Conditional Antinomies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frontiers of Conditional Logic
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 Frontiers of Conditional Logic Yale Weiss The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2964 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Frontiers of Conditional Logic by Yale Weiss A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 ii c 2018 Yale Weiss All Rights Reserved iii This manuscript has been read and accepted by the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Professor Gary Ostertag Date Chair of Examining Committee Professor Nickolas Pappas Date Executive Officer Professor Graham Priest Professor Melvin Fitting Professor Edwin Mares Professor Gary Ostertag Supervisory Committee The City University of New York iv Abstract Frontiers of Conditional Logic by Yale Weiss Adviser: Professor Graham Priest Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional|especially counterfactual|expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that cat- alyzed the rapid maturation of the field. -
Marxist Philosophy and the Problem of Value
Soviet Studies in Philosophy ISSN: 0038-5883 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/mrsp19 Marxist Philosophy and the Problem of Value O. G. Drobnitskii To cite this article: O. G. Drobnitskii (1967) Marxist Philosophy and the Problem of Value, Soviet Studies in Philosophy, 5:4, 14-24 To link to this article: http://dx.doi.org/10.2753/RSP1061-1967050414 Published online: 20 Dec 2014. Submit your article to this journal Article views: 1 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=mrsp19 Download by: [North Carolina State University], [Professor Marina Bykova] Date: 09 February 2017, At: 14:43 Theory of Value Voprosy filosofii, 1966, No. 7 0, G. Drobnitskii MARXIST PHILOSOPHY AND THE PROBLEM OF -*’VXLUr;* * In recent years, the question has been posed fact that things and phenomena in the world con- of the attitude of Marxist philosophy to what is stituting man’s environment have been endowed termed the problem of value. The point is not with such characteristics as worth, good and only that bourgeois axiology, which has been de- evil, beauty and ugliness, justice and injustice. veloping for three-quarters of a century, has to Doubtless, the phenomena of social consciousness be critically analyzed. Central to the question act in some aspect as “spiritual values,” i.e., is whether a Marxist axiology is possible. In they partake of the character of valuation norms. that connection the following is instructive. Finally, all these phenomena may be combined Authors who, with envious consistency, ignore under the single common notion of value. -
Philosophy and the Foreigner in Plato's Dialogues
Philosophy and the Foreigner in Plato’s Dialogues By Rebecca LeMoine A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Political Science) at the UNIVERSITY OF WISCONSIN-MADISON 2014 Date of final oral examination: 06/20/2014 The dissertation is approved by the following members of the Final Oral Committee: Richard Avramenko, Associate Professor, Political Science Alex Dressler, Assistant Professor, Classics Daniel Kapust, Associate Professor, Political Science Helen Kinsella, Associate Professor, Political Science John Zumbrunnen, Professor, Political Science i ABSTRACT The place of foreigners in Plato’s thought remains understudied despite the prevalence of foreign characters, myths, and practices throughout his dialogues. Attending to this gap in the scholarly literature, this dissertation challenges conventional depictions of Plato as hostile to diversity by showing that Plato makes a compelling case for why we should engage with foreigners: the epistemological benefits of cross-cultural engagement. Through exegetical readings of the Republic, Laws, Phaedrus, and Menexenus, I argue that Plato finds cross-cultural dialogue epistemologically beneficial owing to its ability to provoke us to philosophize together, an activity at once conducive to the quest for wisdom and generative of friendship. Put simply, conversations with foreigners perform the same role as the Socratic gadfly of stinging us into consciousness. This finding has major implications for the field of political theory and, specifically, for the role of the new subfield commonly referred to as comparative political theory. By demonstrating the centrality of cross-cultural dialogue to Plato’s conception of political theory, this dissertation suggests that comparative political theory is not a deviation from the tradition of Western political theory, but a restoration of it. -
The Liar Paradox As a Reductio Ad Absurdum Argument
University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 3 May 15th, 9:00 AM - May 17th, 5:00 PM The Liar Paradox as a reductio ad absurdum argument Menashe Schwed Ashkelon Academic College Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive Part of the Philosophy Commons Schwed, Menashe, "The Liar Paradox as a reductio ad absurdum argument" (1999). OSSA Conference Archive. 48. https://scholar.uwindsor.ca/ossaarchive/OSSA3/papersandcommentaries/48 This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact [email protected]. Title: The Liar Paradox as a Reductio ad Absurdum Author: Menashe Schwed Response to this paper by: Lawrence Powers (c)2000 Menashe Schwed 1. Introduction The paper discusses two seemingly separated topics: the origin and function of the Liar Paradox in ancient Greek philosophy and the Reduction ad absurdum mode of argumentation. Its goal is to show how the two topics fit together and why they are closely connected. The accepted tradition is that Eubulides of Miletos was the first to formulate the Liar Paradox correctly and that the paradox was part of the philosophical discussion of the Megarian School. Which version of the paradox was formulated by Eubulides is unknown, but according to some hints given by Aristotle and an incorrect version given by Cicero1, the version was probably as follows: The paradox is created from the Liar sentence ‘I am lying’. -
Self-Referential Problems in Mathematics
Michigan Law Review Volume 90 Issue 5 1992 Some Lesson About the Law From Self-Referential Problems in Mathematics John M. Rogers University of Kentucky Robert E. Molzon University of Kentucky Follow this and additional works at: https://repository.law.umich.edu/mlr Part of the Mathematics Commons, and the Public Law and Legal Theory Commons Recommended Citation John M. Rogers & Robert E. Molzon, Some Lesson About the Law From Self-Referential Problems in Mathematics, 90 MICH. L. REV. 992 (1992). Available at: https://repository.law.umich.edu/mlr/vol90/iss5/3 This Essay is brought to you for free and open access by the Michigan Law Review at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. ESSAY SOME LESSONS ABOUT THE LAW FROM SELF-REFERENTIAL PROBLEMS IN MATHEMATICS John M. Rogers* and Robert E. Molzon ** If systems of law can be analogized to axiomatic systems of mathe matical logic in a tight enough fashion, then some conclusions of twen tieth-century mathematicians regarding number theory systems may usefully be applied to legal systems as well. In particular, legal theo rists must become comfortable with the incompleteness of legal sys tems, no matter how carefully constructed, in the same way that mathematicians and philosophers have become comfortable with the incompleteness of axiomatic systems of number theory. The analogy sheds light on some currently perceived problems with our constitu tional system. -
Three Ways of Being Non-Material
Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent. -
Oppositions and Paradoxes in Mathematics and Philosophy
OPPOSITIONS AND PARADOXES IN MATHEMATICS AND PHILOSOPHY John L. Bell Abstract. In this paper a number of oppositions which have haunted mathematics and philosophy are described and analyzed. These include the Continuous and the Discrete, the One and the Many, the Finite and the Infinite, the Whole and the Part, and the Constant and the Variable. Underlying the evolution of mathematics and philosophy has been the attempt to reconcile a number of interlocking oppositions, oppositions which have on occasion crystallized into paradox and which continue to haunt mathematics to this day. These include the Continuous and the Discrete, the One and the Many, the Finite and the Infinite, the Whole and the Part, and the Constant and the Variable. Let me begin with the first of these oppositions—that between continuity and discreteness. Continuous entities possess the property of being indefinitely divisible without alteration of their essential nature. So, for instance, the water in a bucket may be continually halved and yet remain wateri. Discrete entities, on the other hand, typically cannot be divided without effecting a change in their nature: half a wheel is plainly no longer a wheel. Thus we have two contrasting properties: on the one hand, the property of being indivisible, separate or discrete, and, on the other, the property of being indefinitely divisible and continuous although not actually divided into parts. 2 Now one and the same object can, in a sense, possess both of these properties. For example, if the wheel is regarded simply as a piece of matter, it remains so on being divided in half. -
Kant on Empiricism and Rationalism
HISTORY OF PHILOSOPHY QUARTERLY Volume 30, Number 1, January 2013 KANT ON EMPIRICISM AND RATIONALISM Alberto Vanzo his paper aims to correct some widely held misconceptions concern- T ing Kant’s role in the formation of a widespread narrative of early modern philosophy.1 According to this narrative, which dominated the English-speaking world throughout the twentieth century,2 the early modern period was characterized by the development of two rival schools: René Descartes’s, Baruch Spinoza’s, and G. W. Leibniz’s rationalism; and John Locke’s, George Berkeley’s, and David Hume’s empiricism. Empiricists and rationalists disagreed on whether all concepts are de- rived from experience and whether humans can have any substantive a priori knowledge, a priori knowledge of the physical world, or a priori metaphysical knowledge.3 The early modern period came to a close, so the narrative claims, once Immanuel Kant, who was neither an empiri- cist nor a rationalist, combined the insights of both movements in his new Critical philosophy. In so doing, Kant inaugurated the new eras of German idealism and late modern philosophy. Since the publication of influential studies by Louis Loeb and David Fate Norton,4 the standard narrative of early modern philosophy has come increasingly under attack. Critics hold that histories of early modern philosophy based on the rationalism-empiricism distinction (RED) have three biases—three biases for which, as we shall see, Kant is often blamed. The Epistemological Bias. Since disputes regarding a priori knowledge belong to epistemology, the RED is usually regarded as an epistemologi- cal distinction.5 Accordingly, histories of early modern philosophy based on the RED tend to assume that the core of early modern philosophy lies in the conflict between the “competing and mutually exclusive epis- temologies” of “rationalism and empiricism.”6 They typically interpret most of the central doctrines, developments, and disputes of the period in the light of philosophers’ commitment to empiricist or rationalist epistemologies. -
Russell's Paradox in Appendix B of the Principles of Mathematics
HISTORY AND PHILOSOPHY OF LOGIC, 22 (2001), 13± 28 Russell’s Paradox in Appendix B of the Principles of Mathematics: Was Frege’s response adequate? Ke v i n C. Kl e m e n t Department of Philosophy, University of Massachusetts, Amherst, MA 01003, USA Received March 2000 In their correspondence in 1902 and 1903, after discussing the Russell paradox, Russell and Frege discussed the paradox of propositions considered informally in Appendix B of Russell’s Principles of Mathematics. It seems that the proposition, p, stating the logical product of the class w, namely, the class of all propositions stating the logical product of a class they are not in, is in w if and only if it is not. Frege believed that this paradox was avoided within his philosophy due to his distinction between sense (Sinn) and reference (Bedeutung). However, I show that while the paradox as Russell formulates it is ill-formed with Frege’s extant logical system, if Frege’s system is expanded to contain the commitments of his philosophy of language, an analogue of this paradox is formulable. This and other concerns in Fregean intensional logic are discussed, and it is discovered that Frege’s logical system, even without its naive class theory embodied in its infamous Basic Law V, leads to inconsistencies when the theory of sense and reference is axiomatized therein. 1. Introduction Russell’s letter to Frege from June of 1902 in which he related his discovery of the Russell paradox was a monumental event in the history of logic. However, in the ensuing correspondence between Russell and Frege, the Russell paradox was not the only antinomy discussed. -
Paradoxes Situations That Seems to Defy Intuition
Paradoxes Situations that seems to defy intuition PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 08 Jul 2014 07:26:17 UTC Contents Articles Introduction 1 Paradox 1 List of paradoxes 4 Paradoxical laughter 16 Decision theory 17 Abilene paradox 17 Chainstore paradox 19 Exchange paradox 22 Kavka's toxin puzzle 34 Necktie paradox 36 Economy 38 Allais paradox 38 Arrow's impossibility theorem 41 Bertrand paradox 52 Demographic-economic paradox 53 Dollar auction 56 Downs–Thomson paradox 57 Easterlin paradox 58 Ellsberg paradox 59 Green paradox 62 Icarus paradox 65 Jevons paradox 65 Leontief paradox 70 Lucas paradox 71 Metzler paradox 72 Paradox of thrift 73 Paradox of value 77 Productivity paradox 80 St. Petersburg paradox 85 Logic 92 All horses are the same color 92 Barbershop paradox 93 Carroll's paradox 96 Crocodile Dilemma 97 Drinker paradox 98 Infinite regress 101 Lottery paradox 102 Paradoxes of material implication 104 Raven paradox 107 Unexpected hanging paradox 119 What the Tortoise Said to Achilles 123 Mathematics 127 Accuracy paradox 127 Apportionment paradox 129 Banach–Tarski paradox 131 Berkson's paradox 139 Bertrand's box paradox 141 Bertrand paradox 146 Birthday problem 149 Borel–Kolmogorov paradox 163 Boy or Girl paradox 166 Burali-Forti paradox 172 Cantor's paradox 173 Coastline paradox 174 Cramer's paradox 178 Elevator paradox 179 False positive paradox 181 Gabriel's Horn 184 Galileo's paradox 187 Gambler's fallacy 188 Gödel's incompleteness theorems -
Counterfactuals and Modality
Linguistics and Philosophy https://doi.org/10.1007/s10988-020-09313-8 ORIGINAL RESEARCH Counterfactuals and modality Gabriel Greenberg1 Accepted: 9 October 2020 © Springer Nature B.V. 2021 Abstract This essay calls attention to a set of linguistic interactions between counterfactual conditionals, on one hand, and possibility modals like could have and might have,on the other. These data present a challenge to the popular variably strict semantics for counterfactual conditionals. Instead, they support a version of the strict conditional semantics in which counterfactuals and possibility modals share a unified quantifica- tional domain. I’ll argue that pragmatic explanations of this evidence are not available to the variable analysis. And putative counterexamples to the unified strict analysis, on careful inspection, in fact support it. Ultimately, the semantics of conditionals and modals must be linked together more closely than has sometimes been recognized, and a unified strict semantics for conditionals and modals is the only way to fully achieve this. Keywords Counterfactuals · Conditionals · Modality · Discourse This essay calls attention to a set of linguistic interactions between counterfactual conditionals, on one hand, and possibility modals like could have and might have,on the other. These data present a challenge to the popular variably strict semantics for counterfactual conditionals. Instead, they support a version of the strict conditional semantics in which counterfactuals and possibility modals share a unified quantifica- tional domain. I’ll argue that pragmatic explanations of this evidence are not available to the variable analysis. And putative counterexamples to the unified strict analysis, on careful inspection, in fact support it. Ultimately, the semantics of conditionals and modals must be linked together more closely than has sometimes been recognized, and a unified strict semantics for conditionals and modals is the only way to fully achieve this. -
Definition and Construction Preprint 28.09
MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2006 PREPRINT 317 Gideon Freudenthal Definition and Construction Salomon Maimon’s Philosophy of Geometry Definition and Construction Salomon Maimon's Philosophy of Geometry Gideon Freudenthal 1. Introduction .........................................................................................................3 1.1. A Failed Proof and a Philosophical Conversion .................................................8 1.2. The Value of Mathematics ..................................................................................13 2. The Straight Line.................................................................................................15 2.1. Synthetic Judgments a priori Kantian and Aristotelean Style.............................15 2.2. Maimon's Proof that the Straight Line is also the shortest between Two Points ............................................................................................23 2.3. Kant's Critique and Maimon's Answer................................................................30 2.4. Definition, Construction, Proof in Euclid and Kant............................................33 2.5. The Construction of the Straight Line.................................................................37 2.6. The Turn to Empircial Skepticism (and Rational Dogmatism)...........................39 2.7. Synthetic a priori and proprium ..........................................................................46 2.8. Maimon's