Forall X: Calgary Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tt-Satisfiable
CMPSCI 601: Recall From Last Time Lecture 6 Boolean Syntax: ¡ ¢¤£¦¥¨§¨£ © §¨£ § Boolean variables: A boolean variable represents an atomic statement that may be either true or false. There may be infinitely many of these available. Boolean expressions: £ atomic: , (“top”), (“bottom”) § ! " # $ , , , , , for Boolean expressions Note that any particular expression is a finite string, and thus may use only finitely many variables. £ £ A literal is an atomic expression or its negation: , , , . As you may know, the choice of operators is somewhat arbitary as long as we have a complete set, one that suf- fices to simulate all boolean functions. On HW#1 we ¢ § § ! argued that is already a complete set. 1 CMPSCI 601: Boolean Logic: Semantics Lecture 6 A boolean expression has a meaning, a truth value of true or false, once we know the truth values of all the individual variables. ¢ £ # ¡ A truth assignment is a function ¢ true § false , where is the set of all variables. An as- signment is appropriate to an expression ¤ if it assigns a value to all variables used in ¤ . ¡ The double-turnstile symbol ¥ (read as “models”) de- notes the relationship between a truth assignment and an ¡ ¥ ¤ expression. The statement “ ” (read as “ models ¤ ¤ ”) simply says “ is true under ”. 2 ¡ ¤ ¥ ¤ If is appropriate to , we define when is true by induction on the structure of ¤ : is true and is false for any , £ A variable is true iff says that it is, ¡ ¡ ¡ ¡ " ! ¥ ¤ ¥ ¥ If ¤ , iff both and , ¡ ¡ ¡ ¡ " ¥ ¤ ¥ ¥ If ¤ , iff either or or both, ¡ ¡ ¡ ¡ " # ¥ ¤ ¥ ¥ If ¤ , unless and , ¡ ¡ ¡ ¡ $ ¥ ¤ ¥ ¥ If ¤ , iff and are both true or both false. 3 Definition 6.1 A boolean expression ¤ is satisfiable iff ¡ ¥ ¤ there exists . -
Gibbardian Collapse and Trivalent Conditionals
Gibbardian Collapse and Trivalent Conditionals Paul Égré* Lorenzo Rossi† Jan Sprenger‡ Abstract This paper discusses the scope and significance of the so-called triviality result stated by Allan Gibbard for indicative conditionals, showing that if a conditional operator satisfies the Law of Import-Export, is supraclassical, and is stronger than the material conditional, then it must collapse to the material conditional. Gib- bard’s result is taken to pose a dilemma for a truth-functional account of indicative conditionals: give up Import-Export, or embrace the two-valued analysis. We show that this dilemma can be averted in trivalent logics of the conditional based on Reichenbach and de Finetti’s idea that a conditional with a false antecedent is undefined. Import-Export and truth-functionality hold without triviality in such logics. We unravel some implicit assumptions in Gibbard’s proof, and discuss a recent generalization of Gibbard’s result due to Branden Fitelson. Keywords: indicative conditional; material conditional; logics of conditionals; triva- lent logic; Gibbardian collapse; Import-Export 1 Introduction The Law of Import-Export denotes the principle that a right-nested conditional of the form A → (B → C) is logically equivalent to the simple conditional (A ∧ B) → C where both antecedentsare united by conjunction. The Law holds in classical logic for material implication, and if there is a logic for the indicative conditional of ordinary language, it appears Import-Export ought to be a part of it. For instance, to use an example from (Cooper 1968, 300), the sentences “If Smith attends and Jones attends then a quorum *Institut Jean-Nicod (CNRS/ENS/EHESS), Département de philosophie & Département d’études cog- arXiv:2006.08746v1 [math.LO] 15 Jun 2020 nitives, Ecole normale supérieure, PSL University, 29 rue d’Ulm, 75005, Paris, France. -
Glossary for Logic: the Language of Truth
Glossary for Logic: The Language of Truth This glossary contains explanations of key terms used in the course. (These terms appear in bold in the main text at the point at which they are first used.) To make this glossary more easily searchable, the entry headings has ‘::’ (two colons) before it. So, for example, if you want to find the entry for ‘truth-value’ you should search for ‘:: truth-value’. :: Ambiguous, Ambiguity : An expression or sentence is ambiguous if and only if it can express two or more different meanings. In logic, we are interested in ambiguity relating to truth-conditions. Some sentences in natural languages express more than one claim. Read one way, they express a claim which has one set of truth-conditions. Read another way, they express a different claim with different truth-conditions. :: Antecedent : The first clause in a conditional is its antecedent. In ‘(P ➝ Q)’, ‘P’ is the antecedent. In ‘If it is raining, then we’ll get wet’, ‘It is raining’ is the antecedent. (See ‘Conditional’ and ‘Consequent’.) :: Argument : An argument is a set of claims (equivalently, statements or propositions) made up from premises and conclusion. An argument can have any number of premises (from 0 to indefinitely many) but has only one conclusion. (Note: This is a somewhat artificially restrictive definition of ‘argument’, but it will help to keep our discussions sharp and clear.) We can consider any set of claims (with one claim picked out as conclusion) as an argument: arguments will include sets of claims that no-one has actually advanced or put forward. -
Three Ways of Being Non-Material
Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent. -
False Dilemma Wikipedia Contents
False dilemma Wikipedia Contents 1 False dilemma 1 1.1 Examples ............................................... 1 1.1.1 Morton's fork ......................................... 1 1.1.2 False choice .......................................... 2 1.1.3 Black-and-white thinking ................................... 2 1.2 See also ................................................ 2 1.3 References ............................................... 3 1.4 External links ............................................. 3 2 Affirmative action 4 2.1 Origins ................................................. 4 2.2 Women ................................................ 4 2.3 Quotas ................................................. 5 2.4 National approaches .......................................... 5 2.4.1 Africa ............................................ 5 2.4.2 Asia .............................................. 7 2.4.3 Europe ............................................ 8 2.4.4 North America ........................................ 10 2.4.5 Oceania ............................................ 11 2.4.6 South America ........................................ 11 2.5 International organizations ...................................... 11 2.5.1 United Nations ........................................ 12 2.6 Support ................................................ 12 2.6.1 Polls .............................................. 12 2.7 Criticism ............................................... 12 2.7.1 Mismatching ......................................... 13 2.8 See also -
Chapter 9: Initial Theorems About Axiom System
Initial Theorems about Axiom 9 System AS1 1. Theorems in Axiom Systems versus Theorems about Axiom Systems ..................................2 2. Proofs about Axiom Systems ................................................................................................3 3. Initial Examples of Proofs in the Metalanguage about AS1 ..................................................4 4. The Deduction Theorem.......................................................................................................7 5. Using Mathematical Induction to do Proofs about Derivations .............................................8 6. Setting up the Proof of the Deduction Theorem.....................................................................9 7. Informal Proof of the Deduction Theorem..........................................................................10 8. The Lemmas Supporting the Deduction Theorem................................................................11 9. Rules R1 and R2 are Required for any DT-MP-Logic........................................................12 10. The Converse of the Deduction Theorem and Modus Ponens .............................................14 11. Some General Theorems About ......................................................................................15 12. Further Theorems About AS1.............................................................................................16 13. Appendix: Summary of Theorems about AS1.....................................................................18 2 Hardegree, -
Inference Versus Consequence* Göran Sundholm Leyden University
To appear in LOGICA Yearbook, 1998, Czech Acad. Sc., Prague. Inference versus Consequence* Göran Sundholm Leyden University The following passage, hereinafter "the passage", could have been taken from a modern textbook.1 It is prototypical of current logical orthodoxy: The inference (*) A1, …, Ak. Therefore: C is valid if and only if whenever all the premises A1, …, Ak are true, the conclusion C is true also. When (*) is valid, we also say that C is a logical consequence of A1, …, Ak. We write A1, …, Ak |= C. It is my contention that the passage does not properly capture the nature of inference, since it does not distinguish between valid inference and logical consequence. The view that the validity of inference is reducible to logical consequence has been made famous in our century by Tarski, and also by Wittgenstein in the Tractatus and by Quine, who both reduced valid inference to the logical truth of a suitable implication.2 All three were anticipated by Bolzano.3 Bolzano considered Urteile (judgements) of the form A is true where A is a Satz an sich (proposition in the modern sense).4 Such a judgement is correct (richtig) when the proposition A, that serves as the judgemental content, really is true.5 A correct judgement is an Erkenntnis, that is, a piece of knowledge.6 Similarly, for Bolzano, the general form I of inference * I am indebted to my colleague Dr. E. P. Bos who read an early version of the manuscript and offered valuable comments. 1 Could have been so taken and almost was; cf. -
Logic and Proof Release 3.18.4
Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................ -
Iso/Iec Jtc 1/Sc 2 N 3769/Wg2 N2866 Date: 2004-11-12
ISO/IEC JTC 1/SC 2 N 3769/WG2 N2866 DATE: 2004-11-12 ISO/IEC JTC 1/SC 2 Coded Character Sets Secretariat: Japan (JISC) DOC. TYPE Summary of Voting/Table of Replies Summary of Voting on ISO/IEC JTC 1/SC 2 N 3758 : ISO/IEC 14651/FPDAM 2, Information technology -- International string ordering TITLE and comparison -- Method for comparing character strings and description of the common template tailorable ordering -- AMENDMENT 2 SOURCE SC 2 Secretariat PROJECT JTC1.02.14651.00.02 This document is forwarded to Project Editor for resolution of comments. STATUS The Project Editor is requested to prepare a draft disposition of comments report, revised text and a recommendation for further processing. ACTION ID FYI DUE DATE P, O and L Members of ISO/IEC JTC 1/SC 2 ; ISO/IEC JTC 1 Secretariat; DISTRIBUTION ISO/IEC ITTF ACCESS LEVEL Def ISSUE NO. 202 NAME 02n3769.pdf SIZE FILE (KB) 24 PAGES Secretariat ISO/IEC JTC 1/SC 2 - IPSJ/ITSCJ *(Information Processing Society of Japan/Information Technology Standards Commission of Japan) Room 308-3, Kikai-Shinko-Kaikan Bldg., 3-5-8, Shiba-Koen, Minato-ku, Tokyo 105- 0011 Japan *Standard Organization Accredited by JISC Telephone: +81-3-3431-2808; Facsimile: +81-3-3431-6493; E-mail: [email protected] Summary of Voting on ISO/IEC JTC 1/SC 2 N 3758 : ISO/IEC 14651/FPDAM 2, Information technology -- International string ordering and comparison -- Method for comparing character strings and description of the common template tailorable ordering AMENDMENT 2 Q1 : FPDAM Consideration Q1 Not yet Comments Approve -
UTR #25: Unicode and Mathematics
UTR #25: Unicode and Mathematics http://www.unicode.org/reports/tr25/tr25-5.html Technical Reports Draft Unicode Technical Report #25 UNICODE SUPPORT FOR MATHEMATICS Version 1.0 Authors Barbara Beeton ([email protected]), Asmus Freytag ([email protected]), Murray Sargent III ([email protected]) Date 2002-05-08 This Version http://www.unicode.org/unicode/reports/tr25/tr25-5.html Previous Version http://www.unicode.org/unicode/reports/tr25/tr25-4.html Latest Version http://www.unicode.org/unicode/reports/tr25 Tracking Number 5 Summary Starting with version 3.2, Unicode includes virtually all of the standard characters used in mathematics. This set supports a variety of math applications on computers, including document presentation languages like TeX, math markup languages like MathML, computer algebra languages like OpenMath, internal representations of mathematics in systems like Mathematica and MathCAD, computer programs, and plain text. This technical report describes the Unicode mathematics character groups and gives some of their default math properties. Status This document has been approved by the Unicode Technical Committee for public review as a Draft Unicode Technical Report. Publication does not imply endorsement by the Unicode Consortium. This is a draft document which may be updated, replaced, or superseded by other documents at any time. This is not a stable document; it is inappropriate to cite this document as other than a work in progress. Please send comments to the authors. A list of current Unicode Technical Reports is found on http://www.unicode.org/unicode/reports/. For more information about versions of the Unicode Standard, see http://www.unicode.org/unicode/standard/versions/. -
Propositional Logic– Arguments (5A)
Propositional Logic– Arguments (5A) Young W. Lim 9/29/16 Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to [email protected]. This document was produced by using LibreOffice Based on Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang Logic and Its Applications, Burkey & Foxley Propositional Logic (5A) Young Won Lim Arguments 3 9/29/16 Arguments An argument consists of a set of propositions : The premises propositions The conclusion proposition List of premises followed by the conclusion A 1 A 2 … A n -------- B Propositional Logic (5A) Young Won Lim Arguments 4 9/29/16 Entail The premises is said to entail the conclusion If in every model in which all the premises are true, the conclusion is also true List of premises followed by the conclusion A 1 A 2 whenever … all the premises are true A n -------- B the conclusion must be true for the entailment Propositional Logic (5A) Young Won Lim Arguments 5 9/29/16 A Model A mode or possible world: Every atomic proposition is assigned a value T or F The set of all these assignments constitutes A model or a possible world All possile worlds (assignments) are permissiable Propositional Logic -
Miscellaneous Mathematical Symbols-A Range: 27C0–27EF
Miscellaneous Mathematical Symbols-A Range: 27C0–27EF This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 14.0 This file may be changed at any time without notice to reflect errata or other updates to the Unicode Standard. See https://www.unicode.org/errata/ for an up-to-date list of errata. See https://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See https://www.unicode.org/charts/PDF/Unicode-14.0/ for charts showing only the characters added in Unicode 14.0. See https://www.unicode.org/Public/14.0.0/charts/ for a complete archived file of character code charts for Unicode 14.0. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 14.0 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 14.0, online at https://www.unicode.org/versions/Unicode14.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, #44, #45, and #50, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online. See https://www.unicode.org/ucd/ and https://www.unicode.org/reports/ A thorough understanding of the information contained in these additional sources is required for a successful implementation.