 1.4 External links ............................................. 3 2 Affirmative action 4 2.1 Origins ................................................. 4 2.2 Women ................................................ 4 2.3 Quotas ................................................. 5 2.4 National approaches .......................................... 5 2.4.1 Africa ............................................ 5 2.4.2 Asia .............................................. 7 2.4.3 Europe ............................................ 8 2.4.4 North America ........................................ 10 2.4.5 Oceania ............................................ 11 2.4.6 South America ........................................ 11 2.5 International organizations ...................................... 11 2.5.1 United Nations ........................................ 12 2.6 Support ................................................ 12 2.6.1 Polls .............................................. 12 2.7 Criticism ............................................... 12 2.7.1 Mismatching ......................................... 13 2.8 See also
    [Show full text]
  • Material Conditional Cnt:Int:Mat: in Its Simplest Form in English, a Conditional Is a Sentence of the Form “If Sec
    int.1 The Material Conditional cnt:int:mat: In its simplest form in English, a conditional is a sentence of the form \If sec . then . ," where the . are themselves sentences, such as \If the butler did it, then the gardener is innocent." In introductory logic courses, we earn to symbolize conditionals using the ! connective: symbolize the parts indicated by . , e.g., by formulas ' and , and the entire conditional is symbolized by ' ! . The connective ! is truth-functional, i.e., the truth value|T or F|of '! is determined by the truth values of ' and : ' ! is true iff ' is false or is true, and false otherwise. Relative to a truth value assignment v, we define v ⊨ ' ! iff v 2 ' or v ⊨ . The connective ! with this semantics is called the material conditional. This definition results in a number of elementary logical facts. First ofall, the deduction theorem holds for the material conditional: If Γ; ' ⊨ then Γ ⊨ ' ! (1) It is truth-functional: ' ! and :' _ are equivalent: ' ! ⊨ :' _ (2) :' _ ⊨ ' ! (3) A material conditional is entailed by its consequent and by the negation of its antecedent: ⊨ ' ! (4) :' ⊨ ' ! (5) A false material conditional is equivalent to the conjunction of its antecedent and the negation of its consequent: if ' ! is false, ' ^ : is true, and vice versa: :(' ! ) ⊨ ' ^ : (6) ' ^ : ⊨ :(' ! ) (7) The material conditional supports modus ponens: '; ' ! ⊨ (8) The material conditional agglomerates: ' ! ; ' ! χ ⊨ ' ! ( ^ χ) (9) We can always strengthen the antecedent, i.e., the conditional is monotonic: ' ! ⊨ (' ^ χ) ! (10) material-conditional rev: c8c9782 (2021-09-28) by OLP/ CC{BY 1 The material conditional is transitive, i.e., the chain rule is valid: ' ! ; ! χ ⊨ ' ! χ (11) The material conditional is equivalent to its contrapositive: ' ! ⊨ : !:' (12) : !:' ⊨ ' ! (13) These are all useful and unproblematic inferences in mathematical rea- soning.
    [Show full text]
  • Exclusive Or from Wikipedia, the Free Encyclopedia
    New features Log in / create account Article Discussion Read Edit View history Exclusive or From Wikipedia, the free encyclopedia "XOR" redirects here. For other uses, see XOR (disambiguation), XOR gate. Navigation "Either or" redirects here. For Kierkegaard's philosophical work, see Either/Or. Main page The logical operation exclusive disjunction, also called exclusive or (symbolized XOR, EOR, Contents EXOR, ⊻ or ⊕, pronounced either / ks / or /z /), is a type of logical disjunction on two Featured content operands that results in a value of true if exactly one of the operands has a value of true.[1] A Current events simple way to state this is "one or the other but not both." Random article Donate Put differently, exclusive disjunction is a logical operation on two logical values, typically the values of two propositions, that produces a value of true only in cases where the truth value of the operands differ. Interaction Contents About Wikipedia Venn diagram of Community portal 1 Truth table Recent changes 2 Equivalencies, elimination, and introduction but not is Contact Wikipedia 3 Relation to modern algebra Help 4 Exclusive “or” in natural language 5 Alternative symbols Toolbox 6 Properties 6.1 Associativity and commutativity What links here 6.2 Other properties Related changes 7 Computer science Upload file 7.1 Bitwise operation Special pages 8 See also Permanent link 9 Notes Cite this page 10 External links 4, 2010 November Print/export Truth table on [edit] archived The truth table of (also written as or ) is as follows: Venn diagram of Create a book 08-17094 Download as PDF No.
    [Show full text]
  • An Introduction to Formal Logic
    forall x: Calgary An Introduction to Formal Logic By P. D. Magnus Tim Button with additions by J. Robert Loftis Robert Trueman remixed and revised by Aaron Thomas-Bolduc Richard Zach Fall 2021 This book is based on forallx: Cambridge, by Tim Button (University College Lon- don), used under a CC BY 4.0 license, which is based in turn on forallx, by P.D. Magnus (University at Albany, State University of New York), used under a CC BY 4.0 li- cense, and was remixed, revised, & expanded by Aaron Thomas-Bolduc & Richard Zach (University of Calgary). It includes additional material from forallx by P.D. Magnus and Metatheory by Tim Button, used under a CC BY 4.0 license, from forallx: Lorain County Remix, by Cathal Woods and J. Robert Loftis, and from A Modal Logic Primer by Robert Trueman, used with permission. This work is licensed under a Creative Commons Attribution 4.0 license. You are free to copy and redistribute the material in any medium or format, and remix, transform, and build upon the material for any purpose, even commercially, under the following terms: ⊲ You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ⊲ You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. The LATEX source for this book is available on GitHub and PDFs at forallx.openlogicproject.org.
    [Show full text]
  • Conditional Heresies *
    CONDITIONAL HERESIES * Fabrizio Cariani and Simon Goldstein Abstract The principles of Conditional Excluded Middle (CEM) and Simplification of Disjunctive Antecedents (SDA) have received substantial attention in isolation. Both principles are plausible generalizations about natural lan- guage conditionals. There is however little discussion of their interaction. This paper aims to remedy this gap and explore the significance of hav- ing both principles constrain the logic of the conditional. Our negative finding is that, together with elementary logical assumptions, CEM and SDA yield a variety of implausible consequences. Despite these incom- patibility results, we open up a narrow space to satisfy both. We show that, by simultaneously appealing to the alternative-introducing analysis of disjunction and to the theory of homogeneity presuppositions, we can satisfy both. Furthermore, the theory that validates both principles re- sembles a recent semantics that is defended by Santorio on independent grounds. The cost of this approach is that it must give up the transitivity of entailment: we suggest that this is a feature, not a bug, and connect it with recent developments of intransitive notions of entailment. 1 Introduction David Lewis’s logic for the counterfactual conditional (Lewis 1973) famously invalidates two plausible-sounding principles: simplification of disjunctive antecedents (SDA),1 and conditional excluded middle (CEM).2 Simplification states that conditionals with disjunctive antecedents entail conditionals whose antecedents are the disjuncts taken in isolation. For instance, given SDA, (1) en- tails (2). *Special thanks to Shawn Standefer for extensive written comments on a previous version of this paper and to anonymous reviewers for Philosophy and Phenomenological Research and the Amsterdam Colloquium.
    [Show full text]
  • Forall X: an Introduction to Formal Logic 1.30
    University at Albany, State University of New York Scholars Archive Philosophy Faculty Books Philosophy 12-27-2014 Forall x: An introduction to formal logic 1.30 P.D. Magnus University at Albany, State University of New York, [email protected] Follow this and additional works at: https://scholarsarchive.library.albany.edu/ cas_philosophy_scholar_books Part of the Logic and Foundations of Mathematics Commons Recommended Citation Magnus, P.D., "Forall x: An introduction to formal logic 1.30" (2014). Philosophy Faculty Books. 3. https://scholarsarchive.library.albany.edu/cas_philosophy_scholar_books/3 This Book is brought to you for free and open access by the Philosophy at Scholars Archive. It has been accepted for inclusion in Philosophy Faculty Books by an authorized administrator of Scholars Archive. For more information, please contact [email protected]. forallx An Introduction to Formal Logic P.D. Magnus University at Albany, State University of New York fecundity.com/logic, version 1.30 [141227] This book is offered under a Creative Commons license. (Attribution-ShareAlike 3.0) The author would like to thank the people who made this project possible. Notable among these are Cristyn Magnus, who read many early drafts; Aaron Schiller, who was an early adopter and provided considerable, helpful feedback; and Bin Kang, Craig Erb, Nathan Carter, Wes McMichael, Selva Samuel, Dave Krueger, Brandon Lee, Toan Tran, and the students of Introduction to Logic, who detected various errors in previous versions of the book. c 2005{2014 by P.D. Magnus. Some rights reserved. You are free to copy this book, to distribute it, to display it, and to make derivative works, under the following conditions: (a) Attribution.
    [Show full text]
  • Form and Content: an Introduction to Formal Logic
    Connecticut College Digital Commons @ Connecticut College Open Educational Resources 2020 Form and Content: An Introduction to Formal Logic Derek D. Turner Connecticut College, [email protected] Follow this and additional works at: https://digitalcommons.conncoll.edu/oer Recommended Citation Turner, Derek D., "Form and Content: An Introduction to Formal Logic" (2020). Open Educational Resources. 1. https://digitalcommons.conncoll.edu/oer/1 This Book is brought to you for free and open access by Digital Commons @ Connecticut College. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Form & Content Form and Content An Introduction to Formal Logic Derek Turner Connecticut College 2020 Susanne K. Langer. This bust is in Shain Library at Connecticut College, New London, CT. Photo by the author. 1 Form & Content ©2020 Derek D. Turner This work is published in 2020 under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. You may share this text in any format or medium. You may not use it for commercial purposes. If you share it, you must give appropriate credit. If you remix, transform, add to, or modify the text in any way, you may not then redistribute the modified text. 2 Form & Content A Note to Students For many years, I had relied on one of the standard popular logic textbooks for my introductory formal logic course at Connecticut College. It is a perfectly good book, used in countless logic classes across the country.
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning John Harrison Index More information Index (x, y) (pair), 594 ---, 618 − (negation of literal), 51 -/, 617 − (set difference), 594 //, 617 C− (negation of literal set), 181 ::, 616 ∧ (and), 27 </, 617 ∆0 formula, 547 <=/, 617 ∆1-definable, 564 =/, 617 ⊥ (false), 27 @, 616 ⇔ (iff), 27 #install printer,22 ⇒ (implies), 27 0-saturation, 91 ∩ (intersection), 594 1-consistent, 554 ¬ (not), 27 1-saturation, 91 ∨ (or), 27 3-CNF, 79 Π1-formula, 550 3-SAT, 79 Σ1-formula, 550 (true), 27 Abel, 6 ∪ (union), 594 abelian, 287 ◦ (function composition), 596 abstract syntax, 12 ∂ (degree), 355 abstract syntax tree, 12 ∅ (empty set), 594 abstract type, 469 ≡ (congruent modulo), 594 AC (associative–commutative), 285 ∈ (set membership), 594 AC (Axiom of Choice), 144 κ-categorical, 245 accumulator, 611 → (maps to), 595 Ackermann reduction, 254 | (divides), 593 ad hoc polymorphism, 612 |= (logical consequence), 40, 130 Add,14 |=M (holds in M), 130 add 0, 565 ℘ (power set), 598 add assum, 480 ⊂ (proper subset), 594 add assum’, 497 → (sequent), 471 add default, 436 \ (set difference), 594 add suc, 565 ⊆ (subset), 594 adequate set (of connectives), 46 × (Cartesian product), 594 adjustcoeff, 342 → (function space), 595 AE fragment, 309 → (reduction relation), 258 aedecide, 310 →∗ (reflexive transitive closure of →), 258 affine transformation, 417 →+ (transitive closure of →), 258 affirmative negative rule,81 (provability), 246, 470, 474 afn dlo, 335 {1, 2, 3} (set enumeration),
    [Show full text]
  • Revision by Conditionals: from Hook to Arrow
    Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020) Main Track Revision by Conditionals: From Hook to Arrow Jake Chandler1 , Richard Booth2 1La Trobe University 2Cardiff University [email protected], [email protected] Abstract conditional belief. In Section 3, we outline and discuss our proposal regarding (B). Subsection 3.1 presents the basic The belief revision literature has largely focussed on the issue idea, according to which computing the result of a revi- of how to revise one’s beliefs in the light of information re- garding matters of fact. Here we turn to an important but com- sion by a Ramsey Test conditional can be derived by min- paratively neglected issue: How might one extend a revision imal modification, under constraints, of the outcome of a operator to handle conditionals as input? Our approach to this revision by its corresponding material conditional. Our key question of ‘conditional revision’ is distinctive insofar as it technical contribution is presented in Subsection 3.2, where abstracts from the controversial details of how to revise by we prove that this minimal change under constraints can be factual sentences. We introduce a ‘plug and play’ method for achieved by means of a simple and familiar transformation. uniquely extending any iterated belief revision operator to the Subsection 3.3 outlines some interesting general properties conditional case. The flexibility of our approach is achieved of the proposal. These strengthen, in a plausible manner, by having the result of a conditional revision by a Ramsey the aforementioned constraints presented in (Kern-Isberner Test conditional (‘arrow’) determined by that of a plain re- 1999) and are of independent interest.
    [Show full text]