Frontiers of Conditional Logic

Total Page:16

File Type:pdf, Size:1020Kb

Frontiers of Conditional Logic City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 Frontiers of Conditional Logic Yale Weiss The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2964 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Frontiers of Conditional Logic by Yale Weiss A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 ii c 2018 Yale Weiss All Rights Reserved iii This manuscript has been read and accepted by the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Professor Gary Ostertag Date Chair of Examining Committee Professor Nickolas Pappas Date Executive Officer Professor Graham Priest Professor Melvin Fitting Professor Edwin Mares Professor Gary Ostertag Supervisory Committee The City University of New York iv Abstract Frontiers of Conditional Logic by Yale Weiss Adviser: Professor Graham Priest Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional|especially counterfactual|expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that cat- alyzed the rapid maturation of the field. Moreover, like modal logic, conditional logic has subsequently found a wide array of uses, from the traditional (e.g. counterfactuals) to the exotic (e.g. conditional obligation). Despite the close connections between conditional and modal logic, both the technical development and philosophical exploitation of the latter has outstripped that of the former, with the result that noticeable lacunae exist in the literature on conditional logic. My dissertation addresses a number of these underdeveloped frontiers, producing new technical insights and philosophical applications. I contribute to the solution of a problem posed by Priest of finding sound and complete labeled tableaux for systems of conditional logic from Lewis' V-family. To develop these tableaux, I draw on previous work on labeled tableaux for modal and conditional logic; errors and shortcomings in recent work on this problem are identified and corrected. While modal logic has by now been thoroughly studied in non-classical contexts, e.g. intuitionistic and relevant logic, the literature on conditional logic is still overwhelmingly classical. Another contribution of my dissertation is a thorough analysis of intuitionistic conditional logic, in which I utilize both algebraic and worlds semantics, and investigate how several novel v embedding results might shed light on the philosophical interpretation of both intuitionistic logic and conditional logic extensions thereof. My dissertation examines deontic and connexive conditional logic as well as the un- derappreciated history of connexive notions in the analysis of conditional obligation. The possibility of interpreting deontic modal logics in such systems (via embedding results) serves as an important theoretical guide. A philosophically motivated proscription on impossible obligations is shown to correspond to, and justify, certain (weak) connexive theses. Finally, I contribute to the intensifying debate over counterpossibles, counterfactuals with impossible antecedents, and take|in contrast to Lewis and Williamson|a non-vacuous line. Thus, in my view, a counterpossible like \If there had been a counterexample to the law of the excluded middle, Brouwer would not have been vindicated" is false, not (vacuously) true, al- though it has an impossible antecedent. I exploit impossible (non-normal) worlds|originally developed to model non-normal modal logics|to provide non-vacuous semantics for coun- terpossibles. I buttress the case for non-vacuous semantics by making recourse to both novel technical results and theoretical considerations. Acknowledgments and Permissions I would like to express my gratitude, first and foremost, to Professor Graham Priest. I first began thinking seriously about the philosophy and logic of conditionals in his course with Hartry Field on the subject in the fall semester of 2014|my first semester as a graduate student|and have yet to stop. At every stage of my work on the subject, from just learning it to producing original research, Graham Priest made himself available to provide feedback and advice. This dissertation, beginning with the subject to which it is devoted, owes much to his influence. I owe special thanks, as well, to the other members of my committee. I am grateful to Professor Melvin Fitting for his comments, not only on this dissertation, but on the various papers and presentations over the years that built up to it. I thank Professor Edwin Mares for agreeing to serve on my committee (from far off New Zealand!) and for his valuable remarks on matters technical and philosophical. Finally, I owe thanks to Professor Gary Ostertag, especially for critical comments which have helped hone and clarify the philosophical content of chapter 5. Thanks are also due to, among others: the anonymous referees and editors of various papers of mine on conditional logic (selections of some of which are included herein), the members of the \Priest Club" and the members of the Logic and Metaphysics Workshop (for listening to me present some of this material and providing helpful feedback), Professor Consuelo Preti (without whose influence I might never have ended up at the Graduate vi vii Center), Professor Branden Fitelson (for introducing me to an automated theorem proving tool used herein), and my parents, Veronica and Wayne Weiss. This dissertation incorporates material that I have previously published and I am pleased to acknowledge the publishers' permissions to reuse this material. Some of the material from chapter 4 has been adapted from: Weiss, Y. (2018). Connexive Extensions of Regular Conditional Logic. Logic and Logical Philosophy, forthcoming. The publisher of the paper, which can be obtained at http://doi.org/10.12775/LLP. 2018.012, is Nicolaus Copernicus University in Toru´n,Poland. The material is reused here with the permission of the editors of Logic and Logical Philosophy. A substantial amount of the material from chapter 6 is drawn from: Weiss, Y. (2018). Basic Intuitionistic Conditional Logic. Journal of Philosophical Logic, forthcoming. This paper is available from the publisher at https://doi.org/10.1007/s10992-018-9471-4. It is reprinted by permission of the publisher under license 4442590680916 with the following required acknowledgement: Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Journal of Philosophical Logic, \Basic Intuitionistic Conditional Logic," Yale Weiss, COPYRIGHT 2018, advance online publication, 23 July 2018 (doi: 10.1038/sj.jpl.) Contents Contents viii List of Tables xi 1 Introduction 1 1.1 The Scope of Conditional Logic . .1 1.2 Overview of the Dissertation . .4 2 Conditional Logic 9 2.1 Syntax . 10 2.1.1 Axiom Systems . 10 2.1.2 Modal Logic in Conditional Logic . 16 2.2 Uniform Semantics . 20 2.2.1 Proposition Indexed Interpretations . 21 2.2.2 Algebraic Semantics . 26 2.2.3 Determination Results . 31 2.3 Niche Semantics . 34 2.3.1 Half-Classical Semantics . 34 2.3.2 Preorder and Sphere Semantics . 38 viii CONTENTS ix 3 Tableaux for Lewis-Stalnaker Logics 44 3.1 Tableaux for Lewis Systems . 46 3.1.1 Tableaux Systems . 46 3.1.2 Determination Results . 55 3.2 Tableaux for Stalnaker's System . 63 4 Connexive Conditional Logic 71 4.1 Obligation: Absolute and Conditional . 73 4.1.1 Deontic Modal Logic . 74 4.1.2 Deontic Conditional Logic . 77 4.2 Axiom Systems . 82 4.2.1 Deontic Connexive Systems . 85 4.2.2 Non-Deontic Connexive Systems . 88 4.3 Semantics . 90 4.3.1 Proposition Indexed Interpretations . 90 4.3.2 Conditional Algebraic Interpretations . 93 5 Counterpossible Logic 97 5.1 Vacuousness and Counterpossibles . 98 5.1.1 The Case against Vacuousness . 100 5.1.2 Non-vacuous Semantics . 109 5.2 Axiom Systems . 112 5.2.1 Principles of Counterpossible Logic . 112 5.2.2 Systems of Counterpossible Logic . 115 5.3 Determination Results . 117 6 Intuitionistic Conditional Logic 123 CONTENTS x 6.1 Intuitionistic Logic . 124 6.1.1 Axiomatics and Semantics . 125 6.1.2 A Conditional Embedding of Intuitionistic Logic . 128 6.2 Intuitionistic Conditional Logic . 132 6.2.1 Axiom Systems . 132 6.2.2 Semantics . 138 6.3 Determination Results . 146 7 Concluding Remarks 152 Bibliography 155 List of Tables 2.1 Rules . 11 2.2 Axiom Schemata . 12 2.3 Major Systems of Conditional Logic . 15 2.4 Modal Axiom Schemata . 17 2.5 Function Constraints . 22 2.6 Algebraic Constraints . 27 2.7 Preorder Constraints . 40 4.1 Deontic Systems of Conditional Logic . 86 4.2 Non-Deontic Systems of Connexive Conditional Logic . 89 4.3 Deontic and Connexive Function Constraints . 91 4.4 Deontic and Connexive Algebraic Constraints . 94 5.1 Counterpossible Semantic Constraints . 111 5.2 Counterpossible Systems of Conditional Logic . 116 6.1 Intuitionistic Axiom Schemata and Rules . 126 6.2 Intuitionistic Systems of Conditional Logic . 133 6.3 Intuitionistic Relational Constraints . 140 6.4 Heyting Algebraic Constraints . 142 xi Chapter 1 Introduction In what follows, I introduce the subject of conditional logic and explain what this dissertation contributes to it. The history and scope of conditional logic is canvassed in section 1.1. An overview of the results and aims of the main chapters of this dissertation is given in section 1.2. 1.1 The Scope of Conditional Logic Debate over the logic of conditionals is as old as propositional logic.
Recommended publications
  • 7.1 Rules of Implication I
    Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification.
    [Show full text]
  • Three Ways of Being Non-Material
    Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent.
    [Show full text]
  • CS 205 Sections 07 and 08 Supplementary Notes on Proof Matthew Stone March 1, 2004 [email protected]
    CS 205 Sections 07 and 08 Supplementary Notes on Proof Matthew Stone March 1, 2004 [email protected] 1 Propositional Natural Deduction The proof systems that we have been studying in class are called natural deduction. This is because they permit the same lines of reasoning and the same form of argument that you see in ordinary mathematics. Students generally find it easier to represent their mathematical ideas in natural deduction than in other ways of doing proofs. In these systems the proof is a sequence of lines. Each line has a number, a formula, and a justification that explains why the formula can be introduced into the proof. The simplest kind of justification is that the formula is a premise, and the argument depends on it. Another common justification is modus ponens, which derives the consequent of a conditional in the proof whose antecedent is also part of the proof. Here is a simple proof with these two rules used together. Example 1 1P! QPremise 2Q! RPremise 3P Premise 4 Q Modus ponens 1,3 5 R Modus ponens 2,4 This proof assumes that P is true, that P ! Q,andthatQ ! R. It uses modus ponens to conclude that R must then be true. Some inference rules in natural deduction allow assumptions to be made for the purposes of argument. These inference rules create a subproof. A subproof begins with a new assumption. This assumption can be used just within this subproof. In addition, all the assumption made in outer proofs can be used in the subproof.
    [Show full text]
  • Counterfactuals and Modality
    Linguistics and Philosophy https://doi.org/10.1007/s10988-020-09313-8 ORIGINAL RESEARCH Counterfactuals and modality Gabriel Greenberg1 Accepted: 9 October 2020 © Springer Nature B.V. 2021 Abstract This essay calls attention to a set of linguistic interactions between counterfactual conditionals, on one hand, and possibility modals like could have and might have,on the other. These data present a challenge to the popular variably strict semantics for counterfactual conditionals. Instead, they support a version of the strict conditional semantics in which counterfactuals and possibility modals share a unified quantifica- tional domain. I’ll argue that pragmatic explanations of this evidence are not available to the variable analysis. And putative counterexamples to the unified strict analysis, on careful inspection, in fact support it. Ultimately, the semantics of conditionals and modals must be linked together more closely than has sometimes been recognized, and a unified strict semantics for conditionals and modals is the only way to fully achieve this. Keywords Counterfactuals · Conditionals · Modality · Discourse This essay calls attention to a set of linguistic interactions between counterfactual conditionals, on one hand, and possibility modals like could have and might have,on the other. These data present a challenge to the popular variably strict semantics for counterfactual conditionals. Instead, they support a version of the strict conditional semantics in which counterfactuals and possibility modals share a unified quantifica- tional domain. I’ll argue that pragmatic explanations of this evidence are not available to the variable analysis. And putative counterexamples to the unified strict analysis, on careful inspection, in fact support it. Ultimately, the semantics of conditionals and modals must be linked together more closely than has sometimes been recognized, and a unified strict semantics for conditionals and modals is the only way to fully achieve this.
    [Show full text]
  • Three Ways of Being Non-Material
    Vincenzo Crupi Three Ways of Being Andrea Iacona Non-Material Abstract. This paper develops a probabilistic analysis of conditionals which hinges on a quantitative measure of evidential support. In order to spell out the interpretation of ‘if’ suggested, we will compare it with two more familiar interpretations, the suppositional interpretation and the strict interpretation, within a formal framework which rests on fairly uncontroversial assumptions. As it will emerge, each of the three interpretations considered exhibits specific logical features that deserve separate consideration. Keywords: Conditionals, Probability, Evidential support, Connexivity, Suppositional. 1. Preliminaries Although it is widely agreed that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories of conditionals tend to privilege different intuitions, and there is no obvious way to tell which of them is the correct theory. At least two non-material readings of ‘if’ deserve attention. One is the suppositional interpretation, according to which a conditional is acceptable when it is likely that its consequent holds on the supposition that its antecedent holds. The other is the strict interpretation, according to which a conditional is acceptable when its antecedent necessitates its consequent. This paper explores a third non-material reading of ‘if’ — the evidential interpretation — which rests on the idea that a conditional is acceptable when its antecedent supports its consequent, that is, when its antecedent provides a reason for accepting its consequent. The first two interpretations have been widely discussed, and have prompted quite distinct formal accounts of conditionals.
    [Show full text]
  • Types of Proof System
    Types of proof system Peter Smith October 13, 2010 1 Axioms, rules, and what logic is all about 1.1 Two kinds of proof system There are at least two styles of proof system for propositional logic other than trees that beginners ought to know about. The real interest here, of course, is not in learning yet more about classical proposi- tional logic per se. For how much fun is that? Rather, what we are doing { as always { is illustrating some Big Ideas using propositional logic as a baby example. The two new styles are: 1. Axiomatic systems The first system of formal logic in anything like the contempo- rary sense { Frege's system in his Begriffsschrift of 1879 { is an axiomatic one. What is meant by `axiomatic' in this context? Think of Euclid's geometry for example. In such an axiomatic theory, we are given a \starter pack" of basic as- sumptions or axioms (we are often given a package of supplementary definitions as well, enabling us to introduce new ideas as abbreviations for constructs out of old ideas). And then the theorems of the theory are those claims that can deduced by allowed moves from the axioms, perhaps invoking definitions where appropriate. In Euclid's case, the axioms and definitions are of course geometrical, and he just helps himself to whatever logical inferences he needs to execute the deductions. But, if we are going to go on to axiomatize logic itself, we are going to need to be explicit not just about the basic logical axioms we take as given starting points for deductions, but also about the rules of inference that we are permitted to use.
    [Show full text]
  • An Introduction to Critical Thinking and Symbolic Logic: Volume 1 Formal Logic
    An Introduction to Critical Thinking and Symbolic Logic: Volume 1 Formal Logic Rebeka Ferreira and Anthony Ferrucci 1 1An Introduction to Critical Thinking and Symbolic Logic: Volume 1 Formal Logic is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 1 Preface This textbook has developed over the last few years of teaching introductory symbolic logic and critical thinking courses. It has been truly a pleasure to have beneted from such great students and colleagues over the years. As we have become increasingly frustrated with the costs of traditional logic textbooks (though many of them deserve high praise for their accuracy and depth), the move to open source has become more and more attractive. We're happy to provide it free of charge for educational use. With that being said, there are always improvements to be made here and we would be most grateful for constructive feedback and criticism. We have chosen to write this text in LaTex and have adopted certain conventions with symbols. Certainly many important aspects of critical thinking and logic have been omitted here, including historical developments and key logicians, and for that we apologize. Our goal was to create a textbook that could be provided to students free of charge and still contain some of the more important elements of critical thinking and introductory logic. To that end, an additional benet of providing this textbook as a Open Education Resource (OER) is that we will be able to provide newer updated versions of this text more frequently, and without any concern about increased charges each time.
    [Show full text]
  • Conditional Heresies *
    CONDITIONAL HERESIES * Fabrizio Cariani and Simon Goldstein Abstract The principles of Conditional Excluded Middle (CEM) and Simplification of Disjunctive Antecedents (SDA) have received substantial attention in isolation. Both principles are plausible generalizations about natural lan- guage conditionals. There is however little discussion of their interaction. This paper aims to remedy this gap and explore the significance of hav- ing both principles constrain the logic of the conditional. Our negative finding is that, together with elementary logical assumptions, CEM and SDA yield a variety of implausible consequences. Despite these incom- patibility results, we open up a narrow space to satisfy both. We show that, by simultaneously appealing to the alternative-introducing analysis of disjunction and to the theory of homogeneity presuppositions, we can satisfy both. Furthermore, the theory that validates both principles re- sembles a recent semantics that is defended by Santorio on independent grounds. The cost of this approach is that it must give up the transitivity of entailment: we suggest that this is a feature, not a bug, and connect it with recent developments of intransitive notions of entailment. 1 Introduction David Lewis’s logic for the counterfactual conditional (Lewis 1973) famously invalidates two plausible-sounding principles: simplification of disjunctive antecedents (SDA),1 and conditional excluded middle (CEM).2 Simplification states that conditionals with disjunctive antecedents entail conditionals whose antecedents are the disjuncts taken in isolation. For instance, given SDA, (1) en- tails (2). *Special thanks to Shawn Standefer for extensive written comments on a previous version of this paper and to anonymous reviewers for Philosophy and Phenomenological Research and the Amsterdam Colloquium.
    [Show full text]
  • Conditional Antinomies
    CONDITIONAL ANTINOMIES Claudio Pizzi * Abstract: After a short premise about some paradoxical features of counterfactual reasoning, the paper tries to identify the analogues of the so-called Card Paradox and of the Liar antinomy by using a language containing the conditional operator symbolized by >. A first proposal is taken into account but dismissed since the resulting Liar is equivalent to the statement “the present statement is necessarily false”, which makes the corner operator indistinguishable from strict implication. A second proposed solution consists in paraphrasing every statement A into the conditional “I would lie if I said not-A”, where the conditional has the properties of the classical conditional operator. The “Epimenides” and “Truth-Teller” variants of the paradox are also examined in the last section. Keywords: Antinomy. Paradox. Liar. Epimenides. Counterfactuals. Conditionals. *Emeritus Siena University. Born in Milan (Italy) in 1944. Main research interests: Tense Logic, Conditional Logic, Philosophy of Causality, Abductive Reasoning. 19 CONDITIONAL ANTINOMIES . §1. Conditionals have been a source of paradoxes since the beginning of contemporary logic, as it is shown by the so-called paradoxes of material and strict implication. However, their more paradoxical features came out especially after the II World War, along with the first attempts to determine the logical properties of counterfactual conditionals1. It is in itself paradoxical, to begin with, that a contrary-to-fact antecedent has normally two legitimate consequents which are incompatible. For instance, under standard presuppositions about Apollo and human kind, both the following counterfactuals appear to be justified: (i) If Apollo were a man he would be mortal (ii) If Apollo were a man he would be the instance of an immortal man The paradox is here solved by the fact that one of the two conditionals, i.e.
    [Show full text]
  • Non-Classical Logics; 2
    {A} An example of logical metatheory would be giving a proof, Preliminaries in English, that a certain logical system is sound and com- plete, i.e., that every inference its deductive system allows is valid according to its semantics, and vice versa. Since the proof is about a logical system, the proof is not given A.1 Some Vocabulary within that logical system, but within the metalanguage. An object language is a language under discussion or be- Though it is not our main emphasis, we will be doing a fair ing studied (the “object” of our study). amount of logical metatheory in this course. Our metalan- guage will be English, and to avoid confusion, we will use A metalanguage is the language used when discussing an English words like “if”, “and” and “not” rather than their object language. corresponding object language equivalents when work- In logic courses we often use English as a metalanguage ing in the metalanguage. We will, however, be employing when discussing an object language consisting of logical a smattering of symbols in the metalanguage, including symbols along with variables, constants and/or proposi- generic mathematical symbols, symbols from set theory, tional parameters. and some specialized symbols such as “” and “ ”. ` As logical studies become more advanced and sophisti- cated, it becomes more and more important to keep the A.2 Basic Set Theory object language and metalanguage clearly separated. A logical system, or a “logic” for short, typically consists of We shall use these signs metalanguage only. (In another three things (but may consist of only the rst two, or the logic course, you might nd such signs used in the object rst and third): language.) 1.
    [Show full text]
  • Form and Content: an Introduction to Formal Logic
    Connecticut College Digital Commons @ Connecticut College Open Educational Resources 2020 Form and Content: An Introduction to Formal Logic Derek D. Turner Connecticut College, [email protected] Follow this and additional works at: https://digitalcommons.conncoll.edu/oer Recommended Citation Turner, Derek D., "Form and Content: An Introduction to Formal Logic" (2020). Open Educational Resources. 1. https://digitalcommons.conncoll.edu/oer/1 This Book is brought to you for free and open access by Digital Commons @ Connecticut College. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Form & Content Form and Content An Introduction to Formal Logic Derek Turner Connecticut College 2020 Susanne K. Langer. This bust is in Shain Library at Connecticut College, New London, CT. Photo by the author. 1 Form & Content ©2020 Derek D. Turner This work is published in 2020 under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. You may share this text in any format or medium. You may not use it for commercial purposes. If you share it, you must give appropriate credit. If you remix, transform, add to, or modify the text in any way, you may not then redistribute the modified text. 2 Form & Content A Note to Students For many years, I had relied on one of the standard popular logic textbooks for my introductory formal logic course at Connecticut College. It is a perfectly good book, used in countless logic classes across the country.
    [Show full text]
  • Reflecting on the Legacy of CI Lewis
    Organon F, Volume 26, 2019, Issue 3 Special Issue Reflecting on the Legacy of C.I. Lewis: Contemporary and Historical Perspectives on Modal Logic Matteo Pascucci and Adam Tamas Tuboly Guest Editors Contents Matteo Pascucci and Adam Tamas Tuboly: Preface ................................... 318 Research Articles Max Cresswell: Modal Logic before Kripke .................................................. 323 Lloyd Humberstone: Semantics without Toil? Brady and Rush Meet Halldén .................................................................................................. 340 Edwin Mares and Francesco Paoli: C. I. Lewis, E. J. Nelson, and the Modern Origins of Connexive Logic ............................................... 405 Claudio Pizzi: Alternative Axiomatizations of the Conditional System VC ............................................................................................ 427 Thomas Atkinson, Daniel Hill and Stephen McLeod: On a Supposed Puzzle Concerning Modality and Existence .......................................... 446 David B. Martens: Wiredu contra Lewis on the Right Modal Logic ............. 474 Genoveva Martí and José Martínez-Fernández: On ‘actually’ and ‘dthat’: Truth-conditional Differences in Possible Worlds Semantics ............... 491 Daniel Rönnedal: Semantic Tableau Versions of Some Normal Modal Systems with Propositional Quantifiers ................................................ 505 Report Martin Vacek: Modal Metaphysics: Issues on the (Im)possible VII ............. 537 Organon F 26 (3) 2019: 318–322
    [Show full text]