Counterfactuals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gibbardian Collapse and Trivalent Conditionals
Gibbardian Collapse and Trivalent Conditionals Paul Égré* Lorenzo Rossi† Jan Sprenger‡ Abstract This paper discusses the scope and significance of the so-called triviality result stated by Allan Gibbard for indicative conditionals, showing that if a conditional operator satisfies the Law of Import-Export, is supraclassical, and is stronger than the material conditional, then it must collapse to the material conditional. Gib- bard’s result is taken to pose a dilemma for a truth-functional account of indicative conditionals: give up Import-Export, or embrace the two-valued analysis. We show that this dilemma can be averted in trivalent logics of the conditional based on Reichenbach and de Finetti’s idea that a conditional with a false antecedent is undefined. Import-Export and truth-functionality hold without triviality in such logics. We unravel some implicit assumptions in Gibbard’s proof, and discuss a recent generalization of Gibbard’s result due to Branden Fitelson. Keywords: indicative conditional; material conditional; logics of conditionals; triva- lent logic; Gibbardian collapse; Import-Export 1 Introduction The Law of Import-Export denotes the principle that a right-nested conditional of the form A → (B → C) is logically equivalent to the simple conditional (A ∧ B) → C where both antecedentsare united by conjunction. The Law holds in classical logic for material implication, and if there is a logic for the indicative conditional of ordinary language, it appears Import-Export ought to be a part of it. For instance, to use an example from (Cooper 1968, 300), the sentences “If Smith attends and Jones attends then a quorum *Institut Jean-Nicod (CNRS/ENS/EHESS), Département de philosophie & Département d’études cog- arXiv:2006.08746v1 [math.LO] 15 Jun 2020 nitives, Ecole normale supérieure, PSL University, 29 rue d’Ulm, 75005, Paris, France. -
Frontiers of Conditional Logic
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 Frontiers of Conditional Logic Yale Weiss The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2964 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Frontiers of Conditional Logic by Yale Weiss A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 ii c 2018 Yale Weiss All Rights Reserved iii This manuscript has been read and accepted by the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Professor Gary Ostertag Date Chair of Examining Committee Professor Nickolas Pappas Date Executive Officer Professor Graham Priest Professor Melvin Fitting Professor Edwin Mares Professor Gary Ostertag Supervisory Committee The City University of New York iv Abstract Frontiers of Conditional Logic by Yale Weiss Adviser: Professor Graham Priest Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional|especially counterfactual|expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that cat- alyzed the rapid maturation of the field. -
The Presupposition of Subjunctive Conditionals
The Presupposition of Subjunctive Conditionals Kai von Fintel M.I.T. 0. Introduction Why are some conditionals subjunctive? It is often assumed that at least one crucial difference is that subjunctive conditionals presuppose that their antecedent is false, that they are counterfactual (Lakoff 1970). The traditional theory has apparently been refuted. Perhaps the clearest counter-example is one given by Alan Anderson (1951: 37): If Jones had taken arsenic, he would have shown just exactly those symptoms which he does in fact show. A typical place to use such a subjunctive conditional would be in the course of an argument that tries to bolster the hypothesis that Jones did in fact take arsenic. But then it would of course be self-defeating to presuppose that the hypothesis is false. Thus, something else must be going on. 1. Preliminaries Let’s first assume the following “strict” semantics for “bare” conditionals, those in which the if-clause restricts an implicit quantifier over worlds: (1) Schematic Truth-Conditions for Bare Conditionals A bare conditional if p, q has the logical form " D (if p) (q). If defined, it is true in a world w iff all worlds w' in D(w) such that p(w') are such that q(w'): p Ç D(w) Í q. Here D is a function that assigns to any (evaluation) world w a set of accessible worlds. This semantics departs in some ways from the more standard Stalnaker-Lewis analysis and is justified in a recent paper of mine (von Fintel 1997). What it *Thanks to Paul Portner for very helpful comments on a previous draft. -
Some Remarks on Indicative Conditionals
Some Remarks on Indicative Conditionals Barbara Abbott Michigan State University 1. Introduction This paper concerns indicative conditionals, such as the English examples in (1): (1) a. If Lynn was at the meeting, she knows what's going on. b. If we leave now, we can make the 5:00 show. c. If it rains tomorrow, we won't have a picnic. We wi11look at several theories of indicative conditionals grouped into three categories: those that base its semantics on its logical counterpart (the material conditional); intensional analyses, which bring in alternative possible worlds; and a third subgroup which denies that indicative conditionals express propositions at all. We will also look at some problems for each kind of approach. 2. The Material Conditional Analysis There is a long tradition that associates natural language indicative conditionals with the material conditional of propositional logic. (Indeed, introductory logic texts typically assume this identification.) The semantics of the material conditional is given entirely by its truthtable, shown in (2). (2) p q p� q T T T T F F F T T F F T On this account natural language indicative conditionals express a truth function of their component sentences. 2.1. Problems fo r the Material Conditional Approach There are several problems for this approach. One stressed by Edgington (1995, 2003) is the following: assigning indicative conditionals the material conditional truth function means failing to distinguish between unequally probable conditionals with equally improbable antecedents, like those in (3) (from Jackson 197911991, 115): © 2004 by Barbara Abbott R. Young (ed), SA LT XIV 1-19, Ithaca, NY: Cornell University. -
Three Ways of Being Non-Material
Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent. -
An Overview of Logic, Proofs, Set Theory, and Functions Contents
An Overview of Logic, Proofs, Set Theory, and Functions aBa Mbirika and Shanise Walker Contents 1 Numerical Sets and Other Preliminary Symbols3 2 Statements and Truth Tables5 3 Implications 9 4 Predicates and Quantifiers 13 5 Writing Formal Proofs 22 6 Mathematical Induction 29 7 Quick Review of Set Theory & Set Theory Proofs 33 8 Functions, Bijections, Compositions, Etc. 38 9 Solutions to all exercises 42 Index 51 Preface: This handout is meant primarily for those students who are already familiar with most of the subject matter contained within (that is, those who have taken a proofs class before). Its purpose is to provide a foundation as a proofs refresher when taking classes like Real Analysis I or II, Abstract Algebra I or II, Number Theory, Discrete Mathematics, Linear Algebra, etc. LICENSE Creative Commons License (CC BY-NC-SA): This text, including the art and illustrations, are available under the Creative Commons license (CC BY-NC- SA), allowing anyone to reuse, revise, remix and redistribute the text. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/ Section 1 NUMERICAL SETS AND OTHER PRELIMINARY SYMBOLS Page 3 1 Numerical Sets and Other Preliminary Symbols The following are numerical sets that you should familiarize yourself with: natural numbers 1 N = f1; 2; 3;:::g integers Z = f:::; −3; −2; −1; 0; 1; 2; 3;:::g a rational numbers Q = b j a; b 2 Z and b 6= 0 real numbers R = frational and irrational numbersg p complex numbers C = fa + bi j a; b 2 R and i = −1g p Gaussian integers Z[i] = fa + bi j a; b 2 Z and i = −1g 2πi Eisenstein integers Z[ρ] = fa + bρ j a; b 2 Z and ρ = e 3 g even integers 2Z = f2k j k 2 Zg odd integers 2Z + 1 = f2k + 1 j k 2 Zg arithmetic progression aZ + b = fak + b j k 2 Zg where a; b fixed CULTURAL QUESTION 1: Why are the integers denoted Z? ANSWER: The German word for \numbers" is Zahlen. -
Indicative Conditionals: Probabilities and Relevance
Philos Stud https://doi.org/10.1007/s11098-021-01622-3 Indicative conditionals: probabilities and relevance 1,2 2 Francesco Berto • Aybu¨ke O¨ zgu¨n Accepted: 21 February 2021 Ó The Author(s) 2021 Abstract We propose a new account of indicative conditionals, giving acceptability and logical closure conditions for them. We start from Adams’ Thesis: the claim that the acceptability of a simple indicative equals the corresponding conditional probability. The Thesis is widely endorsed, but arguably false and refuted by empirical research. To fix it, we submit, we need a relevance constraint: we accept a simple conditional u ! w to the extent that (i) the conditional probability pðwjuÞ is high, provided that (ii) u is relevant for w. How (i) should work is well-understood. It is (ii) that holds the key to improve our understanding of conditionals. Our account has (i) a probabilistic component, using Popper functions; (ii) a relevance component, given via an algebraic structure of topics or subject matters. We present a probabilistic logic for simple indicatives, and argue that its (in)validities are both theoretically desirable and in line with empirical results on how people reason with conditionals. Keywords Conditionals Á Conditional probabilities Á Relevance Á Adams’ thesis Á Subject matter People do not consider the conditional probability to be the only basis for asserting a conditional, even if they judge the probability of the conditional to be the conditional probability. Evans & Over, If. & Francesco Berto [email protected] Aybu¨ke O¨ zgu¨n [email protected] 1 Arche´, University of St Andrews, St Andrews, Scotland 2 ILLC, University of Amsterdam, Amsterdam, The Netherlands 123 F. -
Chasing Hook: Quantified Indicative Conditionals
1 Chasing Hook: Quantified Indicative Conditionals Angelika Kratzer University of Massachusetts at Amherst May 2015 Abstract This chapter looks at indicative conditionals embedded under quantifiers, with a special emphasis on ‘one-case’ conditionals as in No query was answered if it came from a doubtful address. It agrees with earlier assessments that a complete conditional (with antecedent and consequent) is embedded under a quantifier in those constructions, but then proceeds to create a dilemma by showing that we can’t always find the right interpretation for that conditional. Contrary to earlier assessments, Stalnaker’s conditional won’t always do. The paper concludes that the embedded conditional in the sentence above is a material implication, but the if- clause also plays a pragmatic role in restricting the domain of the embedding quantifier. That an appeal to pragmatics should be necessary at all goes with Edgington’s verdict that “we do not have a satisfactory general account of sentences with conditional constituents.” 2 0. Introduction I should say this upfront. The Hook from Edgington’s Conditionals is a man with opinions. He thinks that if is a truth-functional connective and corresponds to material implication. My Hook is not a ‘he’ or a ‘she’, but an ‘it’. It is material implication itself. It is É. Hook is elusive. We know it has a connection with if, but we don’t quite know what the connection is. My project is to hunt Hook down in the back alleys of English. It’s not that I think Hook is that special. I am interested in Hook because it makes a good probe for exploring the properties of embedded conditionals. -
Counterfactuals and Modality
Linguistics and Philosophy https://doi.org/10.1007/s10988-020-09313-8 ORIGINAL RESEARCH Counterfactuals and modality Gabriel Greenberg1 Accepted: 9 October 2020 © Springer Nature B.V. 2021 Abstract This essay calls attention to a set of linguistic interactions between counterfactual conditionals, on one hand, and possibility modals like could have and might have,on the other. These data present a challenge to the popular variably strict semantics for counterfactual conditionals. Instead, they support a version of the strict conditional semantics in which counterfactuals and possibility modals share a unified quantifica- tional domain. I’ll argue that pragmatic explanations of this evidence are not available to the variable analysis. And putative counterexamples to the unified strict analysis, on careful inspection, in fact support it. Ultimately, the semantics of conditionals and modals must be linked together more closely than has sometimes been recognized, and a unified strict semantics for conditionals and modals is the only way to fully achieve this. Keywords Counterfactuals · Conditionals · Modality · Discourse This essay calls attention to a set of linguistic interactions between counterfactual conditionals, on one hand, and possibility modals like could have and might have,on the other. These data present a challenge to the popular variably strict semantics for counterfactual conditionals. Instead, they support a version of the strict conditional semantics in which counterfactuals and possibility modals share a unified quantifica- tional domain. I’ll argue that pragmatic explanations of this evidence are not available to the variable analysis. And putative counterexamples to the unified strict analysis, on careful inspection, in fact support it. Ultimately, the semantics of conditionals and modals must be linked together more closely than has sometimes been recognized, and a unified strict semantics for conditionals and modals is the only way to fully achieve this. -
Summary of the Full License, Which Is Available On-Line at to Harmony
Proofs and Concepts the fundamentals of abstract mathematics by Dave Witte Morris and Joy Morris University of Lethbridge incorporating material by P. D. Magnus University at Albany, State University of New York Preliminary Version 0.78 of May 2009 This book is offered under the Creative Commons license. (Attribution-NonCommercial-ShareAlike 2.0) The presentation of logic in this textbook is adapted from forallx An Introduction to Formal Logic P. D. Magnus University at Albany, State University of New York The most recent version of forallx is available on-line at http://www.fecundity.com/logic We thank Professor Magnus for making forallx freely available, and for authorizing derivative works such as this one. He was not involved in the preparation of this manuscript, so he is not responsible for any errors or other shortcomings. Please send comments and corrections to: [email protected] or [email protected] c 2006–2009 by Dave Witte Morris and Joy Morris. Some rights reserved. Portions c 2005–2006 by P. D. Magnus. Some rights reserved. Brief excerpts are quoted (with attribution) from copyrighted works of various authors. You are free to copy this book, to distribute it, to display it, and to make derivative works, under the following conditions: (1) Attribution. You must give the original author credit. (2) Noncommercial. You may not use this work for commercial purposes. (3) Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. — For any reuse or distribution, you must make clear to others the license terms of this work. -
DISPOSITION CONCEPTS and EXTENSIONAL LOGIC ------ARTHUR PAP------Not Be "Contrary-To-Fact") : If I Pull the Trigger, the Gun Will Fire
DISPOSITION CONCEPTS AND EXTENSIONAL LOGIC ------ARTHUR PAP------ not be "contrary-to-fact") : if I pull the trigger, the gun will fire. It would be sad if belief in such an implication were warranted only by knowledge of the truth of antecedent and consequent separately, for in that case it would be impossible for man to acquire the power of Disposition Concepts and Extensional Logic even limited control over the course of events by acquiring warranted beliefs about causal connections. Notice further that frequently pre sumed knowledge of a causal implication is a means to knowledge of the truth, or at least probability, of the antecedent; if this is an acid then it will turn blue litmus paper red; the reaction occurred; thus the One of the striking differences between natural languages, both con hypothesis is confirmed. Knowledge of the consequences of suppositions versational and scientific, and the extensional languages constructed by is independent of knowledge of the truth-values of the suppositions, no logicians is that most conditional statements, i.e., statements of the form matter whether the consequences be logical or causal. "if p, then q", of a natural language are not truth-functional. A state The difference between material implication and natural implica tion has been widely discussed. The logician's use of "if p, then q" ment compounded out of simpler statements is truth-functional if its in the truth-functional sense of "not both p and not-q", symbolized by truth-value is uniquely determined by the truth-values of the component "p :J q", is fully justified by the objective of constructing an adequate statements. -
A Note on Conditionals and Restrictors∗
A note on conditionals and restrictors∗ Daniel Rothschild Introduction Within linguistic semantics, it is near orthodoxy that the function of the word `if' (in most cases) is to mark restrictions on quantification. Just as in the sentence `Every man smokes', the common noun `man' restricts the quantifier `every', in the sentence `Usually, if it's winter it's cold', `it's winter' acts as a restrictor on the situational quantifier `usually'. This view, originally due to Lewis (1975), has been greatly extended in work by Heim (1982) and, most notably, Kratzer (1981, 1986) into a rich theory of almost all uses of the word `if'. I call this the restrictor view of `if'. Despite its linguistic prominence, this view of the word `if' has played little role in the philosophical discussion of conditionals. Fairly recent philosophical surveys such as Bennett's (2003) book-length introduction or Edgington's (1995; 2008) review articles do not even mention the restrictor view. Stranger still, in his seminal work on conditionals and probability, Lewis (1976, 1986) does not mention the restrictor view which he pioneered, despite the intimate relation noted later by Kratzer (1986).1 This paper tries to fill in the gap left by these omissions.2 I make four main points. First, I argue that given the current state of things our best bet is to accept the `restrictor view' and to assume that `if' is not ambiguous, so ∗This paper was written for a conference in honor of Dorothy Edgington at the Institute of Philosophy, London in May 2011. I am grateful to Dilip Ninan, Scott Sturgeon, and Seth Yalcin for useful discussion of this topic, and particularly to Justin Khoo, whose recent draft (cited below) prompted me to think about these issues.