Form and Content: an Introduction to Formal Logic

Total Page:16

File Type:pdf, Size:1020Kb

Form and Content: an Introduction to Formal Logic Connecticut College Digital Commons @ Connecticut College Open Educational Resources 2020 Form and Content: An Introduction to Formal Logic Derek D. Turner Connecticut College, [email protected] Follow this and additional works at: https://digitalcommons.conncoll.edu/oer Recommended Citation Turner, Derek D., "Form and Content: An Introduction to Formal Logic" (2020). Open Educational Resources. 1. https://digitalcommons.conncoll.edu/oer/1 This Book is brought to you for free and open access by Digital Commons @ Connecticut College. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Form & Content Form and Content An Introduction to Formal Logic Derek Turner Connecticut College 2020 Susanne K. Langer. This bust is in Shain Library at Connecticut College, New London, CT. Photo by the author. 1 Form & Content ©2020 Derek D. Turner This work is published in 2020 under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. You may share this text in any format or medium. You may not use it for commercial purposes. If you share it, you must give appropriate credit. If you remix, transform, add to, or modify the text in any way, you may not then redistribute the modified text. 2 Form & Content A Note to Students For many years, I had relied on one of the standard popular logic textbooks for my introductory formal logic course at Connecticut College. It is a perfectly good book, used in countless logic classes across the country. But the book is expensive. The for-profit publisher routinely makes minor changes—just enough to justify putting out a new edition, which of course costs more. This also creates a dilemma for instructors: In times past, I’ve had to decide between ordering the soon-to-be out of date edition, which is cheaper and available used, but which students would not be able to sell back, vs. the new edition, which is not available used but which could be resold. A couple of years ago, I lost interest in participating any longer in this sort of system. So I decided to write my own text. Logic is something that should be accessible to anyone and everyone who takes an interest in studying it. There is something a little unseemly about for-profit textbook publishers making money off of students whose interest in taking a logic course makes them a captive audience. One of my goals in writing this book is thus accessibility. My hope is that this book may serve as an engaging, easy-to-read open access alternative. This textbook, I’m sure, has lots of flaws and idiosyncrasies. It’s written in the first instance for my students at Connecticut College, for the particular sort of logic course that I have developed there over the years. If you see problems, or if there are places where the explanation isn’t very clear, please do let me know. Often when you’re studying a textbook and you have trouble understanding something, you might be inclined to blame yourself. But please do not do that here. A text can always be improved (especially if no one is trying to make money from it). So as you study this text, I’d like you to read it with a critical eye even as you’re trying to learn logic. If you see things that could be done better, let me know, and together we might be able to improve the text for the benefit of future students. You’ll find that most of the examples I use are low-stakes and cheesy—some Harry Potter characters, lots of dinosaurs. My dog, Toby, shows up frequently. I want to say up front that I have reasons for preferring low-stakes examples. Many people, when they first approach logic, are really eager to learn how to apply logic in real argumentative contexts. When reasoning about important issues of the day, how can we spot and diagnose bad arguments? And how can we make better ones? One thing I’ve found, however, is that when you’re trying to learn formal logic, especially for the first time, the content is often a distraction. Many people have strong views about issues like immigration, or abortion, or free speech, or whatever it might be. A logic text that’s full of examples involving those and other current matters of political controversy would provoke lots of philosophically rich discussion, but in the course of that discussion the focus would likely drift away from the logic toward the substantive issue that everyone really cares about. However, one of my goals in a logic course is to get you to really care about abstract form—to see it as something glorious and even liberating, as something intrinsically worth studying. I’m convinced that the best way to shine the light on form is to use silly and hopefully fun examples—i.e., silly content—that nobody has much vested interest in. In fact, this is something of a philosophical disagreement that I have with 3 Form & Content other textbook writers. Everyone wants to know how something like logic might be applicable “in real life,” and so other textbooks hit you early with lots of examples involving matters of current interest. Practical applicability really is important, but I’m not convinced that means that it’s helpful to have “real life” examples when you’re first learning logic. By analogy, if you want to learn how to play clawhammer banjo, it might be best not to start out by trying to play a real song. It might be better to start by spending many hours practicing the right-hand frailing technique, which is really hard to learn but (once you master it) unbelievably graceful and efficient. The approach that I take in this text—an approach that emphasizes the relationship between form and content—is loosely inspired by the work of Susanne K. Langer, an amazing philosopher and logic aficionado who taught at Connecticut College. Langer also wrote one of the first introductory textbooks on symbolic logic.1 But she was most famous as a philosopher of art, and especially music. She played the cello, and wrote about music with some authority. Her interest in music was not unrelated to her interest in logic. She saw both as involving the interplay of form and content. Just as you might look at two arguments and find that they both share the same form—modus ponens, say—you might play an A minor chord on a piano and a banjo. Same form, different content. Or if you transpose a song from the key of G to the key of A, the form—the relationships among the notes—stays the same, while the content—the actual notes—is changing. Langer understood that there are many different contexts in life in which we might wish to study the interplay of form and content. Logic is just one example of this, where we’re interested in the form and content of our own thinking. One other thing that animates this book is the conviction that technical vocabulary can be empowering. Most people are better at mastering new technical vocabulary than they realize. I do not watch much baseball, but it is always interesting to see how many technical terms the baseball aficionados in my family have mastered: there are terms for positions (short stop, center field, etc.); terms for types of pitches (fastball, slider); terms for different plays (grounding out, double play, stealing second base); statistical terms (at bats, runs batted in, saves), and a host of other technical concepts with precise definitions. Not only that, but baseball aficionados must learn a complicated set of rules (e.g., if a pitcher throws four balls, the batter walks, etc.). Lots of people master this and other similarly complex systems of technical concepts without even realizing it. Without the concepts, you could not understand or appreciate baseball at all. Surprisingly, when it comes to our own reasoning, many people are in the situation of a person watching a baseball game, but without the benefit of any baseball concepts, with no way to process or grasp what is going on. The fact that so few people have the technical logical concepts that would enable them to think and talk clearly about reasoning in the way that baseball fans (for example) can analyze games with great precision is not the fault of anyone in particular. But it is definitely a kind of collective cultural failing. The good thing is that this failing is pretty easy to remedy. The technical concepts of logic are just as easy to master as the technical concepts of baseball. 1 Susanne K. Langer, An Introduction to Symbolic Logic, 3rd edition. New York: Dover Publications, 1967. The first edition of the book was originally published in 1937. 4 Form & Content And the benefit of studying them is that we no longer have to be alienated from our own reasoning. There are other open educational resource (OER) logic texts out there. You might also wish to consult with Forallx, a wonderful logic text created by P.D. Magnus. One difference between my approach and Magnus’s is that I treat semantic issues along the way, rather than treating formal semantics as a distinct topic later in the text. A team at the University of Calgary has also produced a Calgary remix of Magnus’s text, which is excellent.
Recommended publications
  • Gibbardian Collapse and Trivalent Conditionals
    Gibbardian Collapse and Trivalent Conditionals Paul Égré* Lorenzo Rossi† Jan Sprenger‡ Abstract This paper discusses the scope and significance of the so-called triviality result stated by Allan Gibbard for indicative conditionals, showing that if a conditional operator satisfies the Law of Import-Export, is supraclassical, and is stronger than the material conditional, then it must collapse to the material conditional. Gib- bard’s result is taken to pose a dilemma for a truth-functional account of indicative conditionals: give up Import-Export, or embrace the two-valued analysis. We show that this dilemma can be averted in trivalent logics of the conditional based on Reichenbach and de Finetti’s idea that a conditional with a false antecedent is undefined. Import-Export and truth-functionality hold without triviality in such logics. We unravel some implicit assumptions in Gibbard’s proof, and discuss a recent generalization of Gibbard’s result due to Branden Fitelson. Keywords: indicative conditional; material conditional; logics of conditionals; triva- lent logic; Gibbardian collapse; Import-Export 1 Introduction The Law of Import-Export denotes the principle that a right-nested conditional of the form A → (B → C) is logically equivalent to the simple conditional (A ∧ B) → C where both antecedentsare united by conjunction. The Law holds in classical logic for material implication, and if there is a logic for the indicative conditional of ordinary language, it appears Import-Export ought to be a part of it. For instance, to use an example from (Cooper 1968, 300), the sentences “If Smith attends and Jones attends then a quorum *Institut Jean-Nicod (CNRS/ENS/EHESS), Département de philosophie & Département d’études cog- arXiv:2006.08746v1 [math.LO] 15 Jun 2020 nitives, Ecole normale supérieure, PSL University, 29 rue d’Ulm, 75005, Paris, France.
    [Show full text]
  • Chrysippus's Dog As a Case Study in Non-Linguistic Cognition
    Chrysippus’s Dog as a Case Study in Non-Linguistic Cognition Michael Rescorla Abstract: I critique an ancient argument for the possibility of non-linguistic deductive inference. The argument, attributed to Chrysippus, describes a dog whose behavior supposedly reflects disjunctive syllogistic reasoning. Drawing on contemporary robotics, I urge that we can equally well explain the dog’s behavior by citing probabilistic reasoning over cognitive maps. I then critique various experimentally-based arguments from scientific psychology that echo Chrysippus’s anecdotal presentation. §1. Language and thought Do non-linguistic creatures think? Debate over this question tends to calcify into two extreme doctrines. The first, espoused by Descartes, regards language as necessary for cognition. Modern proponents include Brandom (1994, pp. 145-157), Davidson (1984, pp. 155-170), McDowell (1996), and Sellars (1963, pp. 177-189). Cartesians may grant that ascribing cognitive activity to non-linguistic creatures is instrumentally useful, but they regard such ascriptions as strictly speaking false. The second extreme doctrine, espoused by Gassendi, Hume, and Locke, maintains that linguistic and non-linguistic cognition are fundamentally the same. Modern proponents include Fodor (2003), Peacocke (1997), Stalnaker (1984), and many others. Proponents may grant that non- linguistic creatures entertain a narrower range of thoughts than us, but they deny any principled difference in kind.1 2 An intermediate position holds that non-linguistic creatures display cognitive activity of a fundamentally different kind than human thought. Hobbes and Leibniz favored this intermediate position. Modern advocates include Bermudez (2003), Carruthers (2002, 2004), Dummett (1993, pp. 147-149), Malcolm (1972), and Putnam (1992, pp. 28-30).
    [Show full text]
  • Frontiers of Conditional Logic
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 Frontiers of Conditional Logic Yale Weiss The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2964 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Frontiers of Conditional Logic by Yale Weiss A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 ii c 2018 Yale Weiss All Rights Reserved iii This manuscript has been read and accepted by the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Professor Gary Ostertag Date Chair of Examining Committee Professor Nickolas Pappas Date Executive Officer Professor Graham Priest Professor Melvin Fitting Professor Edwin Mares Professor Gary Ostertag Supervisory Committee The City University of New York iv Abstract Frontiers of Conditional Logic by Yale Weiss Adviser: Professor Graham Priest Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional|especially counterfactual|expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that cat- alyzed the rapid maturation of the field.
    [Show full text]
  • Chapter 5: Methods of Proof for Boolean Logic
    Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs.
    [Show full text]
  • Critical Thinking STARS Handout Finalx
    Critical Thinking "It is the mark of an educated mind to be able to entertain a thought without accepting it." - Aristotle "The important thing is not to stop questioning." - Albert Einstein What is critical thinking? Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. A Critical Thinker: Asks pertinent questions Assess statements and arguments Is able to admit a lack of understanding or information Has a sense of curiosity Is interested in finding new solutions Examines beliefs, assumptions and opinions and weighs them against facts Listens carefully to others and can give effective feedback Suspends judgment until all facts have been gathered and considered Look for evidence to support assumptions or beliefs Is able to adjust beliefs when new information is found Examines problems closely Is able to reject information that is irrelevant or incorrect Critical Thinking Standards and Questions: The most significant thinking (intellectual) standards/questions: • Clarity o Could you elaborate further on that point? o Could you give me an example? o Could you express
    [Show full text]
  • Glossary for Logic: the Language of Truth
    Glossary for Logic: The Language of Truth This glossary contains explanations of key terms used in the course. (These terms appear in bold in the main text at the point at which they are first used.) To make this glossary more easily searchable, the entry headings has ‘::’ (two colons) before it. So, for example, if you want to find the entry for ‘truth-value’ you should search for ‘:: truth-value’. :: Ambiguous, Ambiguity : An expression or sentence is ambiguous if and only if it can express two or more different meanings. In logic, we are interested in ambiguity relating to truth-conditions. Some sentences in natural languages express more than one claim. Read one way, they express a claim which has one set of truth-conditions. Read another way, they express a different claim with different truth-conditions. :: Antecedent : The first clause in a conditional is its antecedent. In ‘(P ➝ Q)’, ‘P’ is the antecedent. In ‘If it is raining, then we’ll get wet’, ‘It is raining’ is the antecedent. (See ‘Conditional’ and ‘Consequent’.) :: Argument : An argument is a set of claims (equivalently, statements or propositions) made up from premises and conclusion. An argument can have any number of premises (from 0 to indefinitely many) but has only one conclusion. (Note: This is a somewhat artificially restrictive definition of ‘argument’, but it will help to keep our discussions sharp and clear.) We can consider any set of claims (with one claim picked out as conclusion) as an argument: arguments will include sets of claims that no-one has actually advanced or put forward.
    [Show full text]
  • On Basic Probability Logic Inequalities †
    mathematics Article On Basic Probability Logic Inequalities † Marija Boriˇci´cJoksimovi´c Faculty of Organizational Sciences, University of Belgrade, Jove Ili´ca154, 11000 Belgrade, Serbia; [email protected] † The conclusions given in this paper were partially presented at the European Summer Meetings of the Association for Symbolic Logic, Logic Colloquium 2012, held in Manchester on 12–18 July 2012. Abstract: We give some simple examples of applying some of the well-known elementary probability theory inequalities and properties in the field of logical argumentation. A probabilistic version of the hypothetical syllogism inference rule is as follows: if propositions A, B, C, A ! B, and B ! C have probabilities a, b, c, r, and s, respectively, then for probability p of A ! C, we have f (a, b, c, r, s) ≤ p ≤ g(a, b, c, r, s), for some functions f and g of given parameters. In this paper, after a short overview of known rules related to conjunction and disjunction, we proposed some probabilized forms of the hypothetical syllogism inference rule, with the best possible bounds for the probability of conclusion, covering simultaneously the probabilistic versions of both modus ponens and modus tollens rules, as already considered by Suppes, Hailperin, and Wagner. Keywords: inequality; probability logic; inference rule MSC: 03B48; 03B05; 60E15; 26D20; 60A05 1. Introduction The main part of probabilization of logical inference rules is defining the correspond- Citation: Boriˇci´cJoksimovi´c,M. On ing best possible bounds for probabilities of propositions. Some of them, connected with Basic Probability Logic Inequalities. conjunction and disjunction, can be obtained immediately from the well-known Boole’s Mathematics 2021, 9, 1409.
    [Show full text]
  • Critical Thinking for the Military Professional
    Document created: 17 Jun 04 Critical Thinking For The Military Professional Col W. Michael Guillot “Any complex activity, if it is to be carried on with any degree of virtuosity, calls for appropriate gifts of intellect and temperament …Genius consists in a harmonious combination of elements, in which one or the other ability may predominate, but none may be in conflict with the rest.”1 In a previous article on Strategic leadership I described the strategic environment as volatile, uncertain, complex, and ambiguous (VUCA). Additionally, that writing introduced the concept of strategic competency.2 This article will discuss the most important essential skill for Strategic Leaders: critical thinking. It is hard to imagine a Strategic leader today who does not think critically or at least uses the concept in making decisions. Critical thinking helps the strategic leader master the challenges of the strategic environment. It helps one understand how to bring stability to a volatile world. Critical thinking leads to more certainty and confidence in an uncertain future. This skill helps simplify complex scenarios and brings clarity to the ambiguous lens. Critical thinking is the kind of mental attitude required for success in the strategic environment. In essence, critical thinking is about learning how to think and how to judge and improve the quality of thinking—yours and others. Lest you feel you are already a great critical thinker, consider this, in a recent study supported by the Kellogg Foundation, only four percent of the U.S. organizational
    [Show full text]
  • 7.1 Rules of Implication I
    Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification.
    [Show full text]
  • Application: Digital Logic Circuits
    SECTION 2.4 Application: Digital Logic Circuits Copyright © Cengage Learning. All rights reserved. Application: Digital Logic Circuits Switches “in series” Switches “in parallel” Change closed and on are replaced by T, open and off are replaced by F? Application: Digital Logic Circuits • More complicated circuits correspond to more complicated logical expressions. • This correspondence has been used extensively in design and study of circuits. • Electrical engineers use language of logic when refer to values of signals produced by an electronic switch as being “true” or “false.” • Only that symbols 1 and 0 are used • symbols 0 and 1 are called bits, short for binary digits. • This terminology was introduced in 1946 by the statistician John Tukey. Black Boxes and Gates Black Boxes and Gates • Circuits: transform combinations of signal bits (1’s and 0’s) into other combinations of signal bits (1’s and 0’s). • Computer engineers and digital system designers treat basic circuits as black boxes. • Ignore inside of a black box (detailed implementation of circuit) • focused on the relation between the input and the output signals. • Operation of a black box is completely specified by constructing an input/output table that lists all its possible input signals together with their corresponding output signals. Black Boxes and Gates One possible correspondence of input to output signals is as follows: An Input/Output Table Black Boxes and Gates An efficient method for designing more complicated circuits is to build them by connecting less complicated black box circuits. Gates can be combined into circuits in a variety of ways. If the rules shown on the next page are obeyed, the result is a combinational circuit, one whose output at any time is determined entirely by its input at that time without regard to previous inputs.
    [Show full text]
  • Shalack V.I. Semiotic Foundations of Logic
    Semiotic foundations of logic Vladimir I. Shalack abstract. The article offers a look at the combinatorial logic as the logic of signs operating in the most general sense. For this it is proposed slightly reformulate it in terms of introducing and replacement of the definitions. Keywords: combinatory logic, semiotics, definition, logic founda- tions 1 Language selection Let’s imagine for a moment what would be like the classical logic, if we had not studied it in the language of negation, conjunction, dis- junction and implication, but in the language of the Sheffer stroke. I recall that it can be defined with help of negation and conjunction as follows A j B =Df :(A ^ B): In turn, all connectives can be defined with help of the Sheffer stroke in following manner :A =Df (A j A) A ^ B =Df (A j B) j (A j B) A _ B =Df (A j A) j (B j B) A ⊃ B =Df A j (B j B): Modus ponens rule takes the following form A; A j (B j B) . B 226 Vladimir I. Shalack We can go further and following the ideas of M. Sch¨onfinkel to define two-argument infix quantifier ‘jx’ x A j B =Df 8x(A j B): Now we can use it to define Sheffer stroke and quantifiers. x A j B =Df A j B where the variable x is not free in the formulas A and B; y x y 8xA =Df (A j A) j (A j A) where the variable y is not free in the formula A; x y x 9xA =Df (A j A) j (A j A) where the variable y is not free in the formula A.
    [Show full text]
  • Tables of Implications and Tautologies from Symbolic Logic
    Tables of Implications and Tautologies from Symbolic Logic Dr. Robert B. Heckendorn Computer Science Department, University of Idaho March 17, 2021 Here are some tables of logical equivalents and implications that I have found useful over the years. Where there are classical names for things I have included them. \Isolation by Parts" is my own invention. By tautology I mean equivalent left and right hand side and by implication I mean the left hand expression implies the right hand. I use the tilde and overbar interchangeably to represent negation e.g. ∼x is the same as x. Enjoy! Table 1: Properties of All Two-bit Operators. The Comm. is short for commutative and Assoc. is short for associative. Iff is short for \if and only if". Truth Name Comm./ Binary And/Or/Not Nands Only Table Assoc. Op 0000 False CA 0 0 (a " (a " a)) " (a " (a " a)) 0001 And CA a ^ b a ^ b (a " b) " (a " b) 0010 Minus b − a a ^ b (b " (a " a)) " (a " (a " a)) 0011 B A b b b 0100 Minus a − b a ^ b (a " (a " a)) " (a " (a " b)) 0101 A A a a a 0110 Xor/NotEqual CA a ⊕ b (a ^ b) _ (a ^ b)(b " (a " a)) " (a " (a " b)) (a _ b) ^ (a _ b) 0111 Or CA a _ b a _ b (a " a) " (b " b) 1000 Nor C a # b a ^ b ((a " a) " (b " b)) " ((a " a) " a) 1001 Iff/Equal CA a $ b (a _ b) ^ (a _ b) ((a " a) " (b " b)) " (a " b) (a ^ b) _ (a ^ b) 1010 Not A a a a " a 1011 Imply a ! b a _ b (a " (a " b)) 1100 Not B b b b " b 1101 Imply b ! a a _ b (b " (a " a)) 1110 Nand C a " b a _ b a " b 1111 True CA 1 1 (a " a) " a 1 Table 2: Tautologies (Logical Identities) Commutative Property: p ^ q $ q
    [Show full text]