Forall X: an Introduction to Formal Logic 1.30
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gibbardian Collapse and Trivalent Conditionals
Gibbardian Collapse and Trivalent Conditionals Paul Égré* Lorenzo Rossi† Jan Sprenger‡ Abstract This paper discusses the scope and significance of the so-called triviality result stated by Allan Gibbard for indicative conditionals, showing that if a conditional operator satisfies the Law of Import-Export, is supraclassical, and is stronger than the material conditional, then it must collapse to the material conditional. Gib- bard’s result is taken to pose a dilemma for a truth-functional account of indicative conditionals: give up Import-Export, or embrace the two-valued analysis. We show that this dilemma can be averted in trivalent logics of the conditional based on Reichenbach and de Finetti’s idea that a conditional with a false antecedent is undefined. Import-Export and truth-functionality hold without triviality in such logics. We unravel some implicit assumptions in Gibbard’s proof, and discuss a recent generalization of Gibbard’s result due to Branden Fitelson. Keywords: indicative conditional; material conditional; logics of conditionals; triva- lent logic; Gibbardian collapse; Import-Export 1 Introduction The Law of Import-Export denotes the principle that a right-nested conditional of the form A → (B → C) is logically equivalent to the simple conditional (A ∧ B) → C where both antecedentsare united by conjunction. The Law holds in classical logic for material implication, and if there is a logic for the indicative conditional of ordinary language, it appears Import-Export ought to be a part of it. For instance, to use an example from (Cooper 1968, 300), the sentences “If Smith attends and Jones attends then a quorum *Institut Jean-Nicod (CNRS/ENS/EHESS), Département de philosophie & Département d’études cog- arXiv:2006.08746v1 [math.LO] 15 Jun 2020 nitives, Ecole normale supérieure, PSL University, 29 rue d’Ulm, 75005, Paris, France. -
Classifying Material Implications Over Minimal Logic
Classifying Material Implications over Minimal Logic Hannes Diener and Maarten McKubre-Jordens March 28, 2018 Abstract The so-called paradoxes of material implication have motivated the development of many non- classical logics over the years [2–5, 11]. In this note, we investigate some of these paradoxes and classify them, over minimal logic. We provide proofs of equivalence and semantic models separating the paradoxes where appropriate. A number of equivalent groups arise, all of which collapse with unrestricted use of double negation elimination. Interestingly, the principle ex falso quodlibet, and several weaker principles, turn out to be distinguishable, giving perhaps supporting motivation for adopting minimal logic as the ambient logic for reasoning in the possible presence of inconsistency. Keywords: reverse mathematics; minimal logic; ex falso quodlibet; implication; paraconsistent logic; Peirce’s principle. 1 Introduction The project of constructive reverse mathematics [6] has given rise to a wide literature where various the- orems of mathematics and principles of logic have been classified over intuitionistic logic. What is less well-known is that the subtle difference that arises when the principle of explosion, ex falso quodlibet, is dropped from intuitionistic logic (thus giving (Johansson’s) minimal logic) enables the distinction of many more principles. The focus of the present paper are a range of principles known collectively (but not exhaustively) as the paradoxes of material implication; paradoxes because they illustrate that the usual interpretation of formal statements of the form “. → . .” as informal statements of the form “if. then. ” produces counter-intuitive results. Some of these principles were hinted at in [9]. Here we present a carefully worked-out chart, classifying a number of such principles over minimal logic. -
Chapter 5: Methods of Proof for Boolean Logic
Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs. -
Glossary for Logic: the Language of Truth
Glossary for Logic: The Language of Truth This glossary contains explanations of key terms used in the course. (These terms appear in bold in the main text at the point at which they are first used.) To make this glossary more easily searchable, the entry headings has ‘::’ (two colons) before it. So, for example, if you want to find the entry for ‘truth-value’ you should search for ‘:: truth-value’. :: Ambiguous, Ambiguity : An expression or sentence is ambiguous if and only if it can express two or more different meanings. In logic, we are interested in ambiguity relating to truth-conditions. Some sentences in natural languages express more than one claim. Read one way, they express a claim which has one set of truth-conditions. Read another way, they express a different claim with different truth-conditions. :: Antecedent : The first clause in a conditional is its antecedent. In ‘(P ➝ Q)’, ‘P’ is the antecedent. In ‘If it is raining, then we’ll get wet’, ‘It is raining’ is the antecedent. (See ‘Conditional’ and ‘Consequent’.) :: Argument : An argument is a set of claims (equivalently, statements or propositions) made up from premises and conclusion. An argument can have any number of premises (from 0 to indefinitely many) but has only one conclusion. (Note: This is a somewhat artificially restrictive definition of ‘argument’, but it will help to keep our discussions sharp and clear.) We can consider any set of claims (with one claim picked out as conclusion) as an argument: arguments will include sets of claims that no-one has actually advanced or put forward. -
Two Sources of Explosion
Two sources of explosion Eric Kao Computer Science Department Stanford University Stanford, CA 94305 United States of America Abstract. In pursuit of enhancing the deductive power of Direct Logic while avoiding explosiveness, Hewitt has proposed including the law of excluded middle and proof by self-refutation. In this paper, I show that the inclusion of either one of these inference patterns causes paracon- sistent logics such as Hewitt's Direct Logic and Besnard and Hunter's quasi-classical logic to become explosive. 1 Introduction A central goal of a paraconsistent logic is to avoid explosiveness { the inference of any arbitrary sentence β from an inconsistent premise set fp; :pg (ex falso quodlibet). Hewitt [2] Direct Logic and Besnard and Hunter's quasi-classical logic (QC) [1, 5, 4] both seek to preserve the deductive power of classical logic \as much as pos- sible" while still avoiding explosiveness. Their work fits into the ongoing research program of identifying some \reasonable" and \maximal" subsets of classically valid rules and axioms that do not lead to explosiveness. To this end, it is natural to consider which classically sound deductive rules and axioms one can introduce into a paraconsistent logic without causing explo- siveness. Hewitt [3] proposed including the law of excluded middle and the proof by self-refutation rule (a very special case of proof by contradiction) but did not show whether the resulting logic would be explosive. In this paper, I show that for quasi-classical logic and its variant, the addition of either the law of excluded middle or the proof by self-refutation rule in fact leads to explosiveness. -
Three Ways of Being Non-Material
Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent. -
False Dilemma Wikipedia Contents
False dilemma Wikipedia Contents 1 False dilemma 1 1.1 Examples ............................................... 1 1.1.1 Morton's fork ......................................... 1 1.1.2 False choice .......................................... 2 1.1.3 Black-and-white thinking ................................... 2 1.2 See also ................................................ 2 1.3 References ............................................... 3 1.4 External links ............................................. 3 2 Affirmative action 4 2.1 Origins ................................................. 4 2.2 Women ................................................ 4 2.3 Quotas ................................................. 5 2.4 National approaches .......................................... 5 2.4.1 Africa ............................................ 5 2.4.2 Asia .............................................. 7 2.4.3 Europe ............................................ 8 2.4.4 North America ........................................ 10 2.4.5 Oceania ............................................ 11 2.4.6 South America ........................................ 11 2.5 International organizations ...................................... 11 2.5.1 United Nations ........................................ 12 2.6 Support ................................................ 12 2.6.1 Polls .............................................. 12 2.7 Criticism ............................................... 12 2.7.1 Mismatching ......................................... 13 2.8 See also -
The Incorrect Usage of Propositional Logic in Game Theory
The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself Holger I. MEINHARDT ∗ August 13, 2018 Recently, we had to realize that more and more game theoretical articles have been pub- lished in peer-reviewed journals with severe logical deficiencies. In particular, we observed that the indirect proof was not applied correctly. These authors confuse between statements of propositional logic. They apply an indirect proof while assuming a prerequisite in order to get a contradiction. For instance, to find out that “if A then B” is valid, they suppose that the assumptions “A and not B” are valid to derive a contradiction in order to deduce “if A then B”. Hence, they want to establish the equivalent proposition “A∧ not B implies A ∧ notA” to conclude that “if A then B”is valid. In fact, they prove that a truth implies a falsehood, which is a wrong statement. As a consequence, “if A then B” is invalid, disproving their own results. We present and discuss some selected cases from the literature with severe logical flaws, invalidating the articles. Keywords: Transferable Utility Game, Solution Concepts, Axiomatization, Propositional Logic, Material Implication, Circular Reasoning (circulus in probando), Indirect Proof, Proof by Contradiction, Proof by Contraposition, Cooperative Oligopoly Games 2010 Mathematics Subject Classifications: 03B05, 91A12, 91B24 JEL Classifications: C71 arXiv:1509.05883v1 [cs.GT] 19 Sep 2015 ∗Holger I. Meinhardt, Institute of Operations Research, Karlsruhe Institute of Technology (KIT), Englerstr. 11, Building: 11.40, D-76128 Karlsruhe. E-mail: [email protected] The Incorrect Usage of Propositional Logic in Game Theory 1 INTRODUCTION During the last decades, game theory has encountered a great success while becoming the major analysis tool for studying conflicts and cooperation among rational decision makers. -
Relevant and Substructural Logics
Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore. -
46. on the Completeness O F the Leibnizian Modal System with a Restriction by Setsuo SAITO Shibaura Institute of Technology,Tokyo (Comm
198 [Vol. 42, 46. On the Completeness o f the Leibnizian Modal System with a Restriction By Setsuo SAITO Shibaura Institute of Technology,Tokyo (Comm. by Zyoiti SUETUNA,M.J.A., March 12, 1966) § 1. Introduction. The purpose of this paper is to show the completeness of a modal system which will be called Lo in the following. In my previous paper [1], in order to show an example of defence of _.circular definition, the following definition was given: A statement is analytic if and only if it is consistent with every statement that expresses what is possible. This definition, roughly speaking, is materially equivalent to Carnap's definition of L-truth which is suggested by Leibniz' conception that a necessary truth must hold in all possible worlds (cf. Carnap [2], p.10). If "analytic" is replaced by "necessary" in the above definition, this definition becomes as follows: A statement is necessary if and only if it is consistent with every statement that expresses what is possible. This reformed definition is symbolized by modal signs as follows: Opm(q)[Qq~O(p•q)1, where p and q are propositional variables. Let us replace it by the following axiom-schema and rule: Axiom-schema. D a [Q,9 Q(a •,S)], where a, ,9 are arbitrary formulas. Rule of inference. If H Q p Q(a •p), then i- a, where a is an arbitrary formula and p is a propositional variable not contained in a. We call L (the Leibnizian modal system) the system obtained from the usual propositional calculus by adding the above axiom schema and rule and the rule of replacement of material equivalents. -
Logic for Computer Science. Knowledge Representation and Reasoning
Lecture Notes 1 Logic for Computer Science. Knowledge Representation and Reasoning. Lecture Notes for Computer Science Students Faculty EAIiIB-IEiT AGH Antoni Lig˛eza Other support material: http://home.agh.edu.pl/~ligeza https://ai.ia.agh.edu.pl/pl:dydaktyka:logic: start#logic_for_computer_science2020 c Antoni Lig˛eza:2020 Lecture Notes 2 Inference and Theorem Proving in Propositional Calculus • Tasks and Models of Automated Inference, • Theorem Proving models, • Some important Inference Rules, • Theorems of Deduction: 1 and 2, • Models of Theorem Proving, • Examples of Proofs, • The Resolution Method, • The Dual Resolution Method, • Logical Derivation, • The Semantic Tableau Method, • Constructive Theorem Proving: The Fitch System, • Example: The Unicorn, • Looking for Models: Towards SAT. c Antoni Lig˛eza Lecture Notes 3 Logic for KRR — Tasks and Tools • Theorem Proving — Verification of Logical Consequence: ∆ j= H; • Method of Theorem Proving: Automated Inference —- Derivation: ∆ ` H; • SAT (checking for models) — satisfiability: j=I H (if such I exists); • un-SAT verification — unsatisfiability: 6j=I H (for any I); • Tautology verification (completeness): j= H • Unsatisfiability verification 6j= H Two principal issues: • valid inference rules — checking: (∆ ` H) −! (∆ j= H) • complete inference rules — checking: (∆ j= H) −! (∆ ` H) c Antoni Lig˛eza Lecture Notes 4 Two Possible Fundamental Approaches: Checking of Interpretations versus Logical Inference Two basic approaches – reasoning paradigms: • systematic evaluation of possible interpretations — the 0-1 method; problem — combinatorial explosion; for n propositional variables we have 2n interpretations! • logical inference— derivation — with rules preserving logical conse- quence. Notation: formula H (a Hypothesis) is derivable from ∆ (a Knowledge Base; a set of domain axioms): ∆ ` H This means that there exists a sequence of applications of inference rules, such that H is mechanically derived from ∆. -
Propositional Logic
Chapter 3 Propositional Logic 3.1 ARGUMENT FORMS This chapter begins our treatment of formal logic. Formal logic is the study of argument forms, abstract patterns of reasoning shared by many different arguments. The study of argument forms facilitates broad and illuminating generalizations about validity and related topics. We shall initially focus on the notion of deductive validity, leaving inductive arguments to a later treatment (Chapters 8 to 10). Specifically, our concern in this chapter will be with the idea that a valid deductive argument is one whose conclusion cannot be false while the premises are all true (see Section 2.3). By studying argument forms, we shall be able to give this idea a very precise and rigorous characterization. We begin with three arguments which all have the same form: (1) Today is either Monday or Tuesday. Today is not Monday. Today is Tuesday. (2) Either Rembrandt painted the Mona Lisa or Michelangelo did. Rembrandt didn't do it. :. Michelangelo did. (3) Either he's at least 18 or he's a juvenile. He's not at least 18. :. He's a juvenile. It is easy to see that these three arguments are all deductively valid. Their common form is known by logicians as disjunctive syllogism, and can be represented as follows: Either P or Q. It is not the case that P :. Q. The letters 'P' and 'Q' function here as placeholders for declarative' sentences. We shall call such letters sentence letters. Each argument which has this form is obtainable from the form by replacing the sentence letters with sentences, each occurrence of the same letter being replaced by the same sentence.