Relevant and Substructural Logics

Total Page:16

File Type:pdf, Size:1020Kb

Relevant and Substructural Logics Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore. Girard's linear logic is a different story: it was discovered though considerations of the categorical models of coherence ∗This research is supported by the Australian Research Council, through its Large Grant pro- gram. Thanks, too, go to Nuel Belnap, Mike Dunn, Bob Meyer, Graham Priest, Stephen Read and John Slaney for many enjoyable conversations on these topics. This is a draft and it is not for citation without permission. Some features are due for severe rhhevision before publication. Please contact me if you wish to quote this version. I expect to have a revised version completed before the end of 2001. Please check my website for an updated copy before emailing me with a list of errors. But once you've done that, by all means, fire away! ii 1The title, Relevant and Substructural Logics is not to be read in the same vein as “apples and oranges” or “Australia and New Zealand.” It is more in the vein of “apples and fruit” or “Australia and the Pacific Rim.” It is a history of substructural logics with a particular attention to relevant logics, or dually, a history of relevant logics, playing particular attention to their presence in the larger class of substructural logics. 2Sometimes you see this described as the distinction between an emphasis on syntax or se- mantics. But this is to cut against the grain. On the face of it, rules of proof have as much to do with the meaning of connectives as do model-theoretic conditions. The rules interpreting a formal language in a model pay just as much attention to syntax as does any proof theory. 1 http://www.phil.mq.edu.au/staff/grestall/ 2 spaces. However, as linear logic appears on the scene much later than rele- vant logic or the Lambek calculus, starting with proof theory does not result in too much temporal reversal. I will end with one smaller section Loose Ends, sketching avenues for fur- ther work. The major sections, then, are structured thematically, and inside these sections I will endeavour to sketch the core historical lines of develop- ment in substructural logics. This, then, will be a conceptual history, indicat- ing the linkages, dependencies and development of the content itself. I will be less concerned with identifying who did what and when.3 I take it that logic is best learned by doing it, and so, I have taken the lib- erty to sketch the proofs of major results when the techniques used in the proofs us something distinctive about the field. The proofs can be skipped or skimmed without any threat to the continuity of the story. However, to get the full flavour of the history, you should attempt to savour the proofs at leisure. Let me end this introduction by situating this essay in its larger context and explaining how it differs from other similar introductory books and es- says. Other comprehensive introductions such as Dunn's “Relevance Logic and Entailment” [81] and its descendant “Relevance Logic” [94], Read's Rel- evant Logic [224] and Troelstra's Lectures on Linear Logic [264] are more nar- rowly focussed than this essay, concentrating on one or other of the many relevant and substructural logics. The Anderson–Belnap two-volume Entail- ment [10, 11] is a goldmine of historical detail in the tradition of relevance logic, but it contains little about other important traditions in substructural logics. My Introduction to Substructural Logics [234] has a similar scope to this chapter, in that it covers the broad sweep of substructural logics: however, that book is more technical than this essay, as it features many formal re- sults stated and proved in generality. It is also written to introduce the subject purely thematically instead of historically. 2 Proofs The discipline of relevant logic grew out of an attempt to understand notions of consequence and conditionality where the conclusion of a valid argument is relevant to the premises, and where the consequent of a true conditional is relevant to the antecedent. “Substructural” is a newer term, due to Schroder¨ -Heister and Dosen.ˇ They write: Our proposal is to call logics that can be obtained . by restricting structural rules, substructural logics. [250, page 6] The structural rules mentioned here dictate admissible forms of transforma- tions of premises in proofs. Later in this section, we will see how relevant logics are naturally counted as substructural logics, as certain commonly ad- mitted structural rules are to blame for introducing irrelevant consequences into proofs. 3In particular, I will say little about the intellectual ancestry of different results. I will not trace the degree to which researchers in one tradition were influenced by those in another. Greg Restall, [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ 3 Historical priority in the field belongs to the tradition of relevant logic, and it is to the early stirrings of considerations of relevance that we will turn. 2.1 Relevant Implication: Orlov, Moh and Church Dosenˇ has shown us [71] that substructural logic dates back at least to 1928 with I. E. Orlov's axiomatisation of a propositional logic weaker than classi- cal logic [207].4 Orlov axiomatised this logic in order to “represent relevance between propositions in symbolic form” [71, page 341]. Orlov's propositional logic has this axiomatisation.5 A ∼∼A double negation introduction ∼∼A A double negation elimination A ! ∼(A ∼A) contraposed reductio (A !B) (∼B ∼A) contraposition (A! (B !C)) (B (A C)) permutation (A ! B) ! ((C ! A) (C B)) prefixing A; A! B! B ! ! ! modus ponens ! ! ! ! ! The axioms and rule here form a traditional Hilbert system. The rule modus ponens is written! in)the form using a turnstile to echo the general definition of logical consequence in a Hilbert system. Given a set X of formulas, and a single formula A, we say that A can be proved from X (which I write “X A”) if and only if there is a proof in the Hilbert system with A as the conclusion, and with hypotheses from among the set X. A proof from hypotheses is)sim- ply a list of formulas, each of which is either an hypothesis, an axiom, or one which follows from earlier formulas in the list by means of a rule. In Orlov's system, the only rule is modus ponens. We will see later that this is not nec- essarily the most useful notion of logical consequence applicable to relevant and substructural logics. In particular, more interesting results can be proven with consequence relations which do not merely relate sets of formulas as premises to a conclusion, but rather relate lists, or other forms of structured collections as premises, to a conclusion. This is because lists or other struc- tures can distinguish the order or quantity of individual premises, while sets cannot. However, this is all that can simply be done to define consequence re- lations within the confines of a Hilbert system, so here is where our definition of consequence will start. These axioms and the rule do not explicitly represent any notion of rele- vance. Instead, we have an axiomatic system governing the behaviour of im- plication and negation. The system tells us about relevance in virtue of what 4Allen Hazen has shown that in Russell's 1906 paper “The Theory of Implication” his propo- sitional logic (without negation) is free of the structural rule of contraction [133, 243]. Only after negation is introduced can contraction can be proved. However, there seems to be no real sense in which Russell could be pressed in to favour as a proponent of substructural logics, as his aim was not to do without contraction, but to give an axiomatic account of material implication. 5The names are mine, and not Orlov's. I have attempted to give each axiom or rule its com- mon name (see for example Anderson and Belnap's Entailment [10] for a list of axioms and their ¡ ¢¤£¥ ¡ ¢¦ ¨§ names).
Recommended publications
  • Dialetheists' Lies About the Liar
    PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false.
    [Show full text]
  • Classifying Material Implications Over Minimal Logic
    Classifying Material Implications over Minimal Logic Hannes Diener and Maarten McKubre-Jordens March 28, 2018 Abstract The so-called paradoxes of material implication have motivated the development of many non- classical logics over the years [2–5, 11]. In this note, we investigate some of these paradoxes and classify them, over minimal logic. We provide proofs of equivalence and semantic models separating the paradoxes where appropriate. A number of equivalent groups arise, all of which collapse with unrestricted use of double negation elimination. Interestingly, the principle ex falso quodlibet, and several weaker principles, turn out to be distinguishable, giving perhaps supporting motivation for adopting minimal logic as the ambient logic for reasoning in the possible presence of inconsistency. Keywords: reverse mathematics; minimal logic; ex falso quodlibet; implication; paraconsistent logic; Peirce’s principle. 1 Introduction The project of constructive reverse mathematics [6] has given rise to a wide literature where various the- orems of mathematics and principles of logic have been classified over intuitionistic logic. What is less well-known is that the subtle difference that arises when the principle of explosion, ex falso quodlibet, is dropped from intuitionistic logic (thus giving (Johansson’s) minimal logic) enables the distinction of many more principles. The focus of the present paper are a range of principles known collectively (but not exhaustively) as the paradoxes of material implication; paradoxes because they illustrate that the usual interpretation of formal statements of the form “. → . .” as informal statements of the form “if. then. ” produces counter-intuitive results. Some of these principles were hinted at in [9]. Here we present a carefully worked-out chart, classifying a number of such principles over minimal logic.
    [Show full text]
  • Chapter 5: Methods of Proof for Boolean Logic
    Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs.
    [Show full text]
  • LOGIC BIBLIOGRAPHY up to 2008
    LOGIC BIBLIOGRAPHY up to 2008 by L. Geldsetzer © Copyright reserved Download only for personal use permitted Heinrich Heine Universität Düsseldorf 2008 II Contents 1. Introductions 1 2. Dictionaries 3 3. Course Material 4 4. Handbooks 5 5. Readers 5 6. Bibliographies 6 7. Journals 7 8. History of Logic and Foundations of Mathematics 9 a. Gerneral 9 b. Antiquity 10 c. Chinese Antiquity 11 d. Scholastics 12 e. Islamic Medieval Scholastics 12 f. Modern Times 13 g. Contemporary 13 9. Classics of Logics 15 a. Antiquity 15 b. Medieval Scholastics 17 c. Modern and Recent Times 18 d. Indian Logic, History and Classics 25 10. Topics of Logic 27 1. Analogy and Metaphor, Likelihood 27 2. Argumentation, Argument 27 3. Axiom, Axiomatics 28 4. Belief, Believing 28 5. Calculus 29 8. Commensurability, see also: Incommensurability 31 9. Computability and Decidability 31 10. Concept, Term 31 11. Construction, Constructivity 34 12. Contradiction, Inconsistence, Antinomics 35 13. Copula 35 14. Counterfactuals, Fiction, see also : Modality 35 15. Decision 35 16. Deduction 36 17. Definition 36 18. Diagram, see also: Knowledge Representation 37 19. Dialectic 37 20. Dialethism, Dialetheism, see also: Contradiction and Paracon- sistent Logic 38 21. Discovery 38 22. Dogma 39 23. Entailment, Implication 39 24. Evidence 39 25. Falsity 40 26. Fallacy 40 27. Falsification 40 III 28. Family Resemblance 41 2 9. Formalism 41 3 0. Function 42 31. Functors, Junct ors, Logical Constants or Connectives 42 32. Holism 43 33. Hypothetical Propositions, Hypotheses 44 34. Idealiz ation 44 35. Id entity 44 36. Incommensurability 45 37. Incompleteness 45 38.
    [Show full text]
  • Logic Programming in a Fragment of Intuitionistic Linear Logic ∗
    Logic Programming in a Fragment of Intuitionistic Linear Logic ¤ Joshua S. Hodas Dale Miller Computer Science Department Computer Science Department Harvey Mudd College University of Pennsylvania Claremont, CA 91711-5990 USA Philadelphia, PA 19104-6389 USA [email protected] [email protected] Abstract When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ [ fDg. Thus during the bottom-up search for a cut-free proof contexts, represented as the left-hand side of intuitionistic sequents, grow as stacks. While such an intuitionistic notion of context provides for elegant specifications of many computations, contexts can be made more expressive and flexible if they are based on linear logic. After presenting two equivalent formulations of a fragment of linear logic, we show that the fragment has a goal-directed interpretation, thereby partially justifying calling it a logic programming language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas can be modularly embedded into this linear logic setting. Programming examples taken from theorem proving, natural language parsing, and data base programming are presented: each example requires a linear, rather than intuitionistic, notion of context to be modeled adequately. An interpreter for this logic programming language must address the problem of splitting contexts; that is, when attempting to prove a multiplicative conjunction (tensor), say G1 ­ G2, from the context ∆, the latter must be split into disjoint contexts ∆1 and ∆2 for which G1 follows from ∆1 and G2 follows from ∆2.
    [Show full text]
  • Recent Work in Relevant Logic
    Recent Work in Relevant Logic Mark Jago Forthcoming in Analysis. Draft of April 2013. 1 Introduction Relevant logics are a group of logics which attempt to block irrelevant conclusions being drawn from a set of premises. The following inferences are all valid in classical logic, where A and B are any sentences whatsoever: • from A, one may infer B → A, B → B and B ∨ ¬B; • from ¬A, one may infer A → B; and • from A ∧ ¬A, one may infer B. But if A and B are utterly irrelevant to one another, many feel reluctant to call these inferences acceptable. Similarly for the validity of the corresponding material implications, often called ‘paradoxes’ of material implication. Relevant logic can be seen as the attempt to avoid these ‘paradoxes’. Relevant logic has a long history. Key early works include Anderson and Belnap 1962; 1963; 1975, and many important results appear in Routley et al. 1982. Those looking for a short introduction to relevant logics might look at Mares 2012 or Priest 2008. For a more detailed but still accessible introduction, there’s Dunn and Restall 2002; Mares 2004b; Priest 2008 and Read 1988. The aim of this article is to survey some of the most important work in the eld in the past ten years, in a way that I hope will be of interest to a philosophical audience. Much of this recent work has been of a formal nature. I will try to outline these technical developments, and convey something of their importance, with the minimum of technical jargon. A good deal of this recent technical work concerns how quantiers should work in relevant logic.
    [Show full text]
  • Two Sources of Explosion
    Two sources of explosion Eric Kao Computer Science Department Stanford University Stanford, CA 94305 United States of America Abstract. In pursuit of enhancing the deductive power of Direct Logic while avoiding explosiveness, Hewitt has proposed including the law of excluded middle and proof by self-refutation. In this paper, I show that the inclusion of either one of these inference patterns causes paracon- sistent logics such as Hewitt's Direct Logic and Besnard and Hunter's quasi-classical logic to become explosive. 1 Introduction A central goal of a paraconsistent logic is to avoid explosiveness { the inference of any arbitrary sentence β from an inconsistent premise set fp; :pg (ex falso quodlibet). Hewitt [2] Direct Logic and Besnard and Hunter's quasi-classical logic (QC) [1, 5, 4] both seek to preserve the deductive power of classical logic \as much as pos- sible" while still avoiding explosiveness. Their work fits into the ongoing research program of identifying some \reasonable" and \maximal" subsets of classically valid rules and axioms that do not lead to explosiveness. To this end, it is natural to consider which classically sound deductive rules and axioms one can introduce into a paraconsistent logic without causing explo- siveness. Hewitt [3] proposed including the law of excluded middle and the proof by self-refutation rule (a very special case of proof by contradiction) but did not show whether the resulting logic would be explosive. In this paper, I show that for quasi-classical logic and its variant, the addition of either the law of excluded middle or the proof by self-refutation rule in fact leads to explosiveness.
    [Show full text]
  • Notes on Proof Theory
    Notes on Proof Theory Master 1 “Informatique”, Univ. Paris 13 Master 2 “Logique Mathématique et Fondements de l’Informatique”, Univ. Paris 7 Damiano Mazza November 2016 1Last edit: March 29, 2021 Contents 1 Propositional Classical Logic 5 1.1 Formulas and truth semantics . 5 1.2 Atomic negation . 8 2 Sequent Calculus 10 2.1 Two-sided formulation . 10 2.2 One-sided formulation . 13 3 First-order Quantification 16 3.1 Formulas and truth semantics . 16 3.2 Sequent calculus . 19 3.3 Ultrafilters . 21 4 Completeness 24 4.1 Exhaustive search . 25 4.2 The completeness proof . 30 5 Undecidability and Incompleteness 33 5.1 Informal computability . 33 5.2 Incompleteness: a road map . 35 5.3 Logical theories . 38 5.4 Arithmetical theories . 40 5.5 The incompleteness theorems . 44 6 Cut Elimination 47 7 Intuitionistic Logic 53 7.1 Sequent calculus . 55 7.2 The relationship between intuitionistic and classical logic . 60 7.3 Minimal logic . 65 8 Natural Deduction 67 8.1 Sequent presentation . 68 8.2 Natural deduction and sequent calculus . 70 8.3 Proof tree presentation . 73 8.3.1 Minimal natural deduction . 73 8.3.2 Intuitionistic natural deduction . 75 1 8.3.3 Classical natural deduction . 75 8.4 Normalization (cut-elimination in natural deduction) . 76 9 The Curry-Howard Correspondence 80 9.1 The simply typed l-calculus . 80 9.2 Product and sum types . 81 10 System F 83 10.1 Intuitionistic second-order propositional logic . 83 10.2 Polymorphic types . 84 10.3 Programming in system F ...................... 85 10.3.1 Free structures .
    [Show full text]
  • Implicit Versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi
    Implicit versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi To cite this version: Manuel Rebuschi. Implicit versus Explicit Knowledge in Dialogical Logic. Ondrej Majer, Ahti-Veikko Pietarinen and Tero Tulenheimo. Games: Unifying Logic, Language, and Philosophy, Springer, pp.229-246, 2009, 10.1007/978-1-4020-9374-6_10. halshs-00556250 HAL Id: halshs-00556250 https://halshs.archives-ouvertes.fr/halshs-00556250 Submitted on 16 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Implicit versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi L.P.H.S. – Archives H. Poincar´e Universit´ede Nancy 2 [email protected] [The final version of this paper is published in: O. Majer et al. (eds.), Games: Unifying Logic, Language, and Philosophy, Dordrecht, Springer, 2009, 229-246.] Abstract A dialogical version of (modal) epistemic logic is outlined, with an intuitionistic variant. Another version of dialogical epistemic logic is then provided by means of the S4 mapping of intuitionistic logic. Both systems cast new light on the relationship between intuitionism, modal logic and dialogical games. Introduction Two main approaches to knowledge in logic can be distinguished [1]. The first one is an implicit way of encoding knowledge and consists in an epistemic interpretation of usual logic.
    [Show full text]
  • Starting the Dismantling of Classical Mathematics
    Australasian Journal of Logic Starting the Dismantling of Classical Mathematics Ross T. Brady La Trobe University Melbourne, Australia [email protected] Dedicated to Richard Routley/Sylvan, on the occasion of the 20th anniversary of his untimely death. 1 Introduction Richard Sylvan (n´eRoutley) has been the greatest influence on my career in logic. We met at the University of New England in 1966, when I was a Master's student and he was one of my lecturers in the M.A. course in Formal Logic. He was an inspirational leader, who thought his own thoughts and was not afraid to speak his mind. I hold him in the highest regard. He was very critical of the standard Anglo-American way of doing logic, the so-called classical logic, which can be seen in everything he wrote. One of his many critical comments was: “G¨odel's(First) Theorem would not be provable using a decent logic". This contribution, written to honour him and his works, will examine this point among some others. Hilbert referred to non-constructive set theory based on classical logic as \Cantor's paradise". In this historical setting, the constructive logic and mathematics concerned was that of intuitionism. (The Preface of Mendelson [2010] refers to this.) We wish to start the process of dismantling this classi- cal paradise, and more generally classical mathematics. Our starting point will be the various diagonal-style arguments, where we examine whether the Law of Excluded Middle (LEM) is implicitly used in carrying them out. This will include the proof of G¨odel'sFirst Theorem, and also the proof of the undecidability of Turing's Halting Problem.
    [Show full text]
  • Qvp) P :: ~~Pp :: (Pvp) ~(P → Q
    TEN BASIC RULES OF INFERENCE Negation Introduction (~I – indirect proof IP) Disjunction Introduction (vI – addition ADD) Assume p p Get q & ~q ˫ p v q ˫ ~p Disjunction Elimination (vE – version of CD) Negation Elimination (~E – version of DN) p v q ~~p → p p → r Conditional Introduction (→I – conditional proof CP) q → r Assume p ˫ r Get q Biconditional Introduction (↔I – version of ME) ˫ p → q p → q Conditional Elimination (→E – modus ponens MP) q → p p → q ˫ p ↔ q p Biconditional Elimination (↔E – version of ME) ˫ q p ↔ q Conjunction Introduction (&I – conjunction CONJ) ˫ p → q p or q ˫ q → p ˫ p & q Conjunction Elimination (&E – simplification SIMP) p & q ˫ p IMPORTANT DERIVED RULES OF INFERENCE Modus Tollens (MT) Constructive Dilemma (CD) p → q p v q ~q p → r ˫ ~P q → s Hypothetical Syllogism (HS) ˫ r v s p → q Repeat (RE) q → r p ˫ p → r ˫ p Disjunctive Syllogism (DS) Contradiction (CON) p v q p ~p ~p ˫ q ˫ Any wff Absorption (ABS) Theorem Introduction (TI) p → q Introduce any tautology, e.g., ~(P & ~P) ˫ p → (p & q) EQUIVALENCES De Morgan’s Law (DM) (p → q) :: (~q→~p) ~(p & q) :: (~p v ~q) Material implication (MI) ~(p v q) :: (~p & ~q) (p → q) :: (~p v q) Commutation (COM) Material Equivalence (ME) (p v q) :: (q v p) (p ↔ q) :: [(p & q ) v (~p & ~q)] (p & q) :: (q & p) (p ↔ q) :: [(p → q ) & (q → p)] Association (ASSOC) Exportation (EXP) [p v (q v r)] :: [(p v q) v r] [(p & q) → r] :: [p → (q → r)] [p & (q & r)] :: [(p & q) & r] Tautology (TAUT) Distribution (DIST) p :: (p & p) [p & (q v r)] :: [(p & q) v (p & r)] p :: (p v p) [p v (q & r)] :: [(p v q) & (p v r)] Conditional-Biconditional Refutation Tree Rules Double Negation (DN) ~(p → q) :: (p & ~q) p :: ~~p ~(p ↔ q) :: [(p & ~q) v (~p & q)] Transposition (TRANS) CATEGORICAL SYLLOGISM RULES (e.g., Ǝx(Fx) / ˫ Fy).
    [Show full text]
  • From Axioms to Rules — a Coalition of Fuzzy, Linear and Substructural Logics
    From Axioms to Rules — A Coalition of Fuzzy, Linear and Substructural Logics Kazushige Terui National Institute of Informatics, Tokyo Laboratoire d’Informatique de Paris Nord (Joint work with Agata Ciabattoni and Nikolaos Galatos) Genova, 21/02/08 – p.1/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Genova, 21/02/08 – p.2/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Our aim: Fruitful coalition of the 3 parties Genova, 21/02/08 – p.2/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination A logic without cut elimination is like a car without engine (J.-Y. Girard) Genova, 21/02/08 – p.3/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Genova, 21/02/08 – p.4/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Give an automatic procedure to transform axioms up to level ¼ È È ¿ ( , in the absense of Weakening) into Hyperstructural ¿ Rules in Hypersequent Calculus (Fuzzy Logics).
    [Show full text]